
Journal of Internet Computing and Services(JICS) 2019. Feb.: 20(1): 67-75 67

A Novel Design of Cloud-based Management Solution for
Android Containers

☆

Nam Pham Nguyen Xuan1 Hojin Chun2 Souhwan Jung3*

ABSTRACT

The Android container is used for various purposes such as Bring Your Own Device (BYOD) solution and Android malware analysis.

The strong point of android container than other technologies is it can simulate an android device like a real android phone on a

hardware layer. Therefore, automatic management solutions for android container are necessary. This paper introduces a new design

of cloud-based management solution for android containers. Through the proposal, android containers are managed automatically

from a cloud platform – OpenStack with various tasks like: container configuration, deployment, destroy, android version, hardware

device. In addition, the system monitoring and system statistics for android containers and hardware devices are also provided.

☞ keyword : Android Container, OpenStack, Container Runtime, HW device, Cloud Computing

1. Introduction

In computing, virtualization technology is to create virtual

devices (or software-based) rather than physical devices.

Virtualization can be applied to applications, server (or

platform), networking, storage and virtualization is the most

effective solution to reduce expenses of deployment while

boosting efficiency and lightness for all size businesses [1][2].

The benefits of virtualization include reduced capital and

operating costs, faster application and resource delivery,

minimized or eliminated downtime, and simplified data center

management [3]. The traditional platform virtualization refers

1 Dept. of Software Convergence, Soongsil University, Seoul, 06978,
Seoul Korea.

2 Dept. of Information and Telecommunication Engineering, Soongsil
University, Seoul, 06978, Seoul Korea.

3 Dept. of Electronic Engineering, Soongsil University, Seoul, 06978,
Seoul Korea.

* Corresponding author (souhwanj@ssu.ac.kr)
[Received 5 September 2018, Reviewed 7 September 2018(R2 22 October
2018, R3 13 November 2018), Accepted 20 November 2018]
☆ This work was supported by Institute for Information &

communications Technology Promotion(IITP) grant funded by the
Korea government(MSIP) (No.2016-0-00078, Cloud based Security
Intelligence Technology Development for the Customized Security
Service Provisioning)

☆ Design of Management Solution for Android Containers in OpenStack,
June, 2017.

☆ A preliminary version of this paper was presented at APIC-IST
2017 seminar and was selected as an outstanding paper.

to create of a virtual instance that runs like a real physical

computer with an operating system and an isolated kernel.

Software running on a virtual machine is separate from

hardware resources and independent of another virtual

machine. In traditional virtualization technologies, the

hypervisor layer must be installed directly on the physical

server device. This layer provides the guest kernel, virtualized

hardware for virtual machines run on it. Hypervisor have been

being applied widely from open source hypervisor such as:

Xen project, KVM to licensed hypervisor: ESXi of VMWare,

Hyper-V of Microsoft [4-7].

Except hypervisor technology, Container, a new operating

system virtualization technology, has one physical server and

one host kernel, which are isolated systems [8]. Containers

use the existing features of the Linux kernel when compared

to the hypervisor, so the hypervisor does not need to be

installed on the host [9]. Containers that run directly in the

host kernel are quarantined and deploy many systems, so the

use of the underlying hardware is high. In addition, the speed

of containers is higher than normal virtual machines run on

hypervisor and reducing the cost of management because only

host OS needs to be maintained include patches, securities,

bugs fixed. Containers are deployed by Container Runtime

such as: Linux Container (LXC), Docker or by Container

Orchestration Engine (COE) such as: Docker Swarm,

Kubernetes, Mesos [10-13].

http://dx.doi.org/10.7472/jksii.2019.20.1.67

J. Internet Comput. Serv.
ISSN 1598-0170 (Print) / ISSN 2287-1136 (Online)
http://www.jics.or.kr
Copyright ⓒ 2019 KSII

A Novel Design of Cloud-based Management Solution for Android Containers

68 2019. 2

Container technology is also used for creating Android

container in order to provide Bring Your Own Device

(BYOD) solution which separate working environment and

user environment [14]. The Android container is configured

with the real device and is used to simulate malware analysis

[15]. Android container can be deployed on Android operating

system or on Linux operating system [16].

After presenting our related work in the Asia Pacific

International Conference on Information Science and

Technology, we realize that improving the management

solutions for android container in cloud environment is

important in order to making automatically mechanism for

administrator [17][18]. In summary, our work in this paper

includes: (1) Develop more management task for android

containers, android version templates, hardware devices (2)

Provide system monitoring (android container log, hardware

logs) (3) system statics for containers and devices.

This paper is organized as follows: Section II describes

some background information. Related works are explained in

Section III. We propose the architecture in section IV and

implementation in section V. Performance evaluation is in

section VI. Conclusion and limitations will be discussed in

section VII.

2. Background

To perform resource isolation, control resource management,

and enforce security permissions, the container uses existing

Linux kernel features such as: Namespaces, Cgroups, Linux

Capabilites, Seccomp Filter, Linux Security Modules. In

Figure 1 describes the implementation of Container using the

current Linux kernel features. Container applies Namespaces

for resource isolation, Cgroups for resource management and

Linux Security Modules (LSM), Linux Capabilities, Seccomp

Filter for security permission.

2.1 Resource Isolation

In the Linux kernel, Namespaces is a resource isolation

feature that added into the kernel from version 3.8. The

purpose of Namespaces is to ensure the system resource used

by one group of processes does not interfere with other

system resource used by other group of processes [19].

(Figure 1) (The Linux kernel features are used by

Container)

Therefore, namespaces are essential for container

implementations. The Linux kernel uses six namespaces, and

each namespace manages elements such as host names,

domain names, and networking separately.

Namespaces is implemented by using three namespace-

related APIs (or system calls) with the CLONE_NEW*

identifier:

• clone(): creating a new namespace and a new process.

• unshare(): calling process from a particular namespace.

• setns(): calling process, creates a new namespace

without having to create a new process.

Description of the six types of Namespaces is in Table 1.

(Table 1) (The six types of Namespaces)

Type of Namespaces Role

Mount Namespaces
(CLONE_NEWNS)

Isolate the set of files system
mount points seen by a group
of processes.

UTS Namespaces
(CLONE_NEWUTS)

Isolate two system identifiers:
node name and domain name.

IPC Namespaces
(CLONE_NEWIPC)

Isolate certain inter-process
communication (IPC) resources.

PID Namespaces
(CLONE_NEWPID)

Isolate the process ID number
space.

Network Namespaces
(CLONE_NEWNET)

Provide isolation of the
networking system resources.

User Namespaces
(CLONE_NEWUSER)

Isolate and separate the user and
group ID number in Operating
system.

A Novel Design of Cloud-based Management Solution for Android Containers

한국 인터넷 정보학회 (20권1호) 69

Types of Linux
Capabilities

Purpose of each capability

CAP_SYS_ADMIN Manipulate a range of system
administration tasks.

CAP_AUDIT_CONTROL Enable and disable kernel
auditing

CAP_BLOCK_SUSPEND Employ features that can
block system suspend

CAP_AUDIT_READ Allow reading the audit log

CAP_AUDIT_WRITE Write records to kernel
auditing log

CAP_CHOWN Make arbitrary changes to file
UIDs and GIDs

CAP_FOWNER Bypass checking of rights
on operations that normally
require the file system UID
of the process

CAP_IPC_OWNER Bypass right checks for
most of operations on IPC
objects

CAP_IPC_LOCK Lock memory

CAP_KILL Bypass permission checks
for sending signals

CAP_FSETID Not clear set-user-ID and
set-group-ID mode bits when
a file is modified

CAP_DAC_OVERRIDE Bypass file permission checks:
read, write, execute.

2.2 Resource Management

Control Cgroups, commonly referred to as Cgroups, are

Linux kernel features that provide resource management

mechanisms for processes [20]. Cgroups allow processes to be

organized into hierarchical groups who usage of different types of

resources can then be limited and monitored. Cgroups

implemented through the pseudo-file system cgroupfs require

hooking the kernel using the cgroup module. In order to use

Cgroups the Cgroup modules must be enabled in the Linux

kernel. Currently, Cgroups control the following system resources:

• cpu: control cpu usage.

• cpuacct: generate the reports on CPU resources used by

processes.

• cpuset: assign CPUs and memory to processes

• memory: control memory usage.

• blkio: control block device usage.

• devices: control device access.

• ns: the namespace subsystem.

• net_cls: control network packets originating from a

processe.

• net_prio: set the priority level of network traffic on

each network interface.

• freezer: control process status.

• perf_event: make the performance analysis.

In the Figure 2 is the illustration of an example of Cgroups

used for the resource division and resource management for

professor’s processes and student’s processes in a system. By

using Cgroup, the administrator can calculate and grant the

resource usage of each process.

(Figure 2) (Cgroup control resource management of

system)

2.3 Permission

For the purpose of implementing the permission for each

process, Linux Capabilities is implemented from the kernel

2.2 [21]. In general, Linux functions perform per-process

authorization checks based on process EUID and EGID. A

process can issue system calls to the kernel depending on the

functionality it is granted. In Table 2 provides the list of

capabilities implemented on Linux, and the operations or

behaviors of each capability.

(Table 2) (List of Linux Capabilities)

However, Linux features are not strong. For example, if

process A has the CAP_SYS_ADMIN capability, process A

will be able to execute the system call list from

CAP_SYS_ADMIN as follows: setns (), share (), clone (),

ptrace (), mount () ... In order to improve the permission of

system call for process, Seccomp Filter is applied. Seccomp

Filter works as a filter to limit the system call executed by

A Novel Design of Cloud-based Management Solution for Android Containers

70 2019. 2

processes [22]. The combination between Linux Capabilities

and Seccomp Filter improves the strength on permission for

container.

In addition, to improve the security polices for accessing

system resource, Container also uses the Linux Security

Modules (LSM) [23]. Originally, LSM is a framework that

provides hooks into kernel components (such as disk and

network services) that can be utilized by security modules

such as: SELinux, AppArmor, Smack… to perform access

control checks. LSM provides the advanced security policies

as kernel modules in Operating system. By providing Linux

with a standard APIs for enforcing policies as modules, the

LSM project can enable widespread deployment of security

hardened systems.

SELinux is one of the most popular projects based on

LSM. SELinux has three types of access control:

• Type Enforcement (TE) – primary mechanism

• Role-based Access Control (RBAC)

• Multi-level Security (MLS)

Figure 3 illustrates the architecture of LSM hooks into the

Linux kernel. The kernel identifies system resources by

looking for inodes whenever a process calls the kernel for

system calls and examines the errors encountered. After that

kernel carries out the DAC (traditional security policies)

checks. And the LSM hook works to check the access control

of the process.

(Figure 3) (The LSM Architecture)

2.4 Android Container

We have already deployed the Android container on the

Linux OS. In Linux OS, new Android Containers are

deployed by LXC container runtime on Linux OS and

physical host is HW device.

Time goes by, the number of Android containers on HW

devices increase, the challenges we meet that how can

manage a group of containers, deploy a new container and

monitor the existing containers. Additionally, management of

Android version and HW devices is also important. Therefore,

we will propose a new solution for managing Android

containers. This solution can be integrated with OpenStack

[24]. Figure 4 explains all the required functions of the

management solution that we provide on OpenStack cloud

platform [25].

(Figure 4) (Functions of the proposed management

solution)

3. Related Works

There are several projects underway for OpenStack container

management. Zun is a Container Management service for

OpenStack which aims to provide an OpenStack API for

launching and managing containers backed by different

container technologies [26]. Originally, Zun project focuses on

basic container operations and integration with OpenStack. Zun

is developed independently of Nova’s API, it is not bounded

by Nova’s API. In the Docker, Zun uses the container runtime.

Container operations provided by Zun can be easily integrated

with OpenStack resources such as networking services and

http://dx.doi.org/10.7472/jksii.2014.00.00

A Novel Design of Cloud-based Management Solution for Android Containers

한국 인터넷 정보학회 (20권1호) 71

image services. Zun works as a mediate layer between

OpenStack and Docker container runtime. Containers are

deployed on bare metal device by Docker after receiving the

requests from OpenStack via Zun APIs. In order to enhance

the security for running containers from vector attacks, before

creating the containers, Zun will firstly work with the Nova’s

API to deploy a new Sandbox (an isolated instance) which

contains all the containers. When container is destroyed, Zun

will destroy the Sandbox automatically.

Also, Magnum works on OpenStack to provide APIs for

managing multi-tenant container infrastructure on a

virtualization layer [27]. Magnum does not use single Container

Runtime like Zun, it works with Container Orchestration Engine

such as: Docker Swarm, Kubernetes, Mesos to deploy and

manage containers. Magnum works with OpenStack and COE

to deploy Containers, and the COE run on virtualization layer

(virtual machines).

Nevertheless, Magnum and Zun manage only Linux

Containers such as Ubuntu Container, Debian Container, and

CenOS Container and do not support Android Container. In

the other hand, Android Container can not be deployed by Zun

or Magnum because Android Container requires a lot of devices

for running that are: camera device, SIM device, sound device,

WIFI device…

4. Proposed Architecture

This section describes in detail the proposed architecture of

management APIs between OpenStack Horizon and Android

Containers. As depicted in Figure 5, our architecture consists

of six major components: Container Runtime, LXC APIs,

HTTP REST APIs, OpenStack Horizon, Template server and

Database server.

4.1 LXC Container Runtime

Container Runtime is as a layer interacts directly with the

Bare metal (HW device) to provide operating system level

virtualization in isolated environments. Users can use the

container runtime to take advantage of the API for managing

and deploying Android Containers on a single host Container

runtime technologies are current being used such as: LXC,

Docker, runC, Garden… In our architecture, we use LXC

(Figure 5) (The architecture of management APIs

between OpenStack Horizon and Android

Containers.)

container runtime to deploy and manage Android Container.

Basically, LXC like other container runtime technologies, it

only support creating Linux container and in order to deploy

Android container, we use our own customized LXC tool. We

added and modified the ability to create Android containers in

customized LXC.

4.2 LXC APIs – Template - Database

In originally, LXC only run on a single HW device; in

order to manage a group of HW devices and Android

containers in the cloud platform, we develop the LXC APIs

written by Python language to provide remote functions:

deploy, list, start, stop, reboot, monitor Android containers.

Template server is a repository which stores and manages

different template versions for Android container. Each

template includes an Android OS root file system and other

configurations. Each time LXC deploys a new container, it

requests template server to download suitable version.

Currently, we are supporting three Android template versions:

KitKat, Lollipop and Marshmallow.

Android container information such as IP address, granted

resource, container name, and created time is stored on the

database server. Database server not only stores Android

container information, but also stores user authentication,

Android template version, HW device information and

monitoring logs.

4.3 HTTP REST APIs

HTTP REST APIs (HRA) works as a mediate layer

between OpenStack Horizon and LXC APIs. HRA is written

http://dx.doi.org/10.7472/jksii.2014.00.00

A Novel Design of Cloud-based Management Solution for Android Containers

72 2019. 2

(Figure 6) (The architecture of management APIs between OpenStack Horizon and Android

Containers.)

by PHP language, it receives requests from OpenStack

Horizon and then transfers the requests to LXC APIs. HRA

also connect with database server for getting information and

send to OpenStack Horizon. HRA works as a flexible module

to provide interfaces for other applications not only

OpenStack Horizon.

4.4 OpenStack Horizon

OpenStack Horizon is an OpenStack dashboard project for

managing different type of instances such as: virtual machine

(KVM, Xen) and physical machine (Ironic). OpenStack

Horizon is a project used to integrate systems and is used by

many organizations. We develop an Android container

management module on OpenStack Horizon for administrator

carry outs orchestration tasks such as: manage all of Android

version, HW devices and make the system statistic. Our

module on OpenStack Horizon communicates directly with

HRA to send the requests, receive the result and display on

Horizon.

4.5 Running Process

Figure 6 illustrates the detail steps for deploying process

of a new android container is our model. On OpenStack

Horizon, administrator sends a request to deploy a new

Android Container. HTTP REST APIs receives the request

from OpenStack Horizon as HTTP request format and sends

the request to LXC APIs module. On each HW devices, LXC

APIs module runs the function deploy android container

including follow steps: making a clean environment,

download android template, make some pre-configurations

and launch new container instance. After finish deploying new

android container, LXC APIs update container information

such as: hostname, IP address, android version… to database

and sends the container information to LXC APIs. LXC APIs

module receives container information and send it back to

OpenStack Horizon to display on the GUI.

5. Implementation

This section provides readers with a detailed of

Management APIs implementation. Our implementa -tion

topology showed in Figure 7 containers in our platform,

deploy a new container, monitor all existing containers,

manage template includes an OpenStack Horizon server,

HTTP REST APIs server, template server, database server and

HW devices which used for deploying android containers.

http://dx.doi.org/10.7472/jksii.2014.00.00

A Novel Design of Cloud-based Management Solution for Android Containers

한국 인터넷 정보학회 (20권1호) 73

5.1 System Preparation

We implement the platform on the Linux operating system.

And we uses the Newton version of OpenStack Horizon. The

Android container is deployed on HW devices and MySQL is

a database server. Programming languages are Python and

PHP

(Figure 7) (The implementation of management

APIs between OpenStack Horizon and

Android Containers)

5.2 Implementation

As in Figure 8 of the implementation task, we develop

Android container management functions on OpenStack

Horizon such as: get all existing containers, deploy a new

container, stop, reboot or destroy. Other functions for

managing Android template version and HW devices are also

provided on the dashboard.

(Figure 8) (Management task are provided on

OpenStack Horizon.)

Figure 9 indicates two Android Containers with version:

KitKat (4.0) and Lollipop (5.0) are deployed on HW device

after receiving the request from OpenStack Horizon.

(Figure 9) (Android Container is deployed)

It also provides the ability to run Android containers and

calculate system information for HW devices such as memory

utilization, CPU utilization, system log monitoring, and the

number of execution processes. Based on these information,

administrator can detect the system usage in order to balance

the resource. Figure 10 describe the summary of system

information on our system.

(Figure 10) (System statistic)

6. Conclusion and Limitations

In this paper, we proposed the design and implementation

of the management API for Android containers and

OpenStack Horizon. Our proposal can help the operator to

deploy and manage Android containers from many HW

devices on OpenStack Horizon. On the other hand, by

http://dx.doi.org/10.7472/jksii.2014.00.00

A Novel Design of Cloud-based Management Solution for Android Containers

74 2019. 2

integrating in OpenStack Horizon, the administrator not only

manages Android containers but also manages other types of

OpenStack instances such as: Nova virtual machine, physical

machine. We also improved the deployment time of Android

Container, statistic of system information for Android

Containers, monitoring Android Containers.

Currently, in our proposed model, the deployment time of

a new android container is still quite long, around two

minutes. Additional work is planned for platform extensions

such as the ability to automatically deploy HW devices, load

balancing, and failover between Android containers and HW

devices.

 Reference

[1] Alouane, Meryeme, and Hanan El Bakkali,

"Virtualization in Cloud Computing: Existing

solutions and new approach," Cloud Computing

Technologies and Applications (CloudTech), 2016 2nd

International Conference on. IEEE, 116-123, 2016.

https://doi.org/10.1109/cloudtech.2016.7847687

[2] Mateo, John Cristopher A., and Jaewan Lee, "A

Dynamic Task Distribution approach using Clustering

of Data Centers and Virtual Machine Migration in

Mobile Cloud Computing," Journal of Internet

Computing and Services, 17(6), 103-111, 2016.

https://doi.org/10.7472/jksii.2016.17.6.103

 [3] Park, Min Gyun, et al, "Pratical Offloading Methods

and Cost Models for Mobile Cloud Computing,"

Journal of Internet Computing and Services, 14(2),

73-85, 2013. https://doi.org/10.7472/jksii.2013.14.2.73

 [4] “Xen open source virtualization platform”, Accessed

2016 [Online]. Available from:

https://www.xenproject.org/

 [5] “Kernel-based Virtual Machine”, Accessed 2016

[Online]. Available from: https://www.linux-kvm.org.

 [6] “VMWare virtualization platform”, Accessed 2016

[Online]. Available from:

http://www.vmware.com/products/vsphere-hypervisor.h

tml

 [7] “Microsoft virtualization platform”, Accessed 2016

[Online]. Available from:

https://www.microsoft.com/en-us/cloud-platform/server

-virtualization.

[8] Li, Zheng, et al, "Performance overhead comparison

between hypervisor and container based virtualization,"

Advanced Information Networking and Applications

(AINA), 2017 IEEE 31st International Conference on.

IEEE, 955-962, 2017.

 [9] Dua, Rajdeep, A. Reddy Raja, and Dharmesh

Kakadia, "Virtualization vs containerization to support

paas," Cloud Engineering (IC2E), 2014 IEEE

International Conference on. IEEE, 610-614, 2014.

[10] “Linux Container Runtime”, Accessed 2016 [Online].

Available from: https://linuxcontainers.org/

[11] “Application Containers”, Accessed 2016 [Online].

Available from: https://www.docker.com/

[12] “Google COE”, Accessed 2016 [Online]. Available

from: https://kubernetes.io/

[13] “A distributed systems kernel”, Accessed 2016

[Online]. Available from: http://mesos.apache.org/

[14] Shumate, Thomas, and Mohammed Ketel, "Bring

your own device: benefits, risks and control

techniques," SOUTHEASTCON 2014, IEEE, 1-6,

2014. https://doi.org/10.1109/secon.2014.6950718

[15] Chen, Wenzhi, et al, "A lightweight virtualization

solution for Android devices," IEEE Transactions on

Computers, 64(10), 2741-2751, 2015.

[16] Kanonov, Uri, and Avishai Wool, "Secure containers

in Android: the Samsung KNOX case study,"

Proceedings of the 6th Workshop on Security and

Privacy in Smartphones and Mobile Devices, ACM,

3-12, 2016. https://doi.org/10.1145/2994459.2994470

[17] Nam Pham Nguyen Xuan and Souhwan Jung, "Design

and Implementation of Management APIs between

OpenStack Horizon and Android Containers," KSII The

12th Asia Pacific International Conference on

Information Science and Technology (APIC-IST), 2017.

[18] Younas, Muhammad, et al, "A Framework for Agile

Development in Cloud Computing Environment,"

Journal of Internet Computing and Services, 17(5),

67-74, 2016.

[19] “Resource Isolation”, Accessed 2016 [Online]. Available

from: https://lwn.net/Articles/531114/

[20] “Resource Management”, Accessed 2016 [Online].

http://www.vmware.com/products/vsphere-hypervisor.html
https://www.microsoft.com/en-us/cloud-platform/server-virtualization

◐ 자 소 개 ◑

Nam Pham Nguyen Xuan

2012년 Ho Chi Minh City University of Technology and Education 공학사
2017년 숭실대학교 대학원 융합소프트웨어학과 석사
관심분야 : 클라우드 보안, 네트워크 보안
E-mail : namxuannp@gmail.com

Hojin Chun

2017년 숭실대학교 정보통신전자공학과 공학사
2017년～현재 숭실대학교 대학원 정보통신공학과 석사과정
관심분야 : 모바일 보안, 클라우드 보안
E-mail : hjjjang4@naver.com

Souhwan Jung

1985년 서울대학교 전자공학과 공학사
1987년 서울대학교 대학원 전자공학과 공학석사
1996년 University of Washington(Seattle) Electrical Engineering 공학박사
1997년～현재 숭실대학교 전자정보공학부 교수
관심분야 : 모바일 보안, 클라우드 보안, 네트워크 보안, IoT보안
E-mail : souhwanj@ssu.ac.kr

A Novel Design of Cloud-based Management Solution for Android Containers

한국 인터넷 정보학회 (20권1호) 75

Available from:

http://man7.org/linux/man-pages/man7/cgroups.7.html

[21] “Permission Mechanism”, Accessed 2016 [Online].

Available from:

http://man7.org/linux/man-pages/man7/capabilities.7.html

[22] “Permission Filter Mechanism”, Accessed 2016

[Online]. Available from:

http://man7.org/linux/man-pages/man2/seccomp.2.html

[23] Morris, James, Stephen Smalley, and Greg Kroah-

Hartman, "Linux security modules: General security

support for the linux kernel," USENIX Security

Symposium, 2002.

https://doi.org/10.1109/fits.2003.1264934

[24] “An OpenStack Dashboard Project,” Accessed 2016

[Online]. Available from:

https://docs.openstack.org/developer/horizon/

[25] Kim, Huioon, et al, "Experience in Practical

Implementation of Abstraction Interface for Integrated

Cloud Resource Management on Multi-Clouds," KSII

Transactions on Internet and Information Systems

(TIIS), 11(1), 18-38, 2017.

https://doi.org/10.3837/tiis.2017.01.002

[26] “Container Management Service for OpenStack”,

Accessed 2016 [Online]. Available from:

https://wiki.openstack.org/wiki/Zun

[27] “Management Solution for Containers Orchestration

Engines”, Accessed 2016 [Online]. Available from:

https://wiki.openstack.org/wiki/Magnum.

