DOI QR코드

DOI QR Code

타이타늄 중공마더빌렛 주조재의 열처리공정 최적화 연구

Study for Heat Treatment Optimization of Titanium Hollow Casted Billet

  • 투고 : 2019.02.18
  • 심사 : 2019.03.14
  • 발행 : 2019.03.31

초록

${\alpha}$-titanium alloy has a relatively low heat treatment characteristic and it is mainly subjected to heat treatment for residual stress, recovery or dynamic recrystallization. In this study, commercially pure titanium hollow castings was fabricated by gravity casting. Heat treatments were carried out at $750^{\circ}C$, $850^{\circ}C$ and $950^{\circ}C$ to investigate the effect of post-heat treatment on microstructure and mechanical properties. Beta-transus temperature ($T_{\beta}$) was about $913^{\circ}C$, and equiaxed microstructure was shown at temperature below $T_{\beta}$ and lath-type microstructure at temperature above $T_{\beta}$. Microstructure and mechanical properties did not show any significant difference in the direction of solidification for titanium hollow billet, so it can be seen that it was a well-made material for extrusion process. The optimum heat treatment condition of hollow billet castings for the seamless tube production was $850^{\circ}C$, 4 hr, FC, indicating a combination of equiaxed microstructure and appropriate mechanical properties.

키워드

OCRHB6_2019_v32n2_68_f0001.png 이미지

Fig. 1. Microstructures of gravity casted titanium; (a) center (b) middle (c) side (×100).

OCRHB6_2019_v32n2_68_f0002.png 이미지

Fig. 2. Optical micrographs of the heat-treated CP Ti samples for (a) 750°C, vertical (b) 750°C, horizontal (c) 850°C, vertical (d) 850°C, horizontal (e) 950°C, vertical (f) 950°C, horizontal (×50).

OCRHB6_2019_v32n2_68_f0003.png 이미지

Fig. 3. Engineering strain-stress curves of the as-casted and heat-treated samples.

OCRHB6_2019_v32n2_68_f0004.png 이미지

Fig. 4. Tensile properties of the as-casted and heat-treated samples.

OCRHB6_2019_v32n2_68_f0005.png 이미지

Fig. 5. Vickers hardness variation of CP Ti with different heat treatments; (a) as-casted, (b) 750°C, (c) 850°C, and (d) 950°C.

OCRHB6_2019_v32n2_68_f0006.png 이미지

Fig. 6. Schematic diamgran of new seamless tube manufacturing process.

Table 1. Chemical compositions of CP Ti (Grade 2)

OCRHB6_2019_v32n2_68_t0001.png 이미지

참고문헌

  1. T. Y. Kim, K. R. Lim, Y. T. Lee, K. M. Cho and D-G. Lee : Kor. J. Mater. Res. 25 (2015) 636-641. https://doi.org/10.3740/MRSK.2015.25.11.636
  2. Z. Y. Zhang, H. Yang, H. Li, N. Ren and D. Wang : Mater. Sci. Eng. A 569 (2013) 96-105. https://doi.org/10.1016/j.msea.2013.01.055
  3. F. Song, H. Yang, H. Li, M. Zhan and G. Li : Chin. J. Aeronaut 26 (2013) 1336-1345. https://doi.org/10.1016/j.cja.2013.07.039
  4. H. M. Shalaby, H. Al-Mazeedi, H. Gopal and N. Tanoli : Eng. Fail. Anal 18 (2011) 1990-1997. https://doi.org/10.1016/j.engfailanal.2011.05.008
  5. C. S. Youn, Y. K. Park, J. H. Kim, S. C. Lee and D-G. Lee : J. of the Korean Society for Heat Treatment 30 (2017) 279-284. https://doi.org/10.12656/JKSHT.2017.30.6.279
  6. I. Weiss and S. L. Semiatin : Mater. Sci. Eng. A 263 (1999) 243-256. https://doi.org/10.1016/S0921-5093(98)01155-1
  7. S. Nemat-Nasser, W. G. Guo and J. Y. Cheng : Acta mater. 47 (1999) 3705-3720. https://doi.org/10.1016/S1359-6454(99)00203-7
  8. Y. J. Hwang, Y. K. Park, C. L. Kim, J. Y. Kim and DG. Lee : J. of the Korean Society for Heat Treatment 29 (2016) 220-226. https://doi.org/10.12656/jksht.2016.29.5.220
  9. C. L. Li, D-G. Lee, X. J. Mi, W. J. Ye, S. X. Hui and Y. T. Lee : J. Alloy. Compd. 549 (2013) 152-157. https://doi.org/10.1016/j.jallcom.2012.08.065
  10. M. S. J. Hashmi : J. Mater. Process. Technol 179 (2006) 5-10. https://doi.org/10.1016/j.jmatprotec.2006.03.104
  11. Y. B Lim and J. M. Yoon : J. of the Korean Society for Heat Treatment 30 (2017) 207-214. https://doi.org/10.12656/jksht.2017.30.5.207

피인용 문헌

  1. 순수 타이타늄의 기계적 특성에 미치는 마찰 교반 용접 공정 조건의 영향 vol.32, pp.3, 2019, https://doi.org/10.12656/jksht.2019.32.3.124