DOI QR코드

DOI QR Code

Discarded Egg Yolk as an Alternate Source of Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate)

  • Hong, Yun-Gi (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Moon, Yu-Mi (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Hong, Ju-Won (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Choi, Tae-Rim (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Jung, Hye-Rim (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Yang, Soo-Yeon (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Jang, Dae-Won (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Park, Ye-Rim (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Brigham, Christopher J. (Department of Interdisciplinary Engineering, Wentworth Institute of Technology) ;
  • Kim, Jae-Seok (Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine) ;
  • Lee, Yoo-Kyung (Division of Life Sciences, Korea Polar Research Institute) ;
  • Yang, Yung-Hun (Department of Biological Engineering, College of Engineering, Konkuk University)
  • Received : 2018.11.19
  • Accepted : 2019.01.08
  • Published : 2019.03.28

Abstract

Many poultry eggs are discarded worldwide because of infection (i.e., avian flu) or presence of high levels of pesticides. The possibility of adopting egg yolk as a source material to produce polyhydroxyalkanoate (PHA) biopolymer was examined in this study. Cupriavidus necator Re2133/pCB81 was used for the production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) or poly(3HHx), a polymer that would normally require long-chain fatty acids as carbon feedstocks for the incorporation of 3HHx monomers. The optimal medium contained 5% egg yolk oil and ammonium nitrate as a nitrogen source, with a carbon/nitrogen (C/N) ratio of 20. Time course monitoring using the optimized medium was conducted for 5 days. Biomass production was 13.1 g/l, with 43.7% co-polymer content. Comparison with other studies using plant oils and the current study using egg yolk oil revealed similar polymer yields. Thus, discarded egg yolks could be a potential source of PHA.

Keywords

References

  1. Sparagano O, George D, Harrington D, Giangaspero A. 2014. Significance and control of the poultry red mite, Dermanyssus gallinae. Annu. Rev. Entomol. 59: 447-466. https://doi.org/10.1146/annurev-ento-011613-162101
  2. Kim HK, Lee SJ, Hwang B-Y, Yoon JU, Kim G-H. 2018. Acaricidal and repellent effects of Cnidium officinale-derived material against Dermanyssus gallinae (Acari: Dermanyssidae). Exp. Appl. Acarol. 74: 404-413.
  3. Hu R, Huang X, Huang J, Li Y, Zhang C, Yin Y, et al. 2015. Long-and short-term health effects of pesticide exposure: a cohort study from China. PLoS One 10: e0128766. https://doi.org/10.1371/journal.pone.0128766
  4. Surai PF, Papazyan TT, Sparks NH, Speake BK. 2008. Simultaneous Enrichment of Eggs with PUFAs and Antioxidants, pp. 139-153. Wild-Type Food in Health Promotion and Disease Prevention, Ed. Springer,
  5. Palacios LE, Wang T. 2005. Extraction of egg-yolk lecithin. J. Am. Oil Chem. Soc. 82: 565-569. https://doi.org/10.1007/s11746-005-1110-5
  6. Tokarska B, Clandinin MT. 1985. Extraction of egg yolk oil of reduced cholesterol content. J. Inst. Can. 18: 256-258.
  7. Goodrow EF, Wilson TA, Houde SC, Vishwanathan R, Scollin PA, Handelman G, et al. 2006. Consumption of one egg per day increases serum lutein and zeaxanthin concentrations in older adults without altering serum lipid and lipoprotein cholesterol concentrations. J. Nutr. 136: 2519-2524. https://doi.org/10.1093/jn/136.10.2519
  8. Bhatia SK, Yoon J-J, Kim H-J, Hong JW, Hong YG, Song H-S, et al. 2018. Engineering of artificial microbial consortia of Ralstonia eutropha and Bacillus subtilis for poly (3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production from sugarcane sugar without precursor feeding. Bioresour. Technol. 257: 92-101. https://doi.org/10.1016/j.biortech.2018.02.056
  9. Lee SY, Wong HH, Choi Ji, Lee SH, Lee SC, Han CS. 2000. Production of medium-chain-length polyhydroxyalkanoates by high-cell-density cultivation of Pseudomonas putida under phosphorus limitation. Biotechnol. Bioeng. 68: 466-470. https://doi.org/10.1002/(SICI)1097-0290(20000520)68:4<466::AID-BIT12>3.0.CO;2-T
  10. Wang F, Lee SY. 1998. High cell density culutre of metabolically engineered Escherichia coli for the production of poly (3-hydroxybutyrate) in a defined medium. Biotechnol. Bioeng. 58: 325-328. https://doi.org/10.1002/(SICI)1097-0290(19980420)58:2/3<325::AID-BIT33>3.0.CO;2-8
  11. Jo S-J, Matsumoto KI, Leong CR, Ooi T, Taguchi S. 2007. Improvement of poly (3-hydroxybutyrate)[P (3HB)] production in Corynebacterium glutamicum by codon optimization, point mutation and gene dosage of P (3HB) biosynthetic genes. J. Biosci. Bioeng. 104: 457-463. https://doi.org/10.1263/jbb.104.457
  12. Steinbuchel A, Valentin HE. 1995. Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol. Lett. 128: 219-228. https://doi.org/10.1111/j.1574-6968.1995.tb07528.x
  13. Ciesielski S, Możejko J, Pisutpaisal N. 2015. Plant oils as promising substrates for polyhydroxyalkanoates production. J. Clean Prod. 106: 408-421. https://doi.org/10.1016/j.jclepro.2014.09.040
  14. Guo-Qiang C, Jun X, Qiong W, Zengming Z, Kwok-Ping H. 2001. Synthesis of copolyesters consisting of medium-chainlength ${\beta}$-hydroxyalkanoates by Pseudomonas stutzeri 1317. React. Funct. Polym. 48: 107-112. https://doi.org/10.1016/S1381-5148(01)00042-6
  15. Matsusaki H, Abe H, Doi Y. 2000. Biosynthesis and properties of poly (3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant strains of Pseudomonas sp. 61-3. Biomacromolecules 1: 17-22. https://doi.org/10.1021/bm9900040
  16. Bhatia SK, Bhatia RK, Yang Y-H. 2016. Biosynthesis of pol yesters a nd polyamide b uil ding b l ocks u sing m icrobial fermentation and biotransformation. Rev. Environ. Sci. Biotechnol. 15: 639-663. https://doi.org/10.1007/s11157-016-9415-9
  17. Riedel SL, Bader J, Brigham CJ, Budde CF, Yusof ZAM, Rha C, et al. 2012. Production of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) by Ralstonia eutropha in high cell density palm oil fermentations. Biotechnol. Bioeng. 109: 74-83. https://doi.org/10.1002/bit.23283
  18. Jeon J-M, Brigham CJ, Kim Y-H, Kim H-J, Yi D-H, Kim H, et al. 2014. Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)(P (HB-co-HHx)) from butyrate using engineered Ralstonia eutropha. Appl. Microbiol. Biotechnol. 98: 5461-5469. https://doi.org/10.1007/s00253-014-5617-7
  19. Sudesh K, Abe H, Doi Y. 2000. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog. Polym. Sci. 25: 1503-1555. https://doi.org/10.1016/S0079-6700(00)00035-6
  20. Virov P. 2013. Polyhydroxyalkanoates: biodegradable polymers and plastics from renewable resources. Mater. Technol. 47: 5-12.
  21. Jeon J-M, Kim H-J, Bhatia SK, Sung C, Seo H-M, Kim J-H, et al. 2017. Application of acetyl-CoA acetyltransferase (AtoAD) in Escherichia coli to increase 3-hydroxyvalerate fraction in poly (3-hydroxybutyrate-co-3-hydroxyvalerate). Bioprocess Biosyst. Eng. 40: 781-789. https://doi.org/10.1007/s00449-017-1743-9
  22. Bhatia SK, Kim J-H, Kim M-S, Kim J, Hong JW, Hong YG, et al. 2018. Production of (3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymer from coffee waste oil using engineered Ralstonia eutropha. Bioprocess Biosyst. Eng. 41: 229-235. https://doi.org/10.1007/s00449-017-1861-4
  23. Kumar P, Mehariya S, Ray S, Mishra A, Kalia VC. 2015. Biodiesel industry waste: a potential source of bioenergy and biopolymers. Indian J. Microbiol. 55: 1-7. https://doi.org/10.1007/s12088-014-0509-1
  24. Vastano M, Casillo A, Corsaro MM, Sannia G, Pezzella C. 2015. Production of medium chain length polyhydroxyalkanoates from waste oils by recombinant Escherichia coli. Eng. Life Sci. 15: 700-709. https://doi.org/10.1002/elsc.201500022
  25. Muhr A, Rechberger EM, Salerno A, Reiterer A, Malli K, Strohmeier K, et al. 2013. Novel description of mcl-PHA biosynthesis by Pseudomonas chlororaphis from animalderived waste. J. Biotechnol. 165: 45-51. https://doi.org/10.1016/j.jbiotec.2013.02.003
  26. Titz M, Kettl K-H, Shahzad K, Koller M, Schnitzer H, Narodoslawsky M. 2012. Process optimization for efficient biomediated PHA production from animal-based waste streams. Clean Technol. Environ. Policy 14: 495-503. https://doi.org/10.1007/s10098-012-0464-7
  27. Budde CF, Riedel SL, Hubner F, Risch S, Popovic MK, Rha C, et al. 2011. Growth and polyhydroxybutyrate production by Ralstonia eutropha in emulsified plant oil medium. Appl. Microbiol. Biotechnol. 89: 1611-1619. https://doi.org/10.1007/s00253-011-3102-0
  28. Koller M, Bona R, Braunegg G, Hermann C, Horvat P, Kroutil M, et al. 2005. Production of polyhydroxyalkanoates from agricultural waste and surplus materials. Biomacromolecules 6: 561-565. https://doi.org/10.1021/bm049478b
  29. Obruca S, Benesova P, Kucera D, Petrik S, Marova I. 2015. Biotechnological conversion of spent coffee grounds into polyhydroxyalkanoates and carotenoids. N. Biotechnol. 32: 569-574. https://doi.org/10.1016/j.nbt.2015.02.008
  30. Kahar P, Tsuge T, Taguchi K, Doi Y. 2004. High yield production of polyhydroxyalkanoates from soybean oil by Ralstonia eutropha and its recombinant strain. Polym. Degrad. Stab. 83: 79-86. https://doi.org/10.1016/S0141-3910(03)00227-1
  31. Sun Z, Ramsay JA, Guay M, Ramsay BA. 2007. Fermentation process development for the production of medium-chainlength poly-3-hyroxyalkanoates. Appl. Microbiol. Biotechnol. 75: 475-485. https://doi.org/10.1007/s00253-007-0857-4
  32. Budde CF, Mahan AE, Lu J, Rha C, Sinskey AJ. 2010. Roles of multiple acetoacetyl coenzyme A reductases in polyhydroxybutyrate biosynthesis in Ralstonia eutropha H16. J. Bacteriol. 192: 5319-5328. https://doi.org/10.1128/JB.00207-10
  33. Budde CF, Riedel SL, Willis LB, Rha C, Sinskey AJ. 2011. Production of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil by engineered Ralstonia eutropha strains. Appl. Environ. Microbiol. 77: 2847-2854. https://doi.org/10.1128/AEM.02429-10
  34. Kovalcuks A, Duma M. 2014. Solvent extraction of egg oil from liquid egg yolk, pp.253-256. In 9th Baltic Conference on Food Science and Technology "Food for Consumer Well-Being" FOODBALT 2014, Jelgava, Latvia. Latvia University of Agriculture, Faculty of Food Technology
  35. Bhatia SK, Shim Y-H, Jeon J-M, Brigham CJ, Kim Y-H, Kim H-J, et al. 2015. Starch based polyhydroxybutyrate production in engineered Escherichia coli. Bioprocess Biosyst. Eng. 38: 1479-1484. https://doi.org/10.1007/s00449-015-1390-y
  36. Braunegg G, Sonnleitner B, Lafferty R. 1978. A rapid gas chromatographic method for the determination of poly-${\beta}$-hydroxybutyric acid in microbial biomass. Appl. Microbiol Biotechnol. 6: 29-37. https://doi.org/10.1007/BF00500854
  37. Yang Y-H, Jeon J-M, Kim J-H, Seo H-M, Rha C, Sinskey AJ, et al. 2015. Application of a non-halogenated solvent, methyl ethyl ketone (MEK) for recovery of poly (3-hydroxybutyrateco-3-hydroxyvalerate)[P (HB-co-HV)] from bacterial cells. Biotechnol. Bioproc. Eng. 20: 291-297. https://doi.org/10.1007/s12257-014-0546-y
  38. Gouda MK, Swellam AE, Omar SH. 2001. Production of PHB by a Bacillus megaterium strain using sugarcane molasses and corn steep liquor as sole carbon and nitrogen sources. Microbiol. Res. 156: 201-207. https://doi.org/10.1078/0944-5013-00104
  39. Tripathi L, Wu L-P, Chen J, Chen G-Q. 2012. Synthesis of Diblock copolymer poly-3-hydroxybutyrate-block-poly-3-hydroxyhexanoate [PHB-b-PHHx] by a ${\beta}$-oxidation weakened Pseudomonas putida KT2442. Microb. Cell Fact. 11: 44. https://doi.org/10.1186/1475-2859-11-44
  40. Riedel SL, Jahns S, Koenig S, Bock MC, Brigham CJ, Bader J, et al. 2015. Polyhydroxyalkanoates production with Ralstonia eutropha from low quality waste animal fats. J. Biotechnol. 214: 119-127. https://doi.org/10.1016/j.jbiotec.2015.09.002
  41. Sommer D, Heffels-Redmann U, Kohler K, Lierz M, Kaleta E. 2016. Role of the poultry red mite (Dermanyssus gallinae) in the transmission of avian influenza A virus. Tierarztl. Prax. Ausg. G Grosstiere Nutztiere 44: 26-33. https://doi.org/10.15653/TPG-150413
  42. Maroni M, Fait A. 1993. Health effects in man from longterm exposure to pesticides. A review of the 1975-1991 literature. Toxicology 78: 1-180. https://doi.org/10.1016/0300-483X(93)90227-J
  43. Tabari MA, Youssefi MR, Benelli G. 2017. Eco-friendly control of the poultry red mite, Dermanyssus gallinae (Dermanyssidae), using the ${\alpha}$-thujone-rich essential oil of Artemisia sieberi (Asteraceae): toxic and repellent potential. Parasitol. Res. 116: 1545-1551. https://doi.org/10.1007/s00436-017-5431-0
  44. Authority EFS, Reich H, Triacchini GA. 2018. Occurrence of residues of fipronil and other acaricides in chicken eggs and poultry muscle/fat. EFSA J. 16: e05164.
  45. Polder A, Müller M, Brynildsrud O, De Boer J, Hamers T, Kamstra J, et al. 2016. Dioxins, PCBs, chlorinated pesticides and brominated flame retardants in free-range chicken eggs from peri-urban areas in Arusha, Tanzania: levels and implications for human health. Sci. Total Environ. 551: 656-667. https://doi.org/10.1016/j.scitotenv.2016.02.021
  46. Lu J, Brigham CJ, Rha C, Sinskey AJ. 2013. Characterization of an extracellular lipase and its chaperone from Ralstonia eutropha H16. Appl. Microbiol. Biotechnol. 97: 2443-2454. https://doi.org/10.1007/s00253-012-4115-z
  47. Obruca S, Petrik S, Benesova P, Svoboda Z, Eremka L, Marova I. 2014. Utilization of oil extracted from spent coffee grounds for sustainable production of polyhydroxyalkanoates. Appl. Microbiol. Biotechnol. 98: 5883-5890. https://doi.org/10.1007/s00253-014-5653-3
  48. Ahn DU, Lee SH, Singam H, Lee EJ, Kim JC. 2006. Sequential separation of main components from chicken egg yolk. Food Sci. Biotechnol. 15: 189.
  49. Froning G, Wehling R, Cuppett S, Pierce M, Niemann L, Siekman D. 1990. Extraction of cholesterol and other lipids from dried egg yolk using supercritical carbon dioxide. J. Food Sci. 55: 95-98. https://doi.org/10.1111/j.1365-2621.1990.tb06025.x
  50. Larsen J, Froning G. 1981. Extraction and processing of various components from egg yolk. Poult. Sci. 60: 160-167. https://doi.org/10.3382/ps.0600160
  51. Palacios LE, Wang T. 2005. Egg-yolk lipid fractionation and lecithin characterization. J. Am. Oil Chem. Soc. 82: 571-578. https://doi.org/10.1007/s11746-005-1111-4
  52. Warren M, Brown H, Davis D. 1988. Solvent extraction of lipid components from egg yolk solids. J. Am. Oil Chem. Soc. 65: 1136-1139. https://doi.org/10.1007/BF02660569
  53. Romanoff AL, Romanoff AJ. 1949. The avian egg. pp. 918. CAB Direct.
  54. Reichardt C, Welton T. 2011. Solvents and solvent effects in organic chemistry, pp. 79. Ed. John Wiley & Sons.
  55. Li L, Du W, Liu D, Wang L, Li Z. 2006. Lipase-catalyzed transesterification of rapeseed oils for biodiesel production with a novel organic solvent as the reaction medium. J. Mol. Catal. B: Enzym. 43: 58-62. https://doi.org/10.1016/j.molcatb.2006.06.012
  56. Nielsen PM, Brask J, Fjerbaek L. 2008. Enzymatic biodiesel production: technical and economical considerations. Eur. J. Lipid Sci. Technol. 110: 692-700. https://doi.org/10.1002/ejlt.200800064
  57. Watanabe Y, Shimada Y, Sugihara A, Tominaga Y. 2002. Conversion of degummed soybean oil to biodiesel fuel with immobilized Candida antarctica lipase. J. Mol. Catal. B: Enzym. 17: 151-155. https://doi.org/10.1016/S1381-1177(02)00022-X

Cited by

  1. Production of Low Molecular Weight P(3HB-co-3HV) by Butyrateacetoacetate CoA-transferase (cftAB) in Escherichia coli vol.25, pp.2, 2019, https://doi.org/10.1007/s12257-019-0366-1
  2. Tung Oil-Based Production of High 3-Hydroxyhexanoate-Containing Terpolymer Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate-co-3-Hydroxyhexanoate) Using Engineered Ralstonia eutropha vol.13, pp.7, 2019, https://doi.org/10.3390/polym13071084
  3. Improvement of polyhydroxybutyrate (PHB) plate-based screening method for PHB degrading bacteria using cell-grown amorphous PHB and recovered by sodium dodecyl sulfate (SDS) vol.177, 2021, https://doi.org/10.1016/j.ijbiomac.2021.02.098
  4. Screening of the strictly xylose-utilizing Bacillus sp. SM01 for polyhydroxybutyrate and its co-culture with Cupriavidus necator NCIMB 11599 for enhanced production of PHB vol.181, 2019, https://doi.org/10.1016/j.ijbiomac.2021.03.149
  5. Comparative Study of the Difference in Behavior of the Accessory Gene Regulator (Agr) in USA300 and USA400 Community-Associated Methicillin-Resistant Staphylococcus aureus (CA-MRSA) vol.31, pp.8, 2019, https://doi.org/10.4014/jmb.2104.04032
  6. Electrospinning nanofibers of microbial polyhydroxyalkanoates for applications in medical tissue engineering vol.59, pp.18, 2021, https://doi.org/10.1002/pol.20210418
  7. Isolation of Microbulbifer sp. SOL66 with High Polyhydroxyalkanoate-Degrading Activity from the Marine Environment vol.13, pp.23, 2019, https://doi.org/10.3390/polym13234257