Fig. 1. (A) The extracted ion chromatogram (EIC) as m/z 883.27 ion in positive ESI mode. (B) The mass spectral peaks of detection and extraction in 5.112 min. (C) Product ion mass spectra of sample obtained by Q-TOF-MS/MS in m/z 20-900.
Table 1. LC-Q TOF-MS/MS condition
References
- Bais, H. P., Fall, R. and Vivanco, J. M. 2004. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 134, 307-319. https://doi.org/10.1104/pp.103.028712
- Dunlap, C. A. and Bowman, M. J. 2013. Schisler DA, Genomic analysis and secondary metabolite production in Bacillus amyloliquefaciens AS 43.3: A biocontrol antagonist of Fusarium head blight. Biol. Control 64, 166-175. https://doi.org/10.1016/j.biocontrol.2012.11.002
- Emily, A. D., Jide, X., Alain, S. and Kenneth, N. R. 2006. Bcillibactin-Mediated iron transport in Bacillus subtilis. J. Am. Chem. Soc. 128, 22-23. https://doi.org/10.1021/ja055898c
- Gledill, M., McCormack, P., Ussher, S., Achterberg, E. P., Mantoura, R. F. C. and Worsfold, P. J. 2004. Production of siderophore type chelates by mixed bacterioplankton populations in nutrient enriched seawater incubations. Mar. Chem. 88, 75-83. https://doi.org/10.1016/j.marchem.2004.03.003
- Hayen, H. and Volmer, D. A. 2005. Rapid identification of siderophores by combined thin-layer chromatography/matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 19, 711-720. https://doi.org/10.1002/rcm.1837
- Hertlein, G., Muller, S., Garcia-Gonzalez, E., Poppinga, L., Sussmuth, R. D. and Genersch, E. 2014. Production of the catechol type siderophore bacillibactin by the honey bee pathogen Paenibacillus larvae. PLoS One 9, 1-12.
- Karla, D., K. and Hans J. V. 2008. Structural biology of bacterial iron uptake. BBA 1778, 1781-1804. https://doi.org/10.1016/j.bbamem.2007.07.026
- Kim, K. M., Liu, J., Go, Y. S. and Kang, J. S. 2015. Characterization of Bacillus mojavensis KJS-3 for the promotion of plant growth. J. Life Sci. 25, 910-916. https://doi.org/10.5352/JLS.2015.25.8.910
- Mukherjee, S., Das, P. and Sen, R. 2006. Towards commercial production of microbial surfactants. Trends Biotechnol. 24, 509-515. https://doi.org/10.1016/j.tibtech.2006.09.005
- Patel, A. K., Deshattiwar, M. K., Chaudhari, B. L. and Chincholkar, S. B. 2009. Production, purification and chemical characterization of the catecholate siderophore from potent probiotic strains of Bacillus spp. Bioresour. Technol. 100, 368-373. https://doi.org/10.1016/j.biortech.2008.05.008
- Pyo, J. S., Shrestha, S., Park, S. H. and Kang, J. S. 2014. Biological control of plant growth using the plant growth-promoting Rhizobacterium Bacillus mojavensis KJS-3. J. Life Sci. 24, 1308-1315. https://doi.org/10.5352/JLS.2014.24.12.1308
- Raggi, M. A., Sabbioni, C., Casamenti, G., Gerra, G., Calonghi, N. and Masotti, L. 1999. Determination of catecholamines in human plasma by high-performance liquid chromatography with electrochemical detection. J. Chromatogr. B Biomed. Sci. Appl. 730, 201-211. https://doi.org/10.1016/S0378-4347(99)00213-3
- Roberts, M. S., Nakumora, L. K. and Cohan, F. M. 1994. Bacillus mojavensis sp.Nov., distinguishable from Bacillus subtilis by sexual isolation, divergence in DNA sequence, and differences in fatty acid composition. Int. J. Syst. Bacteriol. 44, 256-264. https://doi.org/10.1099/00207713-44-2-256
- Silva-Stenicoa, M. E., Hansen Pachecoa, F. T., Mazza Rodriguesa, J. L., Carrilhob, E. and Mui Tsai, S. 2005. Growth and siderophore production of Xylella fastidiosa under ironlimited conditions. Microbiol. Res. 160, 429-436. https://doi.org/10.1016/j.micres.2005.03.007
- Woo, S. M. and Kim, S. D. 2008. Structural identification of siderophore AH18 from Bacillus subtilis AH18, a biocontrol agent of phytophthora blight disease in red-pepper. J. Microbiol. Biotechnol. 36, 326-335.
-
Zloch, M., Thiem, D., Gadzala-Kopciuch, R. and Hrynkiewicz, K. 2016. Synthesis of siderophores by plant-associated metallotolerant bacteria under exposure to
$Cd^{2+}$ . Chemosphere 156, 312-325. https://doi.org/10.1016/j.chemosphere.2016.04.130