DOI QR코드

DOI QR Code

titirs2rs2 열성 유전자형을 가진 속푸른 검정콩 계통 육성

Breeding of a Recessive Soybean Genotype (titirs2rs2) with Green Cotyledons and Black Seed Coats

  • Choi, Sang Woo (Department of Agronomy, Gyeongsang National University) ;
  • Kim, Jin A (Department of Agronomy, Gyeongsang National University) ;
  • Shim, Sang In (Department of Agronomy, Gyeongsang National University) ;
  • Kim, Min Chul (Department of Agronomy, Gyeongsang National University) ;
  • Chung, Jong Il (Department of Agronomy, Gyeongsang National University)
  • 투고 : 2018.08.05
  • 심사 : 2018.10.06
  • 발행 : 2019.02.28

초록

콩[Glycine max (L.) Merr. 2n=40]은 국내에서 벼 다음으로 많이 재배되고 있는 식량작물이며 성숙 콩 종실에는 3대 영양소외 페놀성 화합물, 이소플라본, 사포닌, 루테인 토코페롤, 피틴산, 루테인, 안토시아닌등 생리활성 물질이 다양하게 존재하지만 기능성과 가공 적성 및 품질을 저해시키는 성분들도 다수 존재한다. 성숙 콩 종실에서 품질, 기능성 및 가공 적성을 저하시키는 KTI 단백질이 없으면서 난소화성 올리고당인 stachyose 함량이 낮은 속 푸른 검정콩 유전자형을 육성하기 위하여 진행되었다. 3개의 모본으로 육종집단을 창성하여 검정종피, 녹색자엽 및 KTI 단백질이 없는 11개의 $F_2$ 종자를 얻었고 stachyose 함량이 낮은 2개의 계통을 선발하여 농업형질 평가를 통하여 검정 종피, 녹색자엽, stachyose 함량이 낮은 titirs2rs2 유전자형을 가진 계통을 선발하였다. 선발된 계통의 초장은 66 cm 정도였으며 백립중은 28.4 g으로 대립이었으며 종피색과 제색은 모두 검정색이었고 성숙 자엽색은 녹색이었다. 선발된 계통의 stachyose 함량은 일반품종(13.01-16.81 g/kg)보다 매우 낮은 2.59(g/kg)이었다. 본 연구를 통하여 선발된 계통은 Kunitz Trypsine Inhibitor (KTI) 단백질이 없으며 난소화성 올리고당인 stachyose 성분의 함량이 낮고 검정종피와 녹색자엽을 가진 기능성 고품질 유색콩 육성을 위한 중간모본으로 이용될 수 있을 것으로 사료되었다.

Soybean [Glycine max (L.) Merr.] is grown worldwide for its high protein and oil content. Anthocyanins from black soybean seed coats are known to have many pharmaceutical effects. Soybean cultivars with large seed sizes and black seed coats are needed by soybean farmers. However, antinutritional factors, like protein, stachyose, and Kunitz trypsin inhibitor (KTI) exist in raw mature soybeans. Genetic elimination or reduction of these components is needed in soybean breeding. The objective of this research was to develop new a soybean strain with black seed coats and green cotyledons that was KTI protein free and low in stachyose. Six parents were used. The presence or absence of KTI protein was detected using the Western blot technique. The content of stachyose in mature seeds was detected using HPLC. One new strain was selected from 11 $F_2$ plants with black seed coats and green cotyledons that lacked KTI protein. The new strain had black seed coats and green cotyledons and was KTI protein free and low in stachyose. The plant height of the new strain was 66 cm, and its 100-seed weight was 28.4 g. The stachyose content of the new strain was 2.59 g/kg. The new strain developed in this research will be used to develop new cultivars that are KTI protein free and low in stachyose.

키워드

SMGHBM_2019_v29n2_147_f0001.png 이미지

Fig. 1. Scheme for developing new soybean strain with black seed coat, green cotyledon, Kunitz Trypsin Inhibitor (KTI) protein free, and low content of stachyose.

SMGHBM_2019_v29n2_147_f0002.png 이미지

Fig. 2. Confirmation of Kunitz trypsin inhibitor (KTI) protein free in the parent and new strain. C:Seoritae, S:new strain (black seed coat, green cotyledon, and low content of stachyose).

Table 1. Seed coat color, cotyledon, Kunitz Trypsin Inhibitor (KTI) protein, and stachyose content of three parents used in this experiment

SMGHBM_2019_v29n2_147_t0001.png 이미지

Table 2. Agronomic traits of new strain selected in this experiment

SMGHBM_2019_v29n2_147_t0002.png 이미지

Table 3. Content of stachyose for five cultivars and one new strain selected in this experiment

SMGHBM_2019_v29n2_147_t0003.png 이미지

참고문헌

  1. Burns, J., Gardner, P. T., O'Neil, J., Crawford, S., Morecroft, I., McPhail, D. B., Lister, C., Matthews, D., MacLean, M. R., Lean, M. E., Duthie, G. G. and Crozier, A. 2000. Relationship among antioxidant activity, vasodilation capacity and phenolic contents of red wine. J. Agric. Food Chem. 48, 220-230. https://doi.org/10.1021/jf9909757
  2. Cregan, P. B., Jarvik, T., Bush, A. L., Shoemaker, R. C., Lark, K. G., Kahler, A. L., KayaN VanToai, T. T., Lohnes, D. G., Chung, J. I. and Specht, J. E. 1999. An integrated genetic linkage map of the soybean. Crop Sci. 39, 1464-1490. https://doi.org/10.2135/cropsci1999.3951464x
  3. Dierking, E. C. and Bilyeu, K. D. 2008. Association of a soybean raffinose synthase gene with low raffinose and stachyose seed phenotype. Plant Genome 1, 135-145. https://doi.org/10.3835/plantgenome2008.06.0321
  4. Hou, A., Chen, P., Alloatti, J., Li, D., Mozzoni, L., Zhang, B. and Shi, A. 2009. Genetic variability of seed sugar content in worldwide soybean germplasm collections. Crop Sci. 49, 903-912. https://doi.org/10.2135/cropsci2008.05.0256
  5. Hildebrand, D. F., Orf, J. H, and Hymowitz, T. 1980. Inheritance of an acid phosphatase and its linkage with the Kunitz trypsin inhibitor seed protein of soybeans. Crop Sci. 20, 83-85. https://doi.org/10.2135/cropsci1980.0011183X002000010019x
  6. Hymowitz, T. and Hadley, H. H. 1972. Inheritance of a trypsin variant in seed protein of soybeans. Crop Sci. 12, 197-198. https://doi.org/10.2135/cropsci1972.0011183X001200020013x
  7. Hymowitz, T., Collins, F. I., Panezner, J. and Walker, W. M. 1972. Relationship between the content of oil, protein, and sugar in soybean seed. Agron. J. 64, 613-616. https://doi.org/10.2134/agronj1972.00021962006400050019x
  8. Jayaprakasam, B., Vareed, S. K., Olson, L. K. and Nair, M. G. 2005. Insulin secretion by bioactive anthocyanins and anthocyanidins present in fruits. J. Agric. Food Chem. 53, 28-31. https://doi.org/10.1021/jf049018+
  9. Jason, D. N., Fehr, W. R. and Schnebly, S. R. 2005. Agronomic and seed characteristics of soybean with reduced raffinose and stachyose. Crop Sci. 45, 589-592. https://doi.org/10.2135/cropsci2005.0589
  10. Kanamara, K., Wang, S., Abe, J., Yanada, T. and Kitamura, K. 2006. Identification and chracterization of wild soybean (Glycine soja et. Zecc) strains with high lutein content. Breed. Sci. 56, 231-234. https://doi.org/10.1270/jsbbs.56.231
  11. Kim, H. J., Tsoy, I. and Park, J. M. 2006. Anthocyanins from soybean seed coat inhibit the expression of TNF-alpha-induced genes associated with ischemia /reperfusion in endothelial cell by NF-kappaB-dependent pathway and reduce rat myocardial damages incurred by ischemia and reperfusion in vivo. FEBS Lett. 580, 1391-1397. https://doi.org/10.1016/j.febslet.2006.01.062
  12. Kim, M. S., Park, M. J., Jeong, W. H., Nam, K. C. and Chung, J. I. 2006. SSR Marker Tightly linked to the Ti locus in soybean [Glycine max (L.)]. Euphytica 152, 361-366. https://doi.org/10.1007/s10681-006-9223-3
  13. Kerr, P. S. and Sebastian, S. A. 2000. Soybean products with improved carbohydrate composition and soybean plants. U.S. Patent 6147193. Date issued: 14 November. 64, 613-616.
  14. Kiang, Y. T. 1987. Mapping three protein loci on a soybean chromosome. Crop Sci. 27, 44-46. https://doi.org/10.2135/cropsci1987.0011183X002700010011x
  15. Kong, J. M., Chia, L. S., Goh, N. K., Chia, T. F. and Brouillard, R. 2003. Analysis and Biological activities of anthocyanins. Phytochemistry 61, 923-933. https://doi.org/10.1016/S0031-9422(02)00474-0
  16. Kunitz, M. 1945. Crystallization of a trypsin inhibitor from soybean. Science 101, 668-669. https://doi.org/10.1126/science.101.2635.668
  17. Kumar, V., Rani, A., Goyal, L., Dixit, A. K., Manjaya, J. G. and Swamy, M. 2010. Sucrose and raffinose family oligosaccharides (RFOs) in soybean seeds as influenced by genotype and growing location. J. Agric. Food Chem. 58, 5081-5085. https://doi.org/10.1021/jf903141s
  18. Murphy, E. L., Horsley, H. and Burr, H. K. 1972. Fractionation of dry bean extracts which increase carbon dioxide egestion in human flatus. J. Agr. Food Chem. 20, 813-817. https://doi.org/10.1021/jf60182a024
  19. Neus, J. D., Fehr, W. R. and Schnebly, S. R. 2005. Agronomic and seed characteristics of soybean with reduced raffinose and stachyose. Crop Sci. 45, 589-592. https://doi.org/10.2135/cropsci2005.0589
  20. Orf, J. H. and Hymowitz, T. 1979. Inheritance of the absence of the trypsin inhibitor in seed protein of soybeans. Crop Sci. 19, 107-109. https://doi.org/10.2135/cropsci1979.0011183X001900010026x
  21. Rackis, J. J., Sessa, D. J. and Hoing, D. H. 1979. Flavor problems of vegetable food proteins. J. Am. Oil Chem. Soc. 56, 262-271. https://doi.org/10.1007/BF02671470
  22. Singh, L., Wilson, C. M. and Hadley, H. H. 1969. Genetic differences in soybean trypsin inhibitors separated by disc electrophoresis. Crop Sci. 9, 489-491. https://doi.org/10.2135/cropsci1969.0011183X000900040031x
  23. Suarez, F. L., Furne, J. K., Springfield, J. R. and Levitt, M. D. 1997. Insights into human colonic physiology obtained from study of flatus composition. Am. J. Physiol. 272, 1028-1033.
  24. Wang, K. J., Kaizuma, N., Takahata, T. and Hatakeyama, S. 1996. Detection of two new variants of soybean Kunitz trypsin inhibitor through electrophoresis. Breed. Sci. 46, 39-44.
  25. Wang, K. J., Yamashita, T., Watanabe, M. and Takahata, Y. 2004. Genetic characterization of a novel $Ti^b$-derived variant of soybean Kunitz trypsin inhibitor detected in wild soybean (Glycine soja). Genome 47, 9-14. https://doi.org/10.1139/g03-087
  26. Wang, K. J. and Li, X. H. 2005. Tif type of soybean Kunitz trypsin inhibitor exists in wild soybean of northern China. In:Proceedings of the 8th national soybean research conference of China. pp. 167-168.
  27. Wang, K. J., Takahata, Y., Kono, Y. and Kaizuma, N. 2008. Allelic differentiation of Kunitz trypsin inhibitor in wild soybean (Glycine soja). Theor. Appl. Genet. 117, 565-573. https://doi.org/10.1007/s00122-008-0800-9
  28. Zhao, S. W. and Wang, H. 1992. A new electrophoretic variant of SBTi-A2 in soybean seed protein. Soyb. Genet. Newsl. 19, 22-24.