Fig. 2. pMLC and actin co-localized in normal FRC. FRCs were treated with phalloidin and anti-pMLC antibody for 1 hr and examined for changes in F-actin distribution (phalloidin staining) and p-MLC. Bar is 10 μm.
Fig. 1. FRC preserves cortical contractile ring and central stress fibers. Representative images of rhodamine-phalloidin staining for F-actin (red), and DAPI staining (blue) of FRC. Actin cytoskeletons in FRC are indicated with white arrows and head-arrow. Bar is 10 μm.
Fig. 4. LTβR controls FRC spreading, elongation, and actomyosin contractility. FRC were treated with 5 μM ML7 incubated for indicated times. Actin SF completely abrogated in ML7 treated FRC. Bar is 10 μm.
Fig. 5. Roles of ROCK on SF alignment in FRCs. Representative images of FRCs adhered on slide chamber subjected for 12 h, 24 hr and 36 hr after treatment with 10 μM Y27632. Bar is 10 μm.
Fig. 6. Effect of LTβR signal on MLC phosphorylation and RhoA activation. (A) ML7, MLCK inhibitor, decreased MLC phosphorylation (p-MLC) over the control, which was abolished by 100 ng/ml agonistic anti-LTβR antibody (C). (B) LTβR stimulation induces a significant decrease in active RhoA and p-MYPT compared with control. MLC, total RhoA and MYPT were used as a loading control.
Fig. 7. Protein level of p-ezrin, f-actin, and tubulin as cytoskeletal markers were significantly reduced in agonistic anti-LTβR antibody treated-FRCs. FRC was incubated with anti-LTβR antibody for 24 hr. After incubation, cell was lyzed with RIPA buffer and protein concentration of FRC lysate was measured by BCA method. FRCs were treated with mouse anti-cytoskeletal marker antibody followed by anti-LTβR antibody for 24 hr. The expression degree of p-ezrin, β-actin, a-tubulin and GAPDH was detected by Western blot. GAPDH was used as a loading control.
Fig. 3. Agonistic anti-LTβR antibody disrupted the formation of SF in FRC. FRCs on chamber slides were treated with agonistic anti-LTβR antibody (25, 50 mg/ml) for 24 hr and examined for changes in F-actin distribution (phalloidin staining). Bar is 10 μm.
참고문헌
- Acton, S. E., Farrugia, A. J., Astarita, J. L., Mourao-Sa, D., Jenkins, R. P., Nye, E., Hooper, S., van Blijswijk, J., Rogers, N. C., Snelgrove, K. J., Rosewell, I., Moita, L. F., Stamp, G., Turley, S. J., Sahai, E. and Reis e Sousa, C. 2014. Dendritic cells control fibroblastic reticular network tension and lymph node expansion. Nature 514, 498-502. https://doi.org/10.1038/nature13814
- Blue, E. K., Goeckeler, Z. M., Jin, Y., Hou, L., Dixon, S. A., Herring, B. P., Wysolmerski, R. B. and Gallagher, P. J. 2002. 220- and 130-kDa MLCKs have distinct tissue distributions and intracellular localization patterns. Am. J. Physiol. Cell Physiol. 282, C451-460. https://doi.org/10.1152/ajpcell.00333.2001
- Brinkman, C. C., Iwami, D., Hritzo, M. K., Xiong, Y., Ahmad, S., Simon, T., Hippen, K. L., Blazar, B. R. and Bromberg, J. S. 2016. Treg engage lymphotoxin beta receptor for afferent lymphatic transendothelial migration. Nat. Commun. 7, 12021. doi: 10.1038/ncomms12021
-
Browning, J. L., Allaire, N., Ngam-Ek, A., Notidis, E., Hunt, J., Perrin, S. and Fava, R. A. 2005. Lymphotoxin-
${\beta}$ receptor signaling is required for the homeostatic control of HEV differentiation and function. Immunity 23,539-550. https://doi.org/10.1016/j.immuni.2005.10.002 - Chai, Q., Onder, L., Scandella, E., Gil-Cruz, C., Perez-Shibayama, C., Cupovic, J., Danuser, R., Sparwasser, T., Luther, S. A., Thiel, V., Rulicke, T., Stein, J. V., Hehlgans, T. and Ludewig, B. 2013. Maturation of lymph node fibroblastic reticular cells from myofibroblastic precursors is critical for antiviral immunity. Immunity 38, 1013-1024. https://doi.org/10.1016/j.immuni.2013.03.012
- Chiang, E. Y., Kolumam, G. A., Yu, X., Francesco, M., Ivelja, S., Peng, I., Gribling, P., Shu, J., Lee, W. P., Refino, C. J., Balazs, M., Paler-Martinez, A., Nguyen, A., Young, J., Barck, K. H., Carano, R. A., Ferrando, R., Diehl, L., Chatterjea, D. and Grogan, J. L. 2009. Targeted depletion of lymphotoxin-alpha-expressing TH1 and TH17 cells inhibits autoimmune disease. Nat. Med. 15, 766-773. https://doi.org/10.1038/nm.1984
- Chirino, Y. I., Garcia-Cuellar, C. M., Garcia-Garcia, C., Soto-Reyes, E., Osornio-Vargas, a. R., Herrera, L. A., Lopez-Saavedra, A., Miranda, J., Quintana-Belmares, R., Perez, I. R. and Sanchez-Perez, Y. 2017. Airborne particulate matter in vitro exposure induces cytoskeleton remodeling through activation of the ROCK-MYPT1-MLC pathway in A549 epithelial lung cells. Toxicol. Lett. 272, 29-37. https://doi.org/10.1016/j.toxlet.2017.03.002
- Denton, A. E., Roberts, E. W., Linterman, M. A. and Fearon, D. T. 2014. Fibroblastic reticular cells of the lymph node are required for retention of resting but not activated CD8+T cells. Proc. Natl. Acad. Sci. USA. 111, 12139-12144. https://doi.org/10.1073/pnas.1412910111
- Dubey, L. K., Karempudi, P., Luther, S. A., Ludewig, B. and Harris, N. L. 2017. Interactions between fibroblastic reticular cells and B cells promote mesenteric lymph node lymphangiogenesis. Nat. Commun. 8, 367. doi: 10.1038/s41467- 017-00504-9.
- Elson, E. L. and Genin, G. M. 2013. The role of mechanics in actin stress fiber kinetics. Exp. Cell Res. 319, 2490-2500. https://doi.org/10.1016/j.yexcr.2013.06.017
- Fritz, J. H. and Gommerman, J. L. 2010. Cytokine/stromal cell networks and lymphoid tissue environments. J. Interferon Cytokine Res. 31, 277-289 . https://doi.org/10.1089/jir.2010.0121
- Gil-Cruz, C., Perez-Shibayama, C., Onder, L., Chai, Q., Cupovic, J., Cheng, H. W., Novkovic, M., Lang, P. A., Geuking, M. B., McCoy, K. D., Abe, S., Cui, G., Ikuta, K., Scandella, E. and Ludewig, B. 2016. Fibroblastic reticular cells regulate intestinal inflammation via IL-15-mediated control of group 1 ILCs. Nat. Immunol. 17, 1388-1396. https://doi.org/10.1038/ni.3566
- Gommerman, J. L. and Browning, J. L. 2003. Lymphotoxin/light, lymphoid microenvironments and autoimmune disease. Nat. Rev. Immunol. 3, 642-655. https://doi.org/10.1038/nri1151
- Girard, J. P., Moussion, C. and Forster, R. 2012. HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat. Rev. Immunol. 12, 762-773. https://doi.org/10.1038/nri3298
- Kassianidou, E., Hughes, J. H. and Kumar, S. 2017. Activation of ROCK and MLCK tunes regional stress fiber formation and mechanics via preferential myosin light chain phosphorylation. Mol. Biol. Cell 28, 3832-3843. https://doi.org/10.1091/mbc.e17-06-0401
- Katakai, T., Hara, T., Sugai, M., Gonda, H. and Shimizu, A. 2004. Lymph node fibroblastic reticular cells construct the stromal reticulum via contact with lymphocytes. J. Exp. Med. 200, 783-795. https://doi.org/10.1084/jem.20040254
- Kedl, R. M. and Tamburini, B. A. 2015. Antigen archiving by lymph node stroma: A novel function for the lymphatic endothelium. Eur. J. Immunol. 45, 2721-2729. https://doi.org/10.1002/eji.201545739
- Kumar, V., Dasoveanu, D. C., Chyou, S., Tzeng, T. C., Rozo, C., Liang, Y., Stohl, W., Fu, Y. X., Ruddle, N. H. and Lu, T. T. 2015. A dendritic-cell-stromal axis maintains immune responses in lymph nodes. Immunity 42, 719-730. https://doi.org/10.1016/j.immuni.2015.03.015
- Lee, J. H., Katakai, T., Hara, T., Gonda, H., Sugai, M. and Shimizu, A. 2004. Roles of p-ERM and Rho-ROCK signaling in lymphocyte polarity and uropod formation. J. Cell Biol. 167, 327-337. https://doi.org/10.1083/jcb.200403091
-
Lee, J. S., Kim, Y. H. and Lee, J. H. 2013. Involvement of RhoA/ROCK signaling for alteration of stress fiber via lymphotoxin
${\beta}$ receptor stimulation in fibroblastic reticular cell isolated from lymph node. Anim. Cells Syst. 17, 421-428. https://doi.org/10.1080/19768354.2013.865674 - Malhotra, D., Fletcher, A. L. and Turley, S. J. 2013. Stromal and hematopoietic cells in secondary lymphoid organs: partners in immunity. Immunol. Rev. 251, 160-176. https://doi.org/10.1111/imr.12023
-
Qin, Z., Fisher, G. J., Voorhees, J. J. and Quan, T. 2108. Actin cytoskeleton assembly regulates collagen production via TGF-
${\beta}$ type II receptor in human skin fibroblasts. J. Cell Mol. Med. 22, 4085-4096. https://doi.org/10.1111/jcmm.13685 - Ramachandran, C., Patil, R. V., Combrink, K., Sharif, N. A. and Srinivas, S. P. 2011. Rho-Rho kinase pathway in the actomyosin contraction and cell-matrix adhesion in immortalized human trabecular meshwork cells. Mol. Vis. 17, 1877-1890.
-
Scarzello, A. J., Jiang, Q., Back, T., Dang, H., Hodge, D., Hanson, C., Subleski, J., Weiss, J. M., Stauffer, J. K., Chaisaingmongkol, J., Rabibhadana, S., Ruchirawat, M., Ortaldo, J., Wang, X. W., Norris, P. S., Ware, C. F. and Wiltrout, R. H. 2016.
$LT{\beta}R$ signalling preferentially accelerates oncogenic AKT-initiated liver tumours. Gut 65, 1765-1775. https://doi.org/10.1136/gutjnl-2014-308810 - Sobocinski, G. P., Toy, K., Bobrowski, W. F., Shaw, S., Anderson, A. O. and Kaldjian, E. P. 2010. Ultrastructural localization of extracellular matrix proteins of the lymph node cortex: evidence supporting the reticular network as a pathway for lymphocyte migration. BMC Immunol. 11, 42. https://doi.org/10.1186/1471-2172-11-42
- Yamaguchi, H. and Sakai, R. 2015. Direct interaction between carcinoma cells and cancer associated fibroblasts for the regulation of cancer invasion. Cancers (Basel) 7, 2054-2062. https://doi.org/10.3390/cancers7040876