References
- Rengsamy P. 2002. Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: an overview. Aust. J. Exp. Agr. 42: 351-361. https://doi.org/10.1071/EA01111
- Bui EN. 2013. Soil salinity: a neglected factor in plant ecology and biogeography. J. Arid. Environ. 92: 14-25. https://doi.org/10.1016/j.jaridenv.2012.12.014
- Nassar IN, Horton R. 1999. Salinity and compaction effects on soil water evaporation and water and solute distributions. Soil Sci. Soc. Am. J. 63: 752-758. https://doi.org/10.2136/sssaj1999.634752x
- Munns R. 2005. Genes and salt tolerance: bringing them together. New Phytol. 167: 645-663. https://doi.org/10.1111/j.1469-8137.2005.01487.x
- Flowers TJ, Colmer TD. 2015. Plant salt tolerance: adaptations in halophytes. Ann. Bot. 115: 327-331. https://doi.org/10.1093/aob/mcu267
- Parida AK, Das AB. 2005. Salt tolerance and salinity effects on plants: A review. Ecotoxicol. Environ. Saf. 60: 324-349. https://doi.org/10.1016/j.ecoenv.2004.06.010
- Qureshi AS, McCornick PG, Qadir M, Aslam M. 2008. Managing salinity and waterlogging in the Indus Basin of Pakistan. Agri. Water Manag. 95: 1-10. https://doi.org/10.1016/j.agwat.2007.09.014
- Khan MA. 2003. Halophytes of Pakistan: Distribution and Ecology. pp. 167-188. In H. Lieth and M. Moschenko. Cash Crop Halophytes: Recent Studies: 10 years after the Al-Ain meeting (Tasks for Vegetation Science, 38). Kluwer Academic Press, Netherlands.
- Ashraf MY, Naveed NH, Ashraf M, Akram NA. 2009. Salt-induced some biochemical changes in germinating seeds of three rice cultivars. Agrochimica 308-321.
- Ahmad I, Hussain M, Ahmad MSA, Ashraf MY, Ahmad R, Asghar M. 2009. Spatio-temporal variations in physiochemical attributes of Adiantum capillus veneris from soone valley of Salt Range (Pakistan). Pak. J. Bot. 40: 1387-1398.
- Bauder JW, Brock TA. 2001. Irrigation water quality, soil amendment and crop effects on sodium leaching. Arid Land Res. Manag. 15: 101-113. https://doi.org/10.1080/15324980151062724
- Olsen GJ, Woese CR, Overbeek RC. 1994. The winds of (evolutionary) change: breathing new life into microbiology. J. Bacteriol. 176: 1-6. https://doi.org/10.1128/jb.176.1.1-6.1994
- Pitman MG, Lauchi A. 2002. pp. 3-20. Global impact of salinity and agricultural ecosystems in Salinity: Environment - Plants - Molecules. eds A. Lauchi and U. Luttage (Amsterdam: Kluwer Academic Publishers).
- Podell S, Ugalde JA, Narasingarao P, Banfield JF, Heidelberg KB, Allen EE. 2013. Assembly-driven community genomics of a hypersaline microbial ecosystem. PLoS One 8: e61692. https://doi.org/10.1371/journal.pone.0061692
- Smith DL, Subramanian S, Lamont JR, Bywater-Ekegard M. 2015b. Signaling in the phytomicrobiome: breadth and potential. Front. Plant Sci. 6: 709. https://doi.org/10.3389/fpls.2015.00709
- Upadhyay SK, Singh DP. 2015. Effect of salt-tolerant plant growth promoting rhizobacteria on wheat plants and soil health in a saline environment. Plant Biol. 17: 288-293. https://doi.org/10.1111/plb.12173
- Ruppel S, Franken P, Witzel K. 2013. Properties of the halophyte microbiome and their implications for plant salt tolerance. Funct. Plant Biol. 40: 940-951. https://doi.org/10.1071/FP12355
- Khan MY, Zahir ZA, Asghar HN, Waraich EA. 2017. Preliminary investigations on selection of synergistic halotolerant plant growth promoting rhizobacteria for inducing salinity tolerance in wheat. Pak. J. Bot. 49: 1541-1551.
- Mukhtar S, Mirza MS, Awan HA, Maqbool A, Mehnaz S, Malik KA. 2016. Microbial diversity and metagenomic analysis of the rhizosphere of Para Grass (Urochloa mutica) growing under saline conditions. Pak. J. Bot. 48: 779-791.
- Rodriguez H, Fraga R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17: 319-339. https://doi.org/10.1016/S0734-9750(99)00014-2
- Gray EJ, Smith DL. 2005. Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol. Biochem. 37: 395-412. https://doi.org/10.1016/j.soilbio.2004.08.030
- Singh RP, Jha PN. 2016. Alleviation of salinity-induced damage on wheat plant by an ACC deaminase-producing halophilic bacterium Serratia sp SL-12 isolated from a salt lake. Symbiosis 69: 101-111. https://doi.org/10.1007/s13199-016-0387-x
- Lindow SE, Brandl MT. 2003. Microbiology of the phyllosphere. Appl. Environ. Microbiol. 69: 1875-1883. https://doi.org/10.1128/AEM.69.4.1875-1883.2003
- Bodenhausen N, Horton MW, Bergelson J. 2013. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS One 8: e56329. https://doi.org/10.1371/journal.pone.0056329
- Vokou D, Vareli K, Zarali E, Karamanoli K, Constantinidou HI, Monokrousos N, et al. 2012. Exploring biodiversity in the bacterial community of the Mediterranean phyllosphere and its relationship with airborne bacteria. Microb. Ecol. 64: 714-724. https://doi.org/10.1007/s00248-012-0053-7
- Mukhtar S, Ishaq A, Hassan S, Mehnaz S, Mirza MS, Malik KA. 2017. Comparison of microbial communities associated with halophyte (Salsola stocksii) and non-halophyte (Triticum aestivum) using culture-independent approaches. Pol. J. Microbiol. 66: 375-386. https://doi.org/10.5604/01.3001.0010.4875
- Gonzalez AJ, Larraburu EE, Llorente BE. 2015. Azospirillum brasilense increased salt tolerance of jojoba during in vitro rooting. Ind. Crop Prod. 76: 41-48. https://doi.org/10.1016/j.indcrop.2015.06.017
- Goswami D, Thakker JN, Dhandhukia PC. 2016. Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Cog. Food Agri. 2: 11275.
- Shi W, Takano T, Liu S. 2012. Isolation and characterization of novel bacterial taxa from extreme alkali-saline soil. World J. Microbiol. Biotechnol. 28: 2147-2157. https://doi.org/10.1007/s11274-012-1020-7
- Mukhtar S, Mirza BS, Mehnaz S, Mirza MS, Mclean J, Kauser AM. 2018. Impact of soil salinity on the structure and composition of rhizosphere microbiome. World J. Microbiol. Biotechnol. 34: 136. https://doi.org/10.1007/s11274-018-2509-5
- Chaparro JM, Badri DV, Bakker MG, Sugiyama A, Manter DK, Vivanco JM. 2013. Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS One 8: e55731. https://doi.org/10.1371/journal.pone.0055731
- Browne P, Rice O, Miller SH, Burke J, Dowling DN, Morrissey JP, et al. 2009. Superior inorganic phosphate solubilization is linked to phylogeny within the Pseudomonas fluorescens complex. Appl. Soil. Ecol. 43: 131-138. https://doi.org/10.1016/j.apsoil.2009.06.010
- Dimkpa CO, Zeng J, McLean JE, Britt DW, Zhan J, Anderson AJ. 2012. Production of indole-3-acetic acid via the indole-3-acetamide pathway in the plant-beneficial bacterium Pseudomonas chlororaphis O6 is inhibited by ZnO nanoparticles but enhanced by CuO nanoparticles. Appl. Environ. Microbiol. 78: 1404-1410. https://doi.org/10.1128/AEM.07424-11
- Susilowati DN, Sudiana IM, Mubarik NR, Suwanto A. 2015. Species and functional diversity of rhizobacteria of rice plant in the coastal soils of Indonesia. Indones. J. Agric. Sci. 16: 39-51. https://doi.org/10.21082/ijas.v16n1.2015.p39-50
- Glick BR. 2012. Plant growth-promoting bacteria: mechanisms and applications. Hindawi Pub. Corpor. Sci. 2012: 23-30.
- Ahemad M, Kibret M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J. King. Saud. Univ. Sci. 26: 1-20. https://doi.org/10.1016/j.jksus.2013.05.001
- Kuan KB, Othman R, Rahim AK, Shamsuddin ZH. 2016. Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PLos One 11: e0152478. https://doi.org/10.1371/journal.pone.0152478
- Martinez-Hidalgo P, Hirsch AM. 2017. The nodule microbiome: N2-fixing rhizobia do not live alone. Phytobiomes 1: 70-82. https://doi.org/10.1094/PBIOMES-12-16-0019-RVW
- Jaisingh R, Kumar A, Dhiman M. 2016. Isolation and characterization of PGPR from rhizosphere of Sesame indicum L. Int. J. Adv. Res. Biol. Sci. 3: 238-244. https://doi.org/10.22192/ijarbs.2016.03.09.032
- Mukhtar S, Mirza MS, Mehnaz S, Mirza BS, Malik KA. 2018. Diversity of Bacillus-like bacterial community in the rhizospheric and nonrhizospheric soil of halophytes (Salsola stocksii and Atriplex amnicola) and characterization of osmoregulatory genes in halophilic Bacilli. Can. J. Microbiol. 64: 567-579. https://doi.org/10.1139/cjm-2017-0544
- Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V. 2015. Plant growth promoting rhizobacteria (pgpr): Current and future prospects for development of sustainable agriculture. J. Microbiol. Biochem. Technol. 7: 96-102.
- Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, et al. 2009. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc. Natl. Acad. Sci. USA 106: 16428-16433. https://doi.org/10.1073/pnas.0905240106
- Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G, Wassmann R, et al. 2012. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J. 6: 1378-1390. https://doi.org/10.1038/ismej.2011.192
- Daesik K, Sojung K, Sunghyun K, Jeongbin P, Jin-Soo K. 2016. Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex digenomic sequencing. Gen. Res. 26: 406-415. https://doi.org/10.1101/gr.199588.115
- Muller T, Ruppel S. 2014. Progress in cultivation-independent phyllosphere microbiology. FEMS Microbiol. Ecol. 87: 2-17. https://doi.org/10.1111/1574-6941.12198
- Laforest-Lapointe I, Messier C, Kembel SW. 2016. Host species identity, site and time drive temperate tree phyllosphere bacterial community structure. Microbiome 4: 27-32. https://doi.org/10.1186/s40168-016-0174-1
- Vorholt JA. 2012. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10: 828-840. https://doi.org/10.1038/nrmicro2910
- Bodenhausen N, Bortfeld-Miller M, Ackermann M, Vorholt JA. 2014. A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLoS Gen. 10: e1004283. https://doi.org/10.1371/journal.pgen.1004283
- Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59: 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
- DasSarma S, DasSarma P. 2015. Halophiles and their enzymes: negativity put to good use. Curr. Opin. Microbiol. 25: 120-126. https://doi.org/10.1016/j.mib.2015.05.009
- Bestvater T, Louis P, Galinski EA. 2008. Heterologous ectoine production in Escherichia coli: by-passing the metabolic bottleneck. Saline Systems 4: 12. https://doi.org/10.1186/1746-1448-4-12
- Ventosa A, Marquez MC, Sanchez-Porro C, de la Haba R. 2012. Taxonomy of halophilic archaea and bacteria. pp. 59-80. In Vreeland R.H. (ed) Advances in Understanding the Biology of Halophilic Microorganisms. Springer, Dordrecht.
- Boutaiba S, Hacene H, Bidle KA, Maupin-Furlow JA. 2011. Microbial diversity of the hypersaline Sidi Ameur and Himalatt salt lakes of the Algerian Sahara. J. Arid. Environ. 75: 909-916. https://doi.org/10.1016/j.jaridenv.2011.04.010
- Dang H, Zhu H, Wang J, Li T. 2009. Extracellular hydrolytic enzyme screening of culturable heterotrophic bacteria from deep-sea sediments of the Southern Okinawa Trough. World J. Microbiol. Biotechnol. 25: 71-79. https://doi.org/10.1007/s11274-008-9865-5
- DasSarma S, Arora P. 2001. A general review on Halophiles. In Encyclopedia of life sciences. Nature publishing group/www.els.net
- Spring S, Ludwig W, Marquez MC, Ventosa A, Schleifer KH. 1996. Halobacillus gen. nov., with descriptions of Halobacillus litoralis sp. nov. and Halobacillus trueperi sp. nov., and transfer of Sporosarcina halophila to Halobacillus halophilus comb. nov. Int. J. Syst. Bacteriol. 46: 492-496. https://doi.org/10.1099/00207713-46-2-492
- Sanchez-Porro C, Martin S, Mellado E, Ventosa A. 2003. Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J. Appl. Microbiol. 94: 295-300. https://doi.org/10.1046/j.1365-2672.2003.01834.x
- Anton J, Oren A, Benlloch S, Rodriguez-Valera F, Amann R, Rossello-Mora R. 2002. Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. Int. J. Syst. Evol. Microbiol. 52: 485-491. https://doi.org/10.1099/00207713-52-2-485
- Kim YG, Choi DH, Hyun S, Cho BC. 2007. Oceanobacillus profundus sp. nov., isolated from a deep-sea sediment core. Int. J. Syst. Evol. Microbiol. 57: 409-413. https://doi.org/10.1099/ijs.0.64375-0
- Yoon JH, Kang SJ, Oh TK. 2007. Reclassification of Marinococcus albus Hao et al. 1985 as Salimicrobium album gen. nov., comb. nov. and Bacillus halophilus Ventosa et al. 1990 as Salimicrobium halophilum comb. nov., and description of Salimicrobium luteum sp. nov. Int. J. Syst. Evol. Microbiol. 57: 2406-2411. https://doi.org/10.1099/ijs.0.65003-0
- Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M, Bonin P, et al. 1992. Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbondegrading marine bacterium. Int. J. Syst. Bacteriol. 42: 568-576. https://doi.org/10.1099/00207713-42-4-568
- Heyndrickx M, Lebbe L, Kersters K, De Vos P, Forsyth G, Logan NA. 1998. Virgibacillus: a new genus to accommodate Bacillus pantothenticus (Proom and Knight 1950). Emended description of Virgibacillus pantothenticus. Int. J. Syst. Evol. Microbiol. 48: 99-106.
- Sorokin DY, Tindall BJ. 2006. The status of the genus name Halovibrio Fendrich 1989 and the identity of the strains Pseudomonas halophila DSM 3050 and Halomonas variabilis DSM 3051. Request for an opinion. Int. J. Syst. Evol. Microbiol. 56: 487-489. https://doi.org/10.1099/ijs.0.63965-0
- Amoozegar MA, Schumann P, Hajighasemi M, Fatemi AZ, Karbalaei-Heidari HR. 2008. Salinivibrio proteolyticus sp. nov., a moderately halophilic and proteolytic species from a hypersaline lake in Iran. Int. J. Syst. Evol. Microbiol. 58: 1159-1163. https://doi.org/10.1099/ijs.0.65423-0
- Biswas J, Paul AK. 2013. Production of extracellular enzymes by halophilic bacteria isolated from solar salterns. Int. J. Appl. Biol. Pharma. Technol. 4: 30-36.
- Koh HW, Song HS, Song U, Yim KJ, Roh SW, Park SJ. 2015. Halolamina sediminis sp. nov., an extremely halophilic archaeon isolated from solar salt. Int. J. Syst. Evol. Microbiol. 65: 2479-2484. https://doi.org/10.1099/ijs.0.000287
- Xin H, Itoh T, Zhou P, Suzuki K, Kamekura M, Nakase T. 2000. Natrinema versiforme sp. nov., an extremely halophilic archaeon from Aibi salt lake, Xinjiang, China. Int. J. Syst. Evol. Microbiol. 50: 1297-1303. https://doi.org/10.1099/00207713-50-3-1297
- Xue Y, Fan H, Ventosa A, Grant WD, Jones BE, Cowan DA, et al. 2005. Halalkalicoccus tibetensis gen. nov., sp. nov., representing a novel genus of haloalkaliphilic archaea. Int. J. Syst. Evol. Microbiol. 55: 2501-2505. https://doi.org/10.1099/ijs.0.63916-0
- Beneduzi A, Ambrosini A, Passaglia LMP. 2012. Plant growth promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet. Mol. Biol. 35: 1044-1051. https://doi.org/10.1590/S1415-47572012000600020
- Mehnaz S, Baig DN, Lazarovits G. 2010. Genetic and phenotypic diversity of plant growth promoting rhizobacteria isolated from sugarcane plants growing in Pakistan. J. Microbiol. Biotechnol. 20: 1614-1623. https://doi.org/10.4014/jmb.1005.05014
- Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA. 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2: 587. https://doi.org/10.1186/2193-1801-2-587
- Janssen J, Weyens N, Croes S, Beckers B, Meiresonne L, Van Peteghem P, et al. 2015. Phytoremediation of metal contaminated soil using willow: exploiting plant-associated bacteria to improve biomass production and metal uptake. Int. J. Phytoremediation 17: 1123-1136. https://doi.org/10.1080/15226514.2015.1045129
- Weyens N, Beckers B, Schellingen K, Ceulemans R, Van der Lelie D, Newman L, et al. 2015. The potential of the Ni-resistant TCE degrading Pseudomonas putida W619-TCE to reduce phytotoxicity and improve phytoremediation efficiency of poplar cuttings on A Ni-TCE Co-contamination. Int. J. Phytoremediation 17: 40-48. https://doi.org/10.1080/15226514.2013.828016
- Dodd IC, Perez-Alfocea F. 2012. Microbial amelioration of crop salinity stress. J. Exp. Bot. 63: 3415-3428. https://doi.org/10.1093/jxb/ers033
- Desale P, Patel B, Singh S, Malhotra A, Nawani N. 2014. Plant growth promoting properties of Halobacillus sp. and Halomonas sp. in presence of salinity and heavy metals. J. Basic Microbiol. 54: 781-791. https://doi.org/10.1002/jobm.201200778
- Arkhipova TN, Prinsen E, Veselov SU, Martinenko EV, Melentiev AI, Kudoyarova GR. 2007. Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292: 305-315. https://doi.org/10.1007/s11104-007-9233-5
- Ilangumaran G, Smith DL. 2017. Plant growth promoting Rhizobacteria in Amelioration of salinity stress: A systems biology perspective. Front. Plant Sci. 8: 1768. https://doi.org/10.3389/fpls.2017.01768
- Shen X, Hu H, Peng H, Wang W, Zhang X. 2013. Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas. BMC Genomics 14: 271. https://doi.org/10.1186/1471-2164-14-271
- Delbarre-Ladrat C, Sinquin C, Lebellenger L, Zykwinska A, Colliec-Jouault S. 2014. Exopolysaccharides produced by marine bacteria and their applications as glycosaminoglycan-like molecules. Front. Chem. 2: 85.
- Llamas I, Amjres H, Mata JA, Quesada E, Bejar V. 2012. The potential biotechnological applications of the exopolysaccharide produced by the halophilic bacterium Halomonas almeriensis. Molecules 17: 7103-7120. https://doi.org/10.3390/molecules17067103
- Abd_Allah EF, Alqarawi AA, Hashem A, Radhakrishnan R, Asma A, Al-Huqail AA, et al. 2018. Endophytic bacterium Bacillus subtilis (BERA 71) improves salt tolerance in chickpea plants by regulating the plant defence mechanisms. J. Plant Interact. 13: 37-44. https://doi.org/10.1080/17429145.2017.1414321
- Oren A. 2015. Halophilic microbial communities and their environments. Curr. Opin. Microbiol. 33: 119-124.
- Kumar V, Saxena J, Tiwari SK. 2016. Description of a halocin-producing Haloferax larsenii ha1 isolated from pachpadra salt lake in rajasthan. Arch. Microbiol. 198: 181-192. https://doi.org/10.1007/s00203-015-1175-3
- Besse A, Peduzzi J, Rebuffat S, Carre-Mlouka A. 2015. Antmicrobial peptides and proteins in the face of extremes: lessons from archaeocins. Biochimie 118: 344-355. https://doi.org/10.1016/j.biochi.2015.06.004
- Meknaci R, Lopes P, Servy C, LeCaer JP, Andrieu JP, Hacene H, et al. 2014. Agar-supported cultivation of Halorubrum sp. SSR and production of halocin C8 on the scale-up prototype Platex. Extremophiles 18: 1049-1055. https://doi.org/10.1007/s00792-014-0682-5
- Subramanian S, Souleimanov A, Smith DL. 2016. Proteomic studies on the effects of lipo-chitooligosaccharide and thuricin 17 under unstressed and salt stressed conditions in Arabidopsis thaliana. Front. Plant Sci. 7: 1314.
- Vurukonda SS, Vardharajula S, Shrivastava M, SkZ A. 2016. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol. Res. 184: 13-24. https://doi.org/10.1016/j.micres.2015.12.003
- Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Pare PW. 2008. Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol. Plant Microbe Interact. 21: 737-744. https://doi.org/10.1094/MPMI-21-6-0737
- Zhuo C, Ma Z, Zhu L, Xiao X, Xie Y, Zhu J, et al. 2016. Rhizobacterial strain Bacillus megaterium BOFC15 induces cellular polyamine changes that improve plant growth and drought resistance. Int. J. Mol. Sci. 17: 976. https://doi.org/10.3390/ijms17060976
- Aslam R, Bostan N, Maria M, Safdar W. 2011. A critical review on halophytes: salt tolerant plants. J. Med. Plant Res. 5: 7108-7118.
- Apse MP, Blumwald E. 2002. Engineering salt tolerance in plants. Curr. Opin. Biotechnol. 13: 146-150. https://doi.org/10.1016/S0958-1669(02)00298-7
-
Chen H, An R, Tang JH, Cui XH, Hao FS, Chen J, Wang XC. 2007. Over-expression of a vacuolar
$Na^+$ /$H^+$ antiporter gene improves salt tolerance in an upland rice. Mol. Breed. 19: 215-225. https://doi.org/10.1007/s11032-006-9048-8 - Nuccio ML, Russel BL, Nolte KD, Rathinasabapathi B, Gage DA, Hanson AD. 1998. The endogenous choline supply limits glycine betaine synthesis in transgenic tobacco expressing choline monooxygenase. Plant J. 16: 487-498. https://doi.org/10.1046/j.1365-313x.1998.00316.x
- Flowers TJ, Colmer TD. 2015. Plant salt tolerance: adaptations in halophytes. Ann. Bot. 115: 327-331. https://doi.org/10.1093/aob/mcu267
- Maurel P. 1997. Aquaporins and water permeability of plant membranes. Ann. Rev. Plant Physiol. Plant Mol. Biol. 48: 399-429. https://doi.org/10.1146/annurev.arplant.48.1.399
- Dou DL, Zhou JM. 2005. Phytopathogen effectors subverting host immunity: different foes, similar battleground. Cell Host Microbe 12: 484-495. https://doi.org/10.1016/j.chom.2012.09.003
- Bittel P, Robatzek S. 2007. Microbe-associated molecular patterns (MAMPs) probe plant immunity. Curr. Opin. Plant. Biol. 10: 335-341. https://doi.org/10.1016/j.pbi.2007.04.021
- Bari R, Jones J. 2009. Role of plant hormones in plant defence responses. Plant Mol. Biol. 69: 473-488. https://doi.org/10.1007/s11103-008-9435-0
- Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, et al. 2002. A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417: 959-962. https://doi.org/10.1038/nature00841
- Akiyama K, Hayashi H. 2006. Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots. Ann. Bot. 97: 925-931. https://doi.org/10.1093/aob/mcl063
- Hassan S, Mathesius U. 2012. The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions. J. Exp. Bot. 63: 3429-3444. https://doi.org/10.1093/jxb/err430
- Bednarek P, Osbourn A. 2009. Plant-microbe interactions: chemical diversity in plant defense. Science 324: 746-748. https://doi.org/10.1126/science.1171661
- Bressan M, Roncato MA, Bellvert F, Comte G, Haichar FEZ, Achouak W, et al. 2009. Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots. ISME J. 3: 1243-1257. https://doi.org/10.1038/ismej.2009.68
- Osbourn AE, Clarke BR, Lunness P, Scott PR, Daniels MJ. 1994. An oat species lacking avenacin is susceptible to infection by Gaeumannomyces-graminis vartritici. Physiol. Mol. Plant. Pathol. 45: 457-467. https://doi.org/10.1016/S0885-5765(05)80042-6
- Carter JP, Spink J, Cannon PF, Daniels MJ, Osbourn AE. 1999. Isolation, characterization, and avenacin sensitivity of a diverse collection of cereal root-colonizing fungi. Appl. Environ. Microbiol. 65: 3364-3372. https://doi.org/10.1128/AEM.65.8.3364-3372.1999
- Cotta SR, Dias ACF, Marriel IE, Gomes EA, van Elsas JD, Seldin L. 2013. Temporal dynamics of microbial communities in the rhizosphere of two genetically modified (GM) maize hybrids in tropical agrosystems. Antonie Van Leeuwenhoek 103: 589-601. https://doi.org/10.1007/s10482-012-9843-7
Cited by
- When Salt Meddles Between Plant, Soil, and Microorganisms vol.11, 2019, https://doi.org/10.3389/fpls.2020.553087
- Bacterial Communities in the Rhizosphere and Phyllosphere of Halophytes and Drought-Tolerant Plants in Mediterranean Ecosystems vol.8, pp.11, 2019, https://doi.org/10.3390/microorganisms8111708
- Genetic Background Behind the Amino Acid Profiles of Fermented Soybeans Produced by Four Bacillus spp. vol.31, pp.3, 2019, https://doi.org/10.4014/jmb.2012.12051
- 메주 유래 Enterococcus faecium 균주의 기능적 특성 및 안전성 vol.49, pp.2, 2019, https://doi.org/10.48022/mbl.2012.12004
- Effects of Abiotic Stress on Soil Microbiome vol.22, pp.16, 2021, https://doi.org/10.3390/ijms22169036
- Variation in Sodic Soil Bacterial Communities Associated with Different Alkali Vegetation Types vol.9, pp.8, 2019, https://doi.org/10.3390/microorganisms9081673
- Antimicrobial activity of bacteria associated with the rhizosphere and phyllosphere of Avena fatua and Brachiaria reptans vol.28, pp.48, 2019, https://doi.org/10.1007/s11356-021-15436-7