DOI QR코드

DOI QR Code

Characterization of the Transglycosylation Reaction of 4-α-Glucanotransferase (MalQ) and Its Role in Glycogen Breakdown in Escherichia coli

  • Received : 2018.11.28
  • Accepted : 2019.01.19
  • Published : 2019.03.28

Abstract

We first confirmed the involvement of MalQ (4-${\alpha}$-glucanotransferase) in Escherichia coli glycogen breakdown by both in vitro and in vivo assays. In vivo tests of the knock-out mutant, ${\Delta}malQ$, showed that glycogen slowly decreased after the stationary phase compared to the wild-type strain, indicating the involvement of MalQ in glycogen degradation. In vitro assays incubated glycogen-mimic substrate, branched cyclodextrin (maltotetraosyl-${\beta}$-CD: G4-${\beta}$-CD) and glycogen phosphorylase (GlgP)-limit dextrin with a set of variable combinations of E. coli enzymes, including GlgX (debranching enzyme), MalP (maltodextrin phosphorylase), GlgP and MalQ. In the absence of GlgP, the reaction of MalP, GlgX and MalQ on substrates produced glucose-1-P (glc-1-P) 3-fold faster than without MalQ. The results revealed that MalQ led to disproportionate G4 released from GlgP-limit dextrin to another acceptor, G4, which is phosphorylated by MalP. In contrast, in the absence of MalP, the reaction of GlgX, GlgP and MalQ resulted in a 1.6-fold increased production of glc-1-P than without MalQ. The result indicated that the G4-branch chains of GlgP-limit dextrin are released by GlgX hydrolysis, and then MalQ transfers the resultant G4 either to another branch chain or another G4 that can immediately be phosphorylated into glc-1-P by GlgP. Thus, we propose a model of two possible MalQ-involved pathways in glycogen degradation. The operon structure of MalP-defecting enterobacteria strongly supports the involvement of MalQ and GlgP as alternative pathways in glycogen degradation.

Keywords

References

  1. Carlson GM, Dienel GA, Colbran RJ. 2018. Novel insight into brain glycogen metabolism. J. Biol. Chem. 293: 7078-7088
  2. Romeo T, Black J, Preiss J. 1990. Genetic regulation of glycogen biosynthesis in Escherichia coli: in vivo effects of the catabolite repression and stringent response systems in glg gene expression. Curr. Microbiol. 21: 131-137. https://doi.org/10.1007/BF02091831
  3. Boos W, Shuman H. 1998. Maltose/maltodextrin system of Escherichia coli: transport, metabolism and regulation. Microbiol. Mol. Biol Rev. 62: 204-229. https://doi.org/10.1128/MMBR.62.1.204-229.1998
  4. Ball SG, Morell MK. 2003. From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annu. Rev. Plant Biol. 54: 207-233. https://doi.org/10.1146/annurev.arplant.54.031902.134927
  5. Wilson WA, Roach PJ, Montero M, Fernandez EB, Munoz FJ, Eydallin G, et al. 2010. Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol. Rev. 34: 952-985 https://doi.org/10.1111/j.1574-6976.2010.00220.x
  6. Park KH. 2015. Roles of enzymes in glycogen metabolism and degradation in Escherichia coli. J. Appl. Glycosci. 62: 37-45. https://doi.org/10.5458/jag.jag.JAG-2015_005
  7. Jo HJ, Park SH, Jeong HG, Kim JW, Park JT. 2015. Vibrio vulnificus glycogen branching enzyme preferentially transfers very short chains: N1 domain determines the chain length transferred. FEBS Lett. 589: 1089-1094. https://doi.org/10.1016/j.febslet.2015.03.011
  8. Yoo SH, Lee BH, Moon YY, Spalding MH, Jane JL. 2014. Glycogen synthase isoforms in Synechocystis sp. PCC6803: identification of different roles to produce glycogen by targeted mutagenesis. PLoS One 9: e91524. https://doi.org/10.1371/journal.pone.0091524
  9. Chang DE, Smalley DJ, Tucker DL, Leatham, MP, Norris WE, Stevenson SJ, et al. 2004. Carbon nutrition of Escherichia coli in the mouse intestine. Proc. Natl. Acad. Sci. USA 101: 7427-7432. https://doi.org/10.1073/pnas.0307888101
  10. Bonafonte MA, Solano C, Sesma B, Alvarez M, Montuenga L, Garci-Ros D, et al. 2000. The relationship between glycogen synthesis, biofilm formation and virulence in Salmonela enteritidis. FEMS Microbiol. Lett. 191: 31-36. https://doi.org/10.1111/j.1574-6968.2000.tb09315.x
  11. Jones SA, Jorgensen M, Chowdhury FZ, Rodgers R, Hartline J, Leatham MP, et al. 2008. Glycogen and maltose utilization by Escherichia coli O157:H7 in the mouse intestine. Infect. Immun. 76: 2531-2540. https://doi.org/10.1128/IAI.00096-08
  12. Bourassa L, Camilli A. 2009. Glycogen contributes to the environmental persistence and transmission of Vibrio cholera. Mol. Microbiol. 72: 124-138. https://doi.org/10.1111/j.1365-2958.2009.06629.x
  13. Cenci U, Nitschle F, Steup M, Minassian BA, Colleoni C Ball SG. 2014. Transition from glycogen to starch metabolism in archaeplastida. Cell 19: 18.
  14. Park JT, Shim JH, Tran PL, Hong IH, Yong HU, Oktavina EF, et al. 2011. Role of maltose enzymes in glycogen synthesis by Escherichia coli. J. Bacteriol. 193: 2517-2526. https://doi.org/10.1128/JB.01238-10
  15. Song HN, Jung TY, Park JT, Park BC, Myung PK, Boos W, et al. 2010. Structural rationale for the short branched substrate specificity of the glycogen debranching enzyme GlgX. Proteins 78: 1847-1855. https://doi.org/10.1002/prot.22697
  16. Dauvillee D, Kinderf IS, Li Z, Hashemi BK, Samuel MS, Rampling L, et al. 2005. Role of the Escherichia coli glgX gene in glycogen metabolism. J. Bacteriol. 187: 1465-1473. https://doi.org/10.1128/JB.187.4.1465-1473.2005
  17. Hwang SM, Choi KH, Kim JU, Cha JH. 2013. Biochemical characterization of 4-${\alpha}$-glucanotransferase from Saccharophagus degradans 2-40 and its potential role in glycogen degradation. FEMS Microbiol. Lett. 344: 145-151. https://doi.org/10.1111/1574-6968.12167
  18. Almagro G, Viale AM, Montero M, Rahimpour M, Munoz FJ, Baroja-Fernandez E, et al. 2015. Comparative genomic and phylogenetic analyses of gammaproteobacterial glg genes traced the origin of the Escherichia coli glycogen glgBXCAP operon to the last common ancestor of the sister orders Enterobacteriales and Pasteurellales. PLoS One 10: e0115516. https://doi.org/10.1371/journal.pone.0115516
  19. Caspi R, Altman T, Billington R, Dreher K, Foerster H, Fulcher CA, et al. 2014. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic. Acids Res. 42: D459-D471. https://doi.org/10.1093/nar/gkt1103
  20. Schinzel R, Nidetzky B. 1999. Bacterial ${\alpha}$-glucan phosphorylases. FEMS Microbiol Lett. 171: 73-79. https://doi.org/10.1016/S0378-1097(98)00580-1
  21. Nguyen DHD, Park JT, Shim JH, Tran PL, Oktavina EF, Nguyen TLH, et al. 2014. Reaction kinetics of substrate transglycosylation catalyzed by TreX of Sulfolobus solfataricus and effects on glycogen breakdown. J. Bacteriol. 196: 1941-1949. https://doi.org/10.1128/JB.01442-13
  22. Park SH, Na YR, Kim JW, Kang SD, Park KH. 2018. Properties and applications of starch modifying enzymes for use in the baking industry. Food Sci. Biotechnol. 27: 299-312. https://doi.org/10.1007/s10068-017-0261-5
  23. Henrissat B, Deleury E, Coutinho PM. 2002. Glycogen metabolism loss: a common marker of parasitic behavior in bacteria? Trends Genet. 18: 437-440. https://doi.org/10.1016/S0168-9525(02)02734-8
  24. Shim JH, Park JT, Hong JS, Kim KW, Kim MJ, Auh JH et al. 2009. Role of maltogenic amylase and pullulanase in maltodextrin and glycogen metabolism of Bacillus subtilis 168. J. Bacteriol. 191: 4835-4844. https://doi.org/10.1128/JB.00176-09
  25. Yanez MA, Catalan V, Apraiz D, Figueras MJ, Martinez-Murcia AJ. 2003. Phylogenetic analysis of the genus Aeromonas based on gyrB gene sequences. Int. J. System Evol. Microbiol. 53: 875-883. https://doi.org/10.1099/ijs.0.02443-0
  26. Yoon YJ, Im KH, Koh YH, Kim SK, Kim JW. 2003. Genotyping of six pathogenic Vibrio species based on RFLP of 16S rDNAs for rapid identification. J. Microbiol. 41: 312-319.
  27. Lim MS, Lee MH, Lee JH, Ju HM, Park NY, Jeong HS, et al. 2005. Identification and characterization of Vibrio vulnificus malPQ operon. J. Microbiol. Biotechnol. 15: 616-625.
  28. Lawrence JG. 2002. Shared strategies in gene organization among prokaryotes and eukaryotes. Cell 110: 407-413. https://doi.org/10.1016/S0092-8674(02)00900-5
  29. Price MN, Huang KT, Arkin AP, Alm EJ. 2005. Operon formation is driven by co-regulation and not by horizontal gene transfer. Genome Res. 809: 15: 809-819. https://doi.org/10.1101/gr.3368805
  30. Price MN, Arkin AP, Alm EJ. 2006. The life-cycle of operons. PLoS Genet. 2: e96. https://doi.org/10.1371/journal.pgen.0020096
  31. Shelburne SA, Keith DB, Davenport MT, Beres SB, Carroll RK, Musser JM. 2009. Contribution of AmyA, an extracellular ${\alpha}$-glucan degrading enzyme, to group A streptococcal hostpathogen interaction. Mol. Microbiol. 74: 159-174. https://doi.org/10.1111/j.1365-2958.2009.06858.x
  32. Shelburn SA, Sumby P, Sitkiewicz I, Okorafor N, Granville C, Patel P et al. 2006. Maltodextrin utilization plays a key role in the ability of group A Streptococcus to colonize the oropharynx. Infect. Immun. 74: 4605-4614. https://doi.org/10.1128/IAI.00477-06
  33. McMeechan A, Lovell MA, Cogan TA, Marston KL, Humphrey TJ, Barrow PA. 2005. Glycogen production by different Salmonella enterica serotypes: contribution of functional glgC to virulence, intestinal colonization and environmental survival. Microbiology 151: 3969-3977. https://doi.org/10.1099/mic.0.28292-0
  34. Abbott DW, Higgins MA, Hyrnuik S, Pluvinage B, Bueren ALvan, Boraston AB. 2010. The molecular basis of glycogen breakdown and transport in Streptococcus pneumoniae. Mol. Microbiol. 77: 183-199. https://doi.org/10.1111/j.1365-2958.2010.07199.x
  35. Alteri CJ, Smith SN, Mobley LT. 2009. Fitness of Escherichia coli during urinary tract infection requires gluconeogenesis and the TCA cycle. PLoS Pathog. 5: e1000448. https://doi.org/10.1371/journal.ppat.1000448
  36. Lu C, Lei L, Peng B, Tang L, Ding H, Gong S, Li Z, et al. 2013. Chlamydia trachomatis GlgA is secreted into host cell cytoplasm. PLoS One 8: e68764. https://doi.org/10.1371/journal.pone.0068764

Cited by

  1. Properties of recombinant 4-α-glucanotransferase from Bifidobacterium longum subsp. longum JCM 1217 and its application vol.29, pp.5, 2019, https://doi.org/10.1007/s10068-019-00707-4
  2. Complete genome sequence of Arthrobacter sp. PAMC25564 and its comparative genome analysis for elucidating the role of CAZymes in cold adaptation vol.22, pp.1, 2019, https://doi.org/10.1186/s12864-021-07734-8