References
- Moreno-Mendieta SA, Rocha-Zavaleta L, Rodriguez-Sanoja R. 2010. Adjuvants in tuberculosis vaccine development. FEMS Immmunol. Med. Microbiol. 58: 75-84. https://doi.org/10.1111/j.1574-695X.2009.00629.x
- Andersen P, Doherty M. 2005. The success and failure of BCG-implications for a novel tuberculosis vaccine. Nat. Rev. Microbiol. 3: 656-662. https://doi.org/10.1038/nrmicro1211
- Nunes-Alves C, Booty MG, Carpenter SM, Jayaraman P, Rothchild AC, Behar SM. 2014. In search of a new paradigm for protective immunity to TB. Nat. Rev. Microbiol. 12: 289-299. https://doi.org/10.1038/nrmicro3230
- Ottenhoff TH, Kaufmann SH. 2012. Vaccines against tuberculosis: where are we and where do we need to go? PLoS Path. 8: e1002607. https://doi.org/10.1371/journal.ppat.1002607
- Fehres CM, Unger WWJ, Garcia-Vallejo JJ, van Kooyk Y. 2014. Understanding the biology of antigen cross-presentation for the design of vaccines against cancer. Front. Immunol. 5: 149. https://doi.org/10.3389/fimmu.2014.00149
- Kasturi SP, Pulendran B. 2008. Cross-presentation: avoiding trafficking chaos? Nat. Immunol. 9: 461-463. https://doi.org/10.1038/ni0508-461
- Joshi VB, Geary SM, Salem AK. 2013. Biodegradable particles as vaccine delivery systems: size matters. AAPS J. 15: 85-94. https://doi.org/10.1208/s12248-012-9418-6
- Smith DM, Simon JK, Baker JR, Jr. 2013. Applications of nanotechnology for immunology. Nat. Rev. Immunol. 13: 592-605. https://doi.org/10.1038/nri3488
- Gregory AE, Titball R, Williamson D. 2013. Vaccine delivery using nanoparticles. Front. Cell. Infect. Microbiol. 3: 13.
- Couvreur PV, C. 2006. Nanotechnology: Intelligent design to treat complex disease. Pharm. Res. 23: 1417-1450. https://doi.org/10.1007/s11095-006-0284-8
- Demento SL, Cui W, Criscione JM, Stern E, Tulipan J, Kaech SM, et al. 2012. Role of sustained antigen release from nanoparticle vaccines in shaping the T cell memory phenotype. Biomaterials 33: 4957-4964. https://doi.org/10.1016/j.biomaterials.2012.03.041
- van Dissel JT, Arend SM, Prins C, Bang P, Tingskov PN, Lingnau K, et al. 2010. Ag85B-ESAT-6 adjuvanted with IC31 promotes strong and long-lived Mycobacterium tuberculosis specific T cell responses in naive human volunteers. Vaccine 28: 3571-3581. https://doi.org/10.1016/j.vaccine.2010.02.094
- Leleux J, Roy K. 2013. Micro and nanoparticle-based delivery systems for vaccine immunotherapy: an immunological and materials perspective. Adv. Healthc Mater. 2: 72-94. https://doi.org/10.1002/adhm.201200268
- Shen H, Ackerman AL, Cody V, Giodini A, Hinson ER, Cresswell P, et al. 2006. Enhanced and prolonged crosspresentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology 117: 78-88. https://doi.org/10.1111/j.1365-2567.2005.02268.x
- Hirosue S, Kourtis IC, van der Vlies AJ, Hubbell JA, Swartz MA. 2010. Antigen delivery to dendritic cells by poly(propylene sulfide) nanoparticles with disulfide conjugated peptides: Cross-presentation and T cell activation. Vaccine 28: 7897-7906. https://doi.org/10.1016/j.vaccine.2010.09.077
- Khademi F, Derakhshan M, Yousefi-Avarvand A, Tafaghodi M. 2018. Potential of polymeric particles as future vaccine delivery systems/adjuvants for parenteral and non-parenteral immunization against tuberculosis: A systematic review. Iran J. Basic Med. Sci. 21: 116-123.
- Arayachukeat S, Palaga T, Wanichwecharungruang SP. 2012. Clusters of carbon nanospheres derived from graphene oxide. ACS Appl. Mat. Inter. 4: 6808-6815. https://doi.org/10.1021/am3019959
- Arayachukiat S, Seemork J, Pan-In P, Amornwachirabodee K, Sangphech N, Sansureerungsikul T, et al. 2015. Bringing macromolecules into cells and evading endosomes by oxidized carbon nanoparticles. Nano Lett. 15: 3370-3376. https://doi.org/10.1021/acs.nanolett.5b00696
- Mata-Haro V, Cekic C, Martin M, Chilton PM, Casella CR, Mitchell TC. 2007. The vaccine adjuvant monophosphoryl lipid a as a TRIF-biased agonist of TLR4. Science 316: 1628-1632. https://doi.org/10.1126/science.1138963
-
Yuan Y, Crane DD, Simpson RM, Zhu Y, Hickey MJ, Sherman DR, et al. 1998. The 16-kDa
${\alpha}$ -crystallin (Acr) protein of Mycobacterium tuberculosis is required for growth in macrophages. Proc. Natl. Acad. Sci. USA 95: 9578-9583. https://doi.org/10.1073/pnas.95.16.9578 - Belisle JT, Vissa VD, Sievert T, Takayama K, Brennan PJ, Besra GS. 1997. Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis. Science 276: 1420-1422. https://doi.org/10.1126/science.276.5317.1420
- Boonyatecha N, Sangphech N, Wongchana W, Kueanjinda P, Palaga T. 2012. Involvement of notch signaling pathway in regulating IL-12 expression via c-Rel in activated macrophages. Mol. Immunol. 51: 255-262. https://doi.org/10.1016/j.molimm.2012.03.017
- Nguyen TNY, Padungros P, Wongsrisupphakul P, Sa-Ard-Iam N, Mahanonda R, Matangkasombut O, et al. 2018. Cell wall mannan of Candida krusei mediates dendritic cell apoptosis and orchestrates Th17 polarization via TLR-2/MyD88-dependent pathway. Sci. Rep. 8: 17123. https://doi.org/10.1038/s41598-018-35101-3
- Fletcher HA, Schrager L. 2016. TB vaccine development and the End TB Strategy: importance and current status. Trans. R. Soc. Trop. Med. Hyg. 110: 212-218. https://doi.org/10.1093/trstmh/trw016
- Grode L, Seiler P, Baumann S, Hess J, Brinkmann V, Eddine AN, et al. 2005. Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette-Guerin mutants that secrete listeriolysin. J. Clin. Invest. 115: 2472-2479. https://doi.org/10.1172/JCI24617
- Hoft DF, Blazevic A, Abate G, Hanekom WA, Kaplan G, Soler JH, et al. 2008. A new recombinant BCG vaccine safely induces significantly enhanced TB-specific immunity in human volunteers. J. Infect. Dis. 198: 1491-1501. https://doi.org/10.1086/592450
- Nieuwenhuizen NE, Kaufmann SHE. 2018. Next-generation vaccines based on Bacille Calmette-Guerin. Front Immunol. 9: 121. https://doi.org/10.3389/fimmu.2018.00121
- Winau F, Weber S, Sad S, de Diego J, Hoops SL, Breiden B, et al. 2006. Apoptotic vesicles crossprime CD8 T cells and protect against tuberculosis. Immunity 24: 105-117. https://doi.org/10.1016/j.immuni.2005.12.001
- Desel C, Dorhoi A, Bandermann S, Grode L, Eisele B, Kaufmann SH. 2011. Recombinant BCG Delta ureC hly+ induces superior protection over parental BCG by stimulating a balanced combination of type 1 and type 17 cytokine responses. J. Infect. Dis. 204: 1573-1584. https://doi.org/10.1093/infdis/jir592
- Casella CR, Mitchell TC. 2008. Putting endotoxin to work for us: monophosphoryl lipid A as a safe and effective vaccine adjuvant. Cell Mol. Life Sci. 65: 3231-3240. https://doi.org/10.1007/s00018-008-8228-6
- Awasthi S. 2014. Toll-Like receptor-4 modulation for cancer immunotherapy. Front Immunol. 5: 328. https://doi.org/10.3389/fimmu.2014.00328
- Neeland MR, Shi W, Collignon C, Taubenheim N, Meeusen ENT, Didierlaurent AM, et al. 2016. The Lymphatic immune response induced by the adjuvant AS01: a comparison of intramuscular and subcutaneous immunization routes. J. Immunol. 197: 2704. https://doi.org/10.4049/jimmunol.1600817
- Leleux J, Roy K. 2013. Micro and nanoparticle-based delivery systems for vaccine immunotherapy: an immunological and materials perspective. Adv. Healthc. Mater. 2: 72-94. https://doi.org/10.1002/adhm.201200268
- Carletti D, Morais da Fonseca D, Gembre AF, Masson AP, Weijenborg Campos L, Leite LCC, et al. 2013. A single dose of a DNA vaccine encoding apa coencapsulated with 6,6'-trehalose dimycolate in microspheres confers long-term protection against tuberculosis in Mycobacterium bovis BCG-primed mice. Clin. Vaccine immunol. 20: 1162-1169. https://doi.org/10.1128/CVI.00148-13
- Ha S-J, Park S-H, Kim H-J, Kim S-C, Kang H-J, Lee E-G, et al. 2006. Enhanced immunogenicity and protective efficacy with the use of interleukin-12-encapsulated microspheres plus AS01B in tuberculosis subunit vaccination. Infect. Immun. 74: 4954-4959. https://doi.org/10.1128/IAI.01781-05
- Crotty S. 2014. T follicular helper cell differentiation, function, and roles in disease. Immunity 41: 529-542. https://doi.org/10.1016/j.immuni.2014.10.004
- Olsen AW, Williams A, Okkels LM, Hatch G, Andersen P. 2004. Protective effect of a tuberculosis subunit vaccine based on a fusion of Antigen 85B and ESAT-6 in the aerosol guinea pig model. Infect. Immun. 72: 6148-6150. https://doi.org/10.1128/IAI.72.10.6148-6150.2004
- Doherty TM, Olsen AW, Weischenfeldt J, Huygen K, D'Souza S, Kondratieva TK, et al. 2004. Comparative analysis of different vaccine constructs expressing defined antigens from Mycobacterium tuberculosis. J. Infect. Dis. 190: 2146-2153. https://doi.org/10.1086/425931
- Niu H, Peng J, Bai C, Liu X, Hu L, Luo Y, et al. 2015. Multistage tuberculosis subunit vaccine candidate LT69 provides high protection against Mycobacterium tuberculosis infection in mice. PLoS One 10: e0130641. https://doi.org/10.1371/journal.pone.0130641
- Aagaard C, Hoang T, Dietrich J, Cardona P-J, Izzo A, Dolganov G, et al. 2011. A multistage tuberculosis vaccine that confers efficient protection before and after exposure. Nat. Med. 17: 189-194. https://doi.org/10.1038/nm.2285