References
- Borana, L., Yin, J.H., Singh, D.N. and Shukla, S.K. (2016), "Interface behavior from suction-controlled direct shear test on completely decomposed granitic soil and steel surfaces", Int. J. Geomech., 16(6), D4016008. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000658
- Cavaco, E., Pacheco, I. and Camara, J. (2018), "Detailing of concrete-to-concrete interfaces for improved ductility", Eng. Struct., 156, 210-223. https://doi.org/10.1016/j.engstruct.2017.10.058
- Ceia, F., Raposo, J., Guerra, M., Julio, E. and Brito, J.D. (2016), "Shear strength of recycled aggregate concrete to natural aggregate concrete interfaces", Construct. Build. Mater., 109, 139-145. https://doi.org/10.1016/j.conbuildmat.2016.02.002
- Chen, N., Zhang, X., Jiang, Q., Feng, X., Wei, W. and Yi, B. (2018), "Shear behavior of rough rock joints reinforced by bolts", Int. J. Geomech., 18(1), 04017130. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001048
- Crawford, A.M. and Curran, J.H. (1981), "The influence of shear velocity on the frictional resistance of rock discontinuities", Int. J. Rock Mech. Min. Sci., 18(6), 505-515. https://doi.org/10.1016/0148-9062(81)90514-3
- Dang, W., Fruhwirt, T. and Konietzky, H. (2017), "Behaviour of a plane joint under horizontal cyclic shear loading", Geomech. Eng., 13(5), 809-823. https://doi.org/10.12989/GAE.2017.13.5.809
- Dang, W., Konietzky, H. and Fruhwirt, T. (2016), "Direct shear behavior of a plane joint under dynamic normal load (DNL) conditions", Eng. Geol., 213, 133-141. https://doi.org/10.1016/j.enggeo.2016.08.016
- Dang, W., Konietzky, H., Chang, L. and Fruhwirt, T. (2018), "Velocity-frequency-amplitude-dependent frictional resistance of planar joints under dynamic normal load (DNL) conditions", Tunn. Undergr. Sp. Technol., 79, 27-34. https://doi.org/10.1016/j.tust.2018.04.038
- Hong, T. and Marone, C. (2005), "Effects of normal stress perturbations on the frictional properties of simulated faults", Geochem. Geophys. Geosyst., 6(3), 1-17.
- Hossain, M.A. and Yin, J.H. (2015), "Dilatancy and strength of an unsaturated soil-cement interface in direct shear tests", Int. J. Geomech., 15(5), 04014081. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000428
- Kilgore, B., Beeler, N.M. and Lozos, J.D., (2017), "Oglesby, rock friction under variable normal stress", J. Geophys. Res. Solid Earth, 122(9), 1-34.
- Kilgore, B., Lozos, J., Beeler, N. and Oglesby, D. (2012), "Laboratory observations of fault strength in response to changes in normal stress", J. Appl. Mech., 79(3), 031007. https://doi.org/10.1115/1.4005883
- Konietzky, H., Fruhwirt, T. and Luge, H. (2012), "A new large dynamic rockmechanical direct shear box device", Rock Mech. Rock Eng., 45(3), 427-432. https://doi.org/10.1007/s00603-011-0214-x
- Lee, S., Chang, I., Chung, M.K., Kim, Y. and Kee, J. (2017), "Geotechnical shear behavior of xanthan gum biopolymer treated sand from direct shear testing", Geomech. Eng., 12(5), 831-847. https://doi.org/10.12989/gae.2017.12.5.831
- Li, X., Cao, W., Tao, M., Zhou, Z. and Chen, Z. (2016), "Influence of unloading disturbance on adjacent tunnels", Int. J. Rock Mech. Min. Sci., 84, 10-24. https://doi.org/10.1016/j.ijrmms.2016.01.014
- Li, Y., Wu, W. and Li, B. (2018), "An analytical model for twoorder asperity degradation of rock joints under constant normal stiffness conditions", Rock Mech. Rock Eng., 51, 1431. https://doi.org/10.1007/s00603-018-1405-5
- Li, Y., Yang, Y., Yu, H.S. and Roberts, G.W. (2016), "Monotonic direct simple shear tests on sand under multidirectional loading", Int. J. Geomech., 17(1), 04016038. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000673
- Liu, S., Mao, H., Wang Y. and Weng, L. (2018), "Experimental study on crushable coarse granular materials during monotonic simple shear tests", Geomech. Eng., 15(1), 687-694. https://doi.org/10.12989/GAE.2018.15.1.687
- Liu, Z. and Dang, W. (2014), "Rock quality classification and stability evaluation of undersea deposit based on M-IRMR", Tunn. Undergr. Sp. Technol., 40(2), 95-101. https://doi.org/10.1016/j.tust.2013.09.013
- Liu, Z., Dang, W. and He, X. (2012), "Undersea safety mining of the large gold deposit in Xinli District of Sanshandao Gold Mine", Int. J. Miner. Metall. Mater., 19(7), 574-583. https://doi.org/10.1007/s12613-012-0598-y
- Molinari, A. and Perfettini, H. (2017), "A micromechanical model of rate and state friction: 2. effect of shear and normal stress changes", J. Geophys. Res., 122(4), 2638-2652. https://doi.org/10.1002/2016JB013307
- Samanta, M., Punetha, P. and Sharma, M. (2018), "Effect of roughness on interface shear behavior of sand with steel and concrete surface", Geomech. Eng., 14(4), 387-398. https://doi.org/10.12989/GAE.2018.14.4.387
- Shang, J., Zhao, Z. and Ma, S. (2018), "On the shear failure of incipient rock discontinuities under CNL and CNS boundary conditions: insights from DEM modeling", Eng. Geol., 234, 153-166. https://doi.org/10.1016/j.enggeo.2018.01.012
- Stein, R.S. (1999), "The role of stress transfer in earthquake occurrence", Nature, 402(6762), 605-609. https://doi.org/10.1038/45144
- Tao, M. and Li, X. (2015), "The influence of initial stress on wave propagation and dynamic elastic coefficients", Geomech. Eng., 8(3), 377-390. https://doi.org/10.12989/gae.2015.8.3.377
- Waseem, S.A. and Singh, B. (2017), "Shear strength of interfaces in natural and in recycled aggregate concrete", Can. J. Civ. Eng., 44(3), 212-222. https://doi.org/10.1139/cjce-2016-0317
- Zhang, C., Ji, J., Gui, Y., Kodikara, J., Yang, S. and He, L. (2016), "Evaluation of soil-concrete interface shear strength based on LS-SVM", Geomech. Eng., 11(3), 361-372. https://doi.org/10.12989/gae.2016.11.3.361
- Zhou, Z., Zhao, Y., Cao, W., Chen, L. and Zhou, J. (2018), "Dynamic response of pillar workings induced by sudden pillar recovery", Rock Mech. Rock Eng., 51(10), 3075-3090. https://doi.org/10.1007/s00603-018-1505-2