References
- Kuroda M, Ohta T, Uchiyama I, Baba T, Yuzawa H, Kobayashi I, et al. 2001. Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357: 1225-1240. https://doi.org/10.1016/S0140-6736(00)04403-2
- Archer GL. 1998. Staphylococcus aureus: a well-armed pathogen. Clin. Infect. Dis. 26: 1179-1181. https://doi.org/10.1086/520289
- Woods C, Colice G. 2014. Methicillin-resistant Staphylococcus aureus pneumonia in adults. Expert. Rev. Respir. Med. 8: 641-651. https://doi.org/10.1586/17476348.2014.940323
- Harris SR, Cartwright EJ, Torok ME, Holden MT, Brown NM, Ogilvy-Stuart AL, et al. 2013. Whole-genome sequencing for analysis of an outbreak of meticillin-resistant Staphylococcus aureus: a descriptive study. Lancet Infect. Dis. 13: 130-136. https://doi.org/10.1016/S1473-3099(12)70268-2
- Humphreys H, Coleman DC. 2013. Whole genome sequencing and the prevention and control of meticillin-resistant Staphylococcus aureus infection. J. Hosp. Infect. 85: 85-86. https://doi.org/10.1016/j.jhin.2013.05.002
- Guerrero SA, Hecht HJ, Hofmann B, Biebl H, Singh M. 2001. Production of selenomethionine-labelled proteins using simplified culture conditions and generally applicable host/vector systems. Appl. Microbiol. Biotechnol. 56: 718-723. https://doi.org/10.1007/s002530100690
- Park S, Ha S, Kim Y. 2017. The protein crystallography beamlines at the Pohang light source II. Biodesign 5: 30-34.
- Otwinowski Z, Minor W. 1997. Processing of X-ray diffraction data collected in oscillation mode. Methods. Enzymol. 276: 307-326. https://doi.org/10.1016/S0076-6879(97)76066-X
- Emsley P, Cowtan K. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr. D, Biol. Crystallogr. 60: 2126-2132. https://doi.org/10.1107/S0907444904019158
- Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, et al. 2010. PHENIX: a comprehensive Pythonbased system for macromolecular structure solution. Acta Crystallogr. D, Biol. Crystallogr. 66: 213-221. https://doi.org/10.1107/S0907444909052925
- Holm L, Laakso LM. 2016. Dali server update. Nucleic Acids Res. 44: W351-355.
- Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al. 2017. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 45: D362-D368. https://doi.org/10.1093/nar/gkw937
- Tremblay LW, Dunaway-Mariano D, Allen KN. 2006. Structure and activity analyses of Escherichia coli K-12 NagD provide insight into the evolution of biochemical function in the haloalkanoic acid dehalogenase superfamily. Biochemistry 45: 1183-1193. https://doi.org/10.1021/bi051842j
- Condon SGF, Mahbuba DA, Armstrong CR, Diaz-Vazquez G, Craven SJ, LaPointe LM, et al. 2018. The FtsLB subcomplex of the bacterial divisome is a tetramer with an uninterrupted FtsL helix linking the transmembrane and periplasmic regions. J. Biol. Chem. 293: 1623-1641. https://doi.org/10.1074/jbc.RA117.000426
- Sievers J, Errington J. 2000. The Bacillus subtilis cell division protein FtsL localizes to sites of septation and interacts with DivIC. Mol. Microbiol. 36: 846-855. https://doi.org/10.1046/j.1365-2958.2000.01895.x
- Monteiro JM, Pereira AR, Reichmann NT, Saraiva BM, Fernandes PB, Veiga H, et al. 2018. Peptidoglycan synthesis drives an FtsZ-treadmilling-independent step of cytokinesis. Nature 554: 528-532. https://doi.org/10.1038/nature25506