DOI QR코드

DOI QR Code

Single Cell Oil Production from Undetoxified Arundo donax L. hydrolysate by Cutaneotrichosporon curvatus

  • Di Fidio, Nicola (Department of Chemistry and Industrial Chemistry, University of Pisa) ;
  • Liuzzi, Federico (Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA)) ;
  • Mastrolitti, Silvio (Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA)) ;
  • Albergo, Roberto (Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA)) ;
  • De Bari, Isabella (Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA))
  • Received : 2018.08.13
  • Accepted : 2018.12.23
  • Published : 2019.02.28

Abstract

The use of low-cost substrates represents one key issue to make single cell oil production sustainable. Among low-input crops, Arundo donax L. is a perennial herbaceous rhizomatous grass containing both C5 and C6 carbohydrates. The scope of the present work was to investigate and optimize the production of lipids by the oleaginous yeast Cutaneotrichosporon curvatus from undetoxified lignocellulosic hydrolysates of steam-pretreated A. donax. The growth of C. curvatus was first optimized in synthetic media, similar in terms of sugar concentration to hydrolysates, by applying the response surface methodology (RSM) analysis. Then the bioconversion of undetoxified hydrolysates was investigated. A fed-batch process for the fermentation of A. donax hydrolysates was finally implemented in a 2-L bioreactor. Under optimized conditions, the total lipid content was 64% of the dry cell weight and the lipid yield was 63% of the theoretical. The fatty acid profile of C. curvatus triglycerides contained 27% palmitic acid, 33% oleic acid and 32% linoleic acid. These results proved the potential of lipid production from A. donax, which is particularly important for their consideration as substitutes for vegetable oils in many applications such as biodiesel or bioplastics.

Keywords

References

  1. Ghaly AE, Dave D, Brooks MS, Budge S. 2010. Production of biodiesel by enzymatic transesterification. Am. J. Biochem. Biotechnol. 6: 54-76. https://doi.org/10.3844/ajbbsp.2010.54.76
  2. Biddy MJ, Davis R, Humbird D, Tao L, Dowe N, Guarnieri MT, et al. 2016. The techno-economic basis for coproduct manufacturing to enable hydrocarbon fuel production from lignocellulosic biomass. ACS Sustainable Chem. Eng. 4: 3196-3211. https://doi.org/10.1021/acssuschemeng.6b00243
  3. Mba OI, Dumont MJ, Ngadi M. 2015. Palm oil: processing, characterization and utilization in the food industry - a review. Food Biosci. 10: 26-41. https://doi.org/10.1016/j.fbio.2015.01.003
  4. Coles S. 2013. Bioplastics from Lipids, pp. 117-134. In Kabasci S. (ed), Bio-Based Plastics: Materials and Applications, John Wiley & Sons, Ltd, Chichester, U.K.
  5. Bellou S, Triantaphyllidou IE, Aggeli D, Elazzazy AM, Baeshen MN, Aggelis G. 2016. Microbial oils as food additives: recent approaches for improving microbial oil production and its polyunsaturated fatty acid content. Curr. Opin. Biotechnol. 37: 24-35. https://doi.org/10.1016/j.copbio.2015.09.005
  6. Chen X, Li Z, Zhang X, Hu F, Ryu DDY, Bao J. 2009. Screening of oleaginous yeast strains tolerant to lignocellulose degradation compounds. Appl. Biochem. Biotechnol. 159: 591-604. https://doi.org/10.1007/s12010-008-8491-x
  7. Wu S, Hu C, Jin G, Zhao X, Zhao ZK. 2010. Phosphate-limitation mediated lipid production by Rhodosporidium toruloides. Bioresour. Technol. 101: 6124-6129. https://doi.org/10.1016/j.biortech.2010.02.111
  8. Gong Z, Wang Q, Shen H, Wang L, Xie H, Zhao Z. 2014. Conversion of biomass-derived oligosaccharides into lipids. Biotechnol. Biofuels 7: 13. https://doi.org/10.1186/1754-6834-7-13
  9. Li Q, Du W, Liu D. 2008. Perspectives of m icrobial oils for biodiesel production. Appl. Microbiol. Biotechnol. 80: 749-756. https://doi.org/10.1007/s00253-008-1625-9
  10. Javaid H, Manzoor M, Qazi JI, Xiaochao X, Tabssum F. 2017. Potential of oleaginous yeasts as economic feedstock for biodiesel production. Biologia 63: 217-234.
  11. Huang C, Wu H, Liu QP, Zong MH. 2011. Effects of aldehydes on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans. J. Agric. Food. Chem. 59: 4606-4613. https://doi.org/10.1021/jf104320b
  12. Carriquiry MA, Du X, Timilsina GR. 2011. Second generation biofuels: economics and policies. Energy Policy 39: 4222-4234. https://doi.org/10.1016/j.enpol.2011.04.036
  13. Scordia D, Cosentino SL, Lee JW, Jeffries TW. 2012. Bioconversion of giant reed (Arundo donax L.) hemicellulose hydrolysate to ethanol by Scheffersomyces stipitis CBS6054. Biomass Bioenergy 39: 296-305. https://doi.org/10.1016/j.biombioe.2012.01.023
  14. Yu X, Zheng Y, Dorgan KM, Chen S. 2011. Oil production by oleaginous yeasts using hydrolysate from pretreatment of wheat straw with dilute sulphuric acid. Bioresour. Technol. 71: 340-349.
  15. Ask M, Bettiga M, Duraiswamy VR, Olsson L. 2013. Pulsed addition of HMF and furfural to batch-grown xylose-utilizing Saccharomyces cerevisiae results in different physiological responses in glucose and xylose consumption phase. Biotechnol. Biofuels 6: 181. https://doi.org/10.1186/1754-6834-6-181
  16. Almeida JRM, Modig T, Petersson A, Hahn-Hagerdal B, Lidén G, Gorwa-Grauslund MF. 2007. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 82: 340-349. https://doi.org/10.1002/jctb.1676
  17. Palmqvist E, Hahn-Hägerdal B. 2000. Fermentation of lignocellulosic hydrolysates. II. Inhibitors and mechanisms of inhibition. Bioresour. Technol. 74: 25-33. https://doi.org/10.1016/S0960-8524(99)00161-3
  18. Hu C, Zhao X, Zhao J, Wu S, Zhao ZK. 2009. Effects of biomass hydrolysis by-products on oleaginous yeast Rhodosporidium toruloides. Bioresour. Technol. 100: 4843-4847. https://doi.org/10.1016/j.biortech.2009.04.041
  19. Economou CN, Aggelis G, Pavlou S, Vayenas DV. 2011. Single cell oil production from rice hulls hydrolysate. Bioresour. Technol. 102: 9737-9742. https://doi.org/10.1016/j.biortech.2011.08.025
  20. Zhao X, Kong X, Hua Y, Feng B, Zhao ZK. 2008. Medium optimization for lipid production through co-fermentation of glucose and xylose by the oleaginous yeast Lipomyces starkeyi. Eur. J. Lipid Sci. Technol. 110: 405-412. https://doi.org/10.1002/ejlt.200700224
  21. Gao-Qiang L, Xiao-Ling W. 2007. Optimization of critical medium components using response surface methodology for biomass and extracellular polysaccharide production by Agaricus blazei. Appl. Microbiol. Biotechnol. 74: 78-83. https://doi.org/10.1007/s00253-006-0661-6
  22. Cui FJ, Li Y, Xu ZH, Xu HY, Sun K, Tao WY. 2006. Optimization of the medium composition for production of mycelial biomass and exo-polymer by Grifola frondosa GF9801 using response surface methodology. Bioresour. Technol. 97: 1209-1216. https://doi.org/10.1016/j.biortech.2005.05.005
  23. De Bari I, Liuzzi F, Villone A, Braccio G. 2013. Hydrolysis of concentrated suspensions of steam pretreated Arundo donax. Appl. Energy 102: 179-189. https://doi.org/10.1016/j.apenergy.2012.05.051
  24. Beligon V, Poughon L, Christophe G, Lebert A, Larroche C, Fontanille P. 2015. Improvement and modeling of culture parameters to enhance biomass and lipid production by the oleaginous yeast Cryptococcus curvatus grown on acetate. Bioresour. Technol. 192: 582-591. https://doi.org/10.1016/j.biortech.2015.06.041
  25. Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911-917. https://doi.org/10.1139/y59-099
  26. Christophe G, Lara Deo J, Kumar V, Nouaille R, Fontanille P, Larroche C. 2012. Production of oils from acetic acid by the oleaginous yeast Cryptococcus curvatus. Appl. Biochem. Biotechnol. 167: 1270-1279. https://doi.org/10.1007/s12010-011-9507-5
  27. Morrison WR, Smith LM. 1964. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J. Lipid Res. 5: 600-608. https://doi.org/10.1016/S0022-2275(20)40190-7
  28. Yu X, Zheng Y, Xiong X, Chen S. 2014. Co-utilization of glucose, xylose and cellobiose by the oleaginous yeast Cryptococcus curvatus. Biomass Bioenergy 71: 340-349. https://doi.org/10.1016/j.biombioe.2014.09.023
  29. Chang YH, Chang KS, Lee CF, Hsu CL, Huang CW, Jang HD. 2015. Microbial lipid production by oleaginous yeast Cryptococcus sp. in the batch cultures using corncob hydrolysate as carbon source. Biomass Bioenergy 72: 95-103. https://doi.org/10.1016/j.biombioe.2014.11.012
  30. Zhang J, Fang X, Zhu XL, Li Y, Xu HP, Zhao BF, et al. 2011. Microbial lipid production by the oleaginous yeast Cryptococcus curvatus O3 grown in fed-batch culture. Biomass Bioenergy 35: 1906-1911. https://doi.org/10.1016/j.biombioe.2011.01.024
  31. Rossi M, Amaretti A, Raimondi S, Leonardi A. 2011. Getting lipids for biodiesel production from oleaginous fungi. biodiesel - feedstocks and processing technologies. IntechOpen 4: 71-92.
  32. Hassan M, Blanc PJ, Granger LM, Pareilleux A, Gom a G. 1996. Influence of nitrogen and iron limitations on lipid production by Cryptococcus curvatus grown in batch and fed-batch culture. Process Biochem. 31: 355-361. https://doi.org/10.1016/0032-9592(95)00077-1
  33. Papanikolaou S, Aggelis G. 2011. Lipids of oleaginous yeasts. Part I: biochemistry of single cell oil production. Eur. J. Lipid Sci. Technol. 113: 1031-1051. https://doi.org/10.1002/ejlt.201100014
  34. Donot F, Fontana A, Baccou JC, Schorr-Galindo S. 2012. Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr. Polym. 87: 951-962. https://doi.org/10.1016/j.carbpol.2011.08.083
  35. Van Bogaert INA, De Maeseneira SL, Vandamme FJ. 2009. Extracellular polysaccharides produced by yeast and yeast-like fungi, pp. 651-671. In: Satyanarayana, Tulasi, Kunze, Gotthard (eds.), Yeast Biotechnology: Diversity and Applications. Springer, Netherlands.
  36. Luo W, Du W, Su Y, Hui J, Zhuang J, Liu L. 2015. Growth characteristic of the oleaginous microalga Chlorella ellipsoidea SD-0701 with lipid accumulation. Nat. Resour. 6: 130-139. https://doi.org/10.4236/nr.2015.62012
  37. Liang Y, Jarosz K, Wardlow AT, Zhang J, Cui Y. 2014. Lipid production by Cryptococcus curvatus on hydrolysates derived from corn fiber and sweet sorghum bagasse following dilute acid pretreatment. Appl. Biochem. Biotechnol. 173: 2086-2098. https://doi.org/10.1007/s12010-014-1007-y
  38. Gong Z, Shen H, Wang Q, Yang X, Xie H, Zhao ZK. 2013. Efficient conversion of biomass into lipids by using the simultaneous saccharification and enhanced lipid production process. Biotechnol. Biofuels 6: 36. https://doi.org/10.1186/1754-6834-6-36
  39. Wu S, Hu C, Zhao X, Zhao ZK. 2010. Production of lipid from N-acetylglucosamine by Cryptococcus curvatus. Eur. J. Lipid Sci. Technol. 112: 727-733. https://doi.org/10.1002/ejlt.201000005
  40. Gao J, Atiyeh HK, Phillips JR, Wilkins MR, Huhnke RL. 2013. Development of low cost medium for ethanol production from Syngas by Clostridium ragsdalei. Bioresour. Technol. 147: 508-515. https://doi.org/10.1016/j.biortech.2013.08.075
  41. Lewandowski I, Scurlock JMO, Lindvall E, Christou M. 2003. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25: 335-361. https://doi.org/10.1016/S0961-9534(03)00030-8
  42. Angelini LG, Ceccarini L, Nassi o Di Nasso N, Bonari E. 2009. Comparison of Arundo donax L. and Miscanthus x giganteus in a long-term field experiment in Central Italy: Analysis of productive characteristics and energy balance. Biomass Bioenergy 33: 635-643. https://doi.org/10.1016/j.biombioe.2008.10.005
  43. Palm qvist B, Liden G. 2014. Com bining the effects of process design and pH for improved xylose conversion in high solid ethanol production from Arundo donax. AMB Express 4: 41. https://doi.org/10.1186/s13568-014-0041-z
  44. Di Girolamo G, Grigatti M, Barbanti L, Angelidaki I. 2013. Effects of hydrothermal pre-treatments on Giant reed (Arundo donax) methane yield. Bioresour. Technol. 147: 152-159. https://doi.org/10.1016/j.biortech.2013.08.006
  45. Ragaglini G, Dragoni F, Simone M, Bonari, E. 2014. Suitability of giant reed (Arundo donax L.) for anaerobic digestion: Effect of harvest time and frequency on the biomethane yield potential. Bioresour. Technol. 152: 107-115. https://doi.org/10.1016/j.biortech.2013.11.004
  46. Corno L, Pilu R, Adani F. 2014. Arundo donax L.: A non-food crop for bioenergy and bio-compound production. Biotechnol. Adv. 32: 1535-1549. https://doi.org/10.1016/j.biotechadv.2014.10.006
  47. Pirozzi D, Yousuf A, Zuccaro G, Aruta R, Sannino F. 2012. Synthesis of biodiesel from hydrolysates of Arundo donax. Environ. Eng. Manag. J. 11: 1797-1801. https://doi.org/10.30638/eemj.2012.224
  48. Chi Z, Zheng Y, Ma J, Chen S. 2011. Oleaginous yeast Cryptococcus curvatus culture with dark fermentation hydrogen production effluent as feedstock for microbial lipid production. Int. J. Hydrogen Energy 36: 9542-9550. https://doi.org/10.1016/j.ijhydene.2011.04.124
  49. Yu X, Zeng J, Zheng Y, Chen S. 2014. Effect of lignocellulose degradation products on microbial biomass and lipid production by the oleaginous yeast Cryptococcus curvatus. Process Biochem. 49: 457-465. https://doi.org/10.1016/j.procbio.2013.10.016

Cited by

  1. Microwave-assisted cascade exploitation of giant reed (Arundo donax L.) to xylose and levulinic acid catalysed by ferric chloride vol.293, 2019, https://doi.org/10.1016/j.biortech.2019.122050
  2. Multi-Step Exploitation of Raw Arundo donax L. for the Selective Synthesis of Second-Generation Sugars by Chemical and Biological Route vol.10, pp.1, 2019, https://doi.org/10.3390/catal10010079
  3. Lignin - An underutilized, renewable and valuable material for food industry vol.60, pp.12, 2019, https://doi.org/10.1080/10408398.2019.1625025
  4. Optimisation of glucose and levulinic acid production from the cellulose fraction of giant reed (Arundo donax L.) performed in the presence of ferric chloride under microwave heating vol.313, 2019, https://doi.org/10.1016/j.biortech.2020.123650
  5. Conversion of cardoon crop residues into single cell oils by Lipomyces tetrasporus and Cutaneotrichosporon curvatus: process optimizations to overcome the microbial inhibition of lignocellulosic hydro vol.159, 2019, https://doi.org/10.1016/j.indcrop.2020.113030
  6. Oleaginous Yeasts as Cell Factories for the Sustainable Production of Microbial Lipids by the Valorization of Agri-Food Wastes vol.7, pp.2, 2021, https://doi.org/10.3390/fermentation7020050
  7. Cutaneotrichosporon oleaginosus: A Versatile Whole-Cell Biocatalyst for the Production of Single-Cell Oil from Agro-Industrial Wastes vol.11, pp.11, 2021, https://doi.org/10.3390/catal11111291