DOI QR코드

DOI QR Code

Dynamic Behavior Evaluation of Pile-Supported Slab Track System by Centrifuge Model Test

원심모형 실험을 통한 궤도지지말뚝구조의 동적 거동 평가

  • Yoo, Mintaek (Railroad Structure Research Team, Korea Railroad Research Institute) ;
  • Lee, Myungjae (Railroad Structure Research Team, Korea Railroad Research Institute) ;
  • Baek, Mincheol (Advanced Test Equipment Build-up Team, Korea Railroad Research Institute) ;
  • Choo, Yun-Wook (Dept. of Civil and Env. Eng., Kongju National Univ.) ;
  • Lee, Il-Wha (Advanced Infrastructure Research Team, Korea Railroad Research Institute)
  • Received : 2018.06.05
  • Accepted : 2019.02.26
  • Published : 2019.02.28

Abstract

Dynamic centrifuge model test was conducted to evaluate the dynamic stability of the pile-supported slab track method during dynamic railway loading and earthquake loading. The centrifuge tests were carried out for various condition of embankment height and soft ground depth. Based on test results, we found that the bending moment was increased with embankment height and decreased with soft ground depth. In addition, it was confirmed that the pile-supported slab track system could have dynamic stability for short-period seismic loading. However, in case of long-period seismic loading, such as Hachinohe earthquake, the observed maximum bending moment reached to pile cracking moment at the return period of 2,400 year earthquake. The criterion of ratio between embankment height and soft ground depth was suggested for dynamic stability of pile-supported slab track system.

철도하중 및 지진하중 재하 시 궤도지지말뚝 구조의 동적 거동 평가를 위해 동적원심모형 실험을 수행하였다. 실험의 변수는 연약지반의 깊이와 성토체의 높이로 결정하였으며, 총 4가지 경우에 대해 실험을 수행하였다. 연약지반 깊이는 실제 연약지반층에 고속철도를 부설한 호남고속철도의 익산-정읍 구간의 시추주상도를 분석하여 결정하였으며, 성토체의 높이는 일반적인 고속철도의 성토체 높이 범위의 하한 값과 상한 값으로 결정하였다. 실험 결과, 연약지반 깊이 대비 성토체 높이 비율이 높을 수록 말뚝에 작용하는 최대 휨모멘트 값이 크게 평가되었다. 또한, 실험조건 내에서 부설되는 궤도지지말뚝 구조는 단주기 지진파에 대해서는 국내 내진설계 기준의 최대 지진하중인 0.22g에 대해서까지 안전한 것으로 확인되었다. 그러나, 장주기 지진파에 대해서는 재현주기 2400년 지진인 0.22g로 가진시 말뚝의 균열 모멘트가 초과되었다. 일련의 실험결과를 바탕으로, 본 논문에 기술된 연약지반 깊이와 성토체 높이 범위 내에서 궤도지지말뚝 일반 단면에 대한 연약지반 대비 성토체 높이 비율 기준을 제시하였다.

Keywords

GJBGC4_2019_v35n2_5_f0001.png 이미지

Fig. 1. Pile-supported slab track system

GJBGC4_2019_v35n2_5_f0002.png 이미지

Fig. 2. Pile-supported slab track model (T1)

GJBGC4_2019_v35n2_5_f0003.png 이미지

Fig. 3. Consolidation load by pneumatic cylinder

GJBGC4_2019_v35n2_5_f0004.png 이미지

Fig. 4. Schematic drawing of test section (Model scale)

GJBGC4_2019_v35n2_5_f0005.png 이미지

Fig. 5. Input seismic wave

GJBGC4_2019_v35n2_5_f0006.png 이미지

Fig. 6. Acceleration time history

GJBGC4_2019_v35n2_5_f0007.png 이미지

Fig. 7. Acceleration at slab structure (Ofunato earthquake)

GJBGC4_2019_v35n2_5_f0008.png 이미지

Fig. 8. Acceleration at interface between embankment and soft ground (Ofunato earthquake)

GJBGC4_2019_v35n2_5_f0009.png 이미지

Fig. 9. Acceleration at slab structure (Hachinohe earthquake)

GJBGC4_2019_v35n2_5_f0010.png 이미지

Fig. 10. Measured bending moment along the pile depth

GJBGC4_2019_v35n2_5_f0011.png 이미지

Fig. 10. Measured bending moment along the pile depth (Continued)

GJBGC4_2019_v35n2_5_f0012.png 이미지

Fig. 11. Maximum bending moment (Ofunato earthquake)

GJBGC4_2019_v35n2_5_f0013.png 이미지

Fig. 12. Maximum bending moment (Hachinohe earthquake)

GJBGC4_2019_v35n2_5_f0014.png 이미지

Fig. 13. Point of crack moment according to ratio of embankment hight to soft ground depth when loading Ofunato seismic waves

GJBGC4_2019_v35n2_5_f0015.png 이미지

Fig. 14. Point of crack moment according to ratio of embankment hight to soft ground depth when loading Hachinohe seismic waves

Table 1. Conditions of test case

GJBGC4_2019_v35n2_5_t0001.png 이미지

Table 2. Dimensions of prototype pile and model pile

GJBGC4_2019_v35n2_5_t0002.png 이미지

Table 3. Basic properties of soil materials

GJBGC4_2019_v35n2_5_t0003.png 이미지

Table 4. Water content and unit weight measurement results of soft ground

GJBGC4_2019_v35n2_5_t0004.png 이미지

References

  1. Bae, Y.H. and Lee, I.W. (2015), "Optimal Section of Concrete Deck on Piles System for Settlement Restraint of Soft Soil", Journal of the Korean Society for Railway, pp.1463-1467 (in Korean).
  2. Bae, Y.H., Yoo, M.T., Choi, G.M., and Lee, I.W. (2018), "Application of Pile Supported Slab Track System for Restraining Residual Settlement in Soft Soil Zone", Korean Society of Civil Engineers Magazine, Vol.66, No.4, pp.38-41 (in Korean).
  3. Yoo, M.T., Baek, M.C., Lee, I.W., and Lee, J.S. (2017), "Evaluation of Dynamic Behavior for Pile-Supported Slab Track System by 3D Numerical Analysis", Journal of the Earthquake Engineering Society of Korea, Vol.21, No.5, pp.225-264 (in Korean).
  4. Yoo, M.T., Ha, J.G., Jo, S.B., and Kim, D.S. (2014), "Evaluation of Seismic Loading of Pile Foundation Structure Considering Soilfoundation-structure Interaction", Journal of the Earthquake Engineering Society of Korea, Vol.18, No.3, pp.125-132 (in Korean). https://doi.org/10.5000/EESK.2014.18.3.125
  5. Yoo, M.T. and Kwon, S.Y. (2018), "Comparison of Lateral Pile behavior under Static and Dynamic Loading by Centrifuge Tests", Journal of the Korean Geotechnical Society, Vol.34, No.7, pp. 51-58. https://doi.org/10.7843/KGS.2018.34.10.51
  6. Kim DS, Kim NR, Choo YW, and Cho GC (2013a), "A Newly Developed State-of-the-art Geotechnical Centrifuge in Korea", KSCE J Civ Eng, 17(1):77-84. https://doi.org/10.1007/s12205-013-1350-5
  7. Kim DS, Lee SH, Choo YW, and Perdriat J (2013b), "Self-balanced Earthquake Simulator on Centrifuge and Dynamic Performance Verification", KSCE J Civ Eng, 17(4):651-661. https://doi.org/10.1007/s12205-013-1591-3
  8. Kown, S.Y., Kim, S.J., and Yoo, M.T. (2016), "Numerical Simulation of Dynamic Soil-pile Interaction for Dry Condition Observed in Centrifuge Test", Journal of the Korean Geotechnical Society, Vol.32, No.4, pp.5-14 (in Korean). https://doi.org/10.7843/kgs.2016.32.4.5
  9. Lee SH, Choo YW, and Kim DS (2013), "Performance of an Equivalent Shear Beam (ESB) Model Container for Dynamic Geotechnical Centrifuge Tests", Soil Dynamics and Earthquake Engineering, 44:102-114. https://doi.org/10.1016/j.soildyn.2012.09.008
  10. Schofield, A.N. (1980), "Cambridge University Geotechnical Centrifuge Operation, Rankine Lecture", Geotechnique, Vol.30, No.3, pp.227-268. https://doi.org/10.1680/geot.1980.30.3.227
  11. Stone, K.J.L., Hensley, P.J., R.N.Taylor (1991), "A Centrifuge Study of Rectangular Box Culverts", Centrifuge '91, Balkema, Rotterdam, pp.107-112
  12. Taylor, R. N. (1995), "Centrifuge in Modeling: Principles and Scale Effects", Geotechnical centrifuge technology, Blackie Academic and Professional, Glasgow, U.K., pp.19-33.
  13. Wangfeng (2012), The theory and practice of concrete deck on pile system in a high speed ballastless track, China Railway Publishing House, Beijing, China, pp.1-200.
  14. Zeng, X. and Schofield, A. N. (1996), "Design and Performance of an Equivalent-shear-beam Container for Earthquake Centrifuge Modeling", Geotechnique, Vol.46, No.1, pp.83-102. https://doi.org/10.1680/geot.1996.46.1.83