Fig. 1. Association between logarithmic urinary cadmium level and urinary malondialdehyde (MDA), N-acetyl-β-D-glucosaminidase (NAG), and estimated glomerular filtration rate (eGFR) according to the gender. A, C, E in men; B, D, F in women
Table 1. Characteristics of subjects and their biological parameters according to the gender and urinary cadmium level
Table 2. Pearson correlation coefficients between logarithmic urinary cadmium (Cd) level and urinary malondialdehyde (MDA), N-acetyl-β-D-glucosaminidase (NAG), and estimated glomerular filtration rate (eGFR)
Table 3. General linear model for changes in logarithmic eGFR
References
- Agarwal, R. and Chase, S. D. 2002. Rapid, fluorimetric-liquid chromatographic determination of malondialdehyde in biological samples. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 775, 121-126. https://doi.org/10.1016/S1570-0232(02)00273-8
- Bernard, A. 2004. Renal dysfunction induced by cadmium: biomarkers of critical effects. Biometals 17, 519-523. https://doi.org/10.1023/B:BIOM.0000045731.75602.b9
- Bernard, A. 2008. Cadmium & its adverse effects on human health. Indian J. Med. Res. 128, 557-564.
- Buser, M. C., Ingber, S. Z., Raines, N. and Fowler, D. A., Scinicariello, F. 2016. Urinary and blood cadmium and lead and kidney function: NHANES 2007-2012. Int. J. Hyg. Environ. Health 219, 261-267. https://doi.org/10.1016/j.ijheh.2016.01.005
- Chung, S., Chung, J. H., Kim, S. J., Koh, E. S., Yoon, H. E., Park, C. W., Chang, Y. S. and Shin, S. J. 2014. Blood lead and cadmium levels and renal function in Korean adults. J. Clin. Exp. Nephrol. 18, 726-734. https://doi.org/10.1007/s10157-013-0913-6
- Eom, S. Y., Seo, M. N., Lee, Y. S., Park, K. S., Hong, Y. S., Sohn, S. J., Kim, Y. D., Choi, B. S., Lim, J. A., Kwon, H. J., Kim, H. and Park, J. D. 2017. Low-level environmental cadmium exposure induces kidney tubule damage in the general population of Korean adults. Arch. Environ. Contam. Toxicol. 73, 401-409. https://doi.org/10.1007/s00244-017-0443-4
- Godt, J., Scheidig, F., Grosse-Siestrup, C., Esche, V., Brandenburg, P., Reich, A. and Groneberg, D. A. 2006. The toxicity of cadmium and resulting hazards for human health. J. Occup. Med. Toxicol. 1, 22. https://doi.org/10.1186/1745-6673-1-22
- Haddam, N., Samira, S., Dumont, X., Taleb, A., Lison, D., Haufroid, V. and Bernard, A. 2011. Confounders in the assessment of the renal effects associated with low-level urinary cadmium: an analysis in industrial workers. Environ. Health 10, 37. https://doi.org/10.1186/1476-069X-10-37
- Ikeda, M., Ezaki, T., Tsukahara, T., Moriguchi, J., Furuki, K., Fukui, Y., Okamoto, S., Ukai, H. and Sakurai, H. 2003. Bias induced by the use of creatinine-corrected values in evaluation of beta2-microgloblin levels. Toxicol. Lett. 145, 197-207. https://doi.org/10.1016/S0378-4274(03)00320-5
- Jarup, L. and Akesson, A. 2009. Current status of cadmium as an environmental health problem. Toxicol. Appl. Pharmacol. 238, 201-208. https://doi.org/10.1016/j.taap.2009.04.020
- Jarup, L., Berglund, M., Elinder, C. G., Nordberg, G. and Vahter, M. 1998. Health effects of cadmium exposure--a review of the literature and a risk estimate. Scand. J. Work Environ. Health 24, 1-51. https://doi.org/10.5271/sjweh.270
- Jatlow, P., McKee, S. and O'Malley, S. S. 2003. Correction of urine cotinine concentrations for creatinine excretion: is it useful? Clin. Chem. 49, 1932-1934. https://doi.org/10.1373/clinchem.2003.023374
-
Kim, Y. D., Yim, D. H., Eom, S. Y., Moon, S. I., Park, C. H., Kim, G. B., Yu, S. D., Choi, B. S., Park, J. D. and Kim, H. 2015. Temporal changes in urinary levels of cadmium, N-acetyl-
${\beta}$ -d-glucosaminidase and${\beta}$ 2-microglobulin in individuals in a cadmium-contaminated area. Environ. Toxicol. Pharmacol. 39, 35-41. https://doi.org/10.1016/j.etap.2014.10.016 - Klaassen, C. D., Liu, J. and Diwan, B. A. 2009. Metallothionein protection of cadmium toxicity. Toxicol. Appl. Pharmacol. 238, 215-220. https://doi.org/10.1016/j.taap.2009.03.026
- Levey, A. S., Coresh, J., Greene, T., Marsh, J., Stevens, L. A., Kusek, J. W. and Van Lente, F. 2007. Expressing the modification of diet in renal disease study equation for estimating glomerular filtration rate with standardized serum creatinine values. Clin. Chem. 53, 766-772. https://doi.org/10.1373/clinchem.2006.077180
- Nordberg, G., Jin, T., Wu, X., Lu, J., Chen, L., Liang, Y., Lei, L., Hong, F., Bergdahl, I. A. and Nordberg, M. 2012. Kidney dysfunction and cadmium exposure--factors influencing dose-response relationships. J. Trace Elem. Med. Biol. 26, 197-200. https://doi.org/10.1016/j.jtemb.2012.03.007
- Schisterman, E. F., Cole, S. R. and Platt, R. W. 2009. Overadjustment bias and unnecessary adjustment in epidemiologic studies. Epidemiology 20, 488-495. https://doi.org/10.1097/EDE.0b013e3181a819a1
- Subramanian, K. S., Meranger, J. C. and MacKeen, J. E. 1983. Graphite furnace atomic absorption spectrometry with matrix modification for determination of cadmium and lead in human urine. Anal. Chem. 55, 1064-1067. https://doi.org/10.1021/ac00258a020
- Weaver, V. M., Vargas, G. G., Silbergeld, E. K., Rothenberg, S. J., Fadrowski, J. J., Rubio-Andrade, M., Parsons, P. J., Steuerwald, A. J., Navas-Acien, A. and Guallar, E. 2014. Impact of urine concentration adjustment method on associations between urine metals and estimated glomerular filtration rates (eGFR) in adolescents. Environ. Res. 132, 226-232. https://doi.org/10.1016/j.envres.2014.04.013