DOI QR코드

DOI QR Code

Preliminary Study on the Development of a Platform for the Selection of Optimal Beach Stabilization Measures against the Beach Erosion - Centering on the Yearly Sediment Budget of Mang-Bang Beach

해역별 최적 해빈 안정화 공법 선정 Platform 개발을 위한 기초연구-맹방해변 이송모드별 년 표사수지를 중심으로

  • Cho, Yong Jun (Department of Civil Engineering, University of Seoul) ;
  • Kim, In Ho (Department of Earth and Environmental Engineering, Kangwon National University)
  • 조용준 (서울시립대학교 토목공학과) ;
  • 김인호 (강원대학교 지구환경시스템공학과)
  • Received : 2018.12.08
  • Accepted : 2019.02.26
  • Published : 2019.02.28

Abstract

In the design process of counter measures against the beach erosion, information like the main sediment transport mode and yearly net amount of longshore and cross shore transport is of great engineering value. In this rationale, we numerically analyzed the yearly sediment budget of the Mang-Bang beach which is suffering from erosion problem. For the case of cross sediment transport, Bailard's model (1981) having its roots on the Bagnold's energy model (1963) is utilized. In doing so, longshore sediment transport rate is estimated based on the assumption that longshore transport rate is determined by the available wave energy influx toward the beach. Velocity moments required for the application of Bailard's model (1981) is deduced from numerical simulation of the nonlinear shoaling process over the Mang-Bang beach of the 71 wave conditions carefully chosen from the wave records. As a wave driver, we used the consistent frequency Boussinesq Eq. by Frelich and Guza (1984). Numerical results show that contrary to the Bailard's study (1981), Irribaren NO. has non negligible influence on the velocity moments. We also proceeds to numerically simulate the yearly sediment budget of Mang-Bang beach. Numerical results show that for ${\beta}=41.6^{\circ}$, the mean orientation of Mang-Bang beach, north-westwardly moving longshore sediment is prevailing over the south-eastwardly moving sediment, the yearly amount of which is simulated to reach its maxima at $125,000m^3/m$. And the null pint where north-westwardly moving longshore sediment is balanced by the south-eastwardly moving longshore sediment is located at ${\beta}=47^{\circ}$. For the case of cross shore sediment, the sediment is gradually moving toward the shore from the April to mid October, whereas these trends are reversed by sporadically occurring energetic wind waves at the end of October and March. We also complete the littoral drift rose of the Mang-Bang beach, which shows that even though the shore line is temporarily retreated, and as a result, the orientation of Mang-Bang beach is larger than the orientation of null pont, south-eastwardly moving longshore sediment is prevailing. In a case that the orientation of Mang-Bang beach is smaller than the orientation of null pont, north-westwardly moving longshore sediment is prevailing. And these trend imply that the Mang-Bang beach is stable one, which has the self restoring capability once exposed to erosion.

해빈 안정화를 위한 구조물 설계 시 주 표사이송 모드와 모드별 년 표사 이송량에 관한 정보는 상당한 공학적 가치를 지닌다. 이러한 시각에서 본고에서는 현재 상당한 침식이 진행되고 있는 맹방해변의 년 표사 이송량을 산출하였다. 횡단표사의 경우 Bagnold(1963)의 에너지 모형을 확장한 Bailard(1981)의 모형을 활용하였으며, 연안 표사량은 각 해안에서 가용한 파랑에너지 유입률에 의해 결과 되는 것으로 해석하였다. Bailard(1981)의 횡단표사모형 적용에 필요한 유속 적률은 먼저 맹방해변에서 관측된 파랑자료로부터 출현 가능한 총 71개의 파랑주기 복합사상을 선정하고, 선정된 복합사상을 대상으로 수행된 맹방해변에서의 비선형 천수과정 수치모의 결과로부터 산출하였다. 이 과정에서 파랑모형으로는 주파수 영역 Boussinesq Eq.(Frelich and Guza, 1984)을 활용하였으며, 모의결과 Bailard(1981)의 연구와는 달리 유속 적률과 Irribaren NO. 간에 존재하는 뚜렷한 상관관계를 확인할 수 있었다. 산출 결과 맹방해변 평균 방위 ${\beta}=41.6^{\circ}$의 경우 북서진하는 연안표사가 우월하며 그 양은 년 $125,000m^3/m$에 달하였다. 북서진하는 연안표사와 남동진하는 연안표사가 균형을 이루는 null point는 ${\beta}=47^{\circ}$에 위치하며, 횡단표사의 경우 4월부터 10월 중순까지는 연안방향으로의 퇴적이 점진적으로 진행되나 10월 말과 삼월에 단발적으로 발생하는 고파랑에 의해 침식되는 것으로 판단된다. 또한 맹방해변의 연안표사 장미도(littoral drift rose)를 산출하였으며, 그 결과 맹방해변의 방위가 일시적으로 null point의 방위보다 큰 경우 남동진하는 연안표사가 우월하며, 방위가 일시적으로 null point의 방위보다 작은 경우 북서진하는 연안표사가 우월한 경향을 확인하였으며, 이는 맹방해변은 일시적으로 침식되더라도 스스로 복원할 수 있는 능력을 지닌 안정적인 해변임을 의미한다.

Keywords

References

  1. Bagnold, R.A. (1963). Mechanics of marine sedimentation. The Sea, Ideas and Observations, Vol. 3. The Earth beneath the Sea. Interscience, New York, 507-528.
  2. Bailard, J.A. and Inman, D.L. (1981). An energetics bedload model for a plane sloping beach: local transport. J. Geophys. Res., 86(C3), 2035-2043. https://doi.org/10.1029/JC086iC03p02035
  3. Cayley, A. (1895). An elementary treatise on elliptic functions, 2nd ed. London. G. Bell.
  4. Cho, Y.J. and Lee, J.I. (2003). Forecasting of higher order spectral quantities of nonlinear random waves over surf zone. KSCE Journal of Civil Engineering, 7(3), 333-341. https://doi.org/10.1007/BF02831782
  5. Dean, R.G., Berek, E.P., Gable, C.G. and Seymour, R.J. (1982). Longshore transport determined by an efficient trap. Proceedings of 18th Coastal Engineering Conference, ASCE, Cape Town, 954-968.
  6. Dean, R.G. and Dalrymple, R.A. (2002). Coastal Processes with Engineering Applications. Cambridge University Press, Cambridge, UK.
  7. Flick, R.E., Guza, R.T. and Inman, D.L. (1981). Elevation and velocity measurements of laboratory shoaling waves. Journal of Geophysical Research, 86, 4149-4160. https://doi.org/10.1029/JC086iC05p04149
  8. Frelich, M.H. and Guza, R.T. (1984). Nonlinear effects on shoaling surface gravity waves. Phil. Trans. R. Soc. Lond. A 311, 1-41. https://doi.org/10.1098/rsta.1984.0019
  9. Hanson, H. (1989). Genesis-A generalized shoreline change numerical model. J. Coastal Res., 5(1), 1-27.
  10. Hanson, H. and Kraus, N.C. (1989). Genesis: Generalized Model for Simulating Shoreline Change. U.S. Army Coprs of Engineers, Coastal Engineering Research Center, CERC-MP-89-19.
  11. Hanson, H. and Larson, M. (1987). Comparison of Analytic and Numerical Solutions of the One-Line Model of Shoreline Change. Proc. Coastal Sediments '87, ASCE, 500-514.
  12. Inman, D.L. and Bagnold, R.A. (1963). Littoral Processes. The Sea, vol. 3, New York, Interscience, New York, 529-553.
  13. Komar, P.D. and Inman, D.L. (1970). Longshore sand transport on beaches. J. Geophys. Res., 75, 5914-5927. https://doi.org/10.1029/JC075i030p05914
  14. Kraus, N.C., Hanson, H. and Harikai, S. (1984). A shoreline change at Oarai beach past, present, and future, Proc. 19th Intl. Conf. Coastal Eng., ASCE, Houston, 2107-2123.
  15. Kraus, N.C., Isobe, M., Igarashi, H., Sasaki, T.O. and Horikawa, K. (1982). Field experiments on longshore sand transport in the surf zone. Proceedings of 18th Coastal Engineering Conference, ASCE, Cape Town, 970-988.
  16. Mase, H. and Kirby, J.T. (1992). Hybrid frequency-domain KdV equation for random wave transformation. Proc. 23th Int. Conf. Coast. Engrg. ASCE, Venice, Italy, 474-487.
  17. Oh, J.K., Chung, S.M. and Cho, Y.K. (2007). Variations of grain textural parameters of beaches by coast development at East Coast, Korea Peninsula. J. Korean Earth Science Society, 28(7), 914-924. https://doi.org/10.5467/JKESS.2007.28.7.914
  18. Walton, T.L. and Dean, R.G. (1973). Application of littoral drift roses to coastal engineering problems. Proceedings of the Conference on Engineering Dynamics in the Surf Zone, Sydney, Australia, 221-227.
  19. Walton, T.L. and Dean, R.G. (2010). Longshore sediment transport via littoral drift rose. Ocean Engineering, 37, 228-235. https://doi.org/10.1016/j.oceaneng.2009.11.002