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THE k-GOLDEN MEAN OF TWO POSITIVE NUMBERS

AND ITS APPLICATIONS

Jin Ho Choi and Young Ho Kim

Abstract. In this paper, we define a mean of two positive numbers called

the k-golden mean and study some properties of it. Especially, we show
that the 2-golden mean refines the harmonic and the geometric means.

As an application, we define the k-golden ratio and give some properties
of it as an generalization of the golden ratio. Furthermore, we define

the matrix k-golden mean of two positive-definite matrices and give some

properties of it. This is an improvement of Lim’s results [2] for which the
matrix golden mean.

1. Introduction

As early as the ancient Greece, the Pythagoreans had realized the notion
of a mean of two numbers called Pythagorean means - the arithmetic mean,
the geometric mean and the harmonic mean - and they had used in music
and astronomy ([4]). Also, it is well-known the arithmetic-geometric-harmonic
mean inequalities that

H(a, b) ≤ G(a, b) ≤ A(a, b),

where H, G and A denote the arithmetic mean, the geometric mean and the
harmonic mean, respectively.

The logarithmic mean L(a, b) of two positive numbers a and b is another
example of the mean which refines the arithmetic and geometric means as

H(a, b) ≤ G(a, b) ≤ L(a, b) ≤ A(a, b).

In this paper, we define the notion of k-golden mean of two positive numbers
as a generalization of the golden mean and give some properties of it. Especially,
we show that the 2-golden mean refines the harmonic and geometric means.
Also, we define the k-golden ratio using by k-golden mean and we give some
generalized properties of the golden ratio.
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On the other hand, Lim generalized the notion of the golden mean of two
positive numbers to the golden mean of two positive definite matrices and apply
them to some algebraic and differential Riccati equations in [2].

Motivated by [2], we generalize the notion of the k-golden mean of two
positive numbers to the k-golden mean of two positive definite matrices and we
list some related results. This is an improvement of Lim’s results [2] for which
the matrix golden mean. Moreover, we give new inequalities related to matrix
means.

2. The k-golden mean

A mean of two positive numbers can be defined as a positive function M(a, b)
of two variables a and b (0 < a ≤ b) satisfying the followings:

(M1) M(a, a) = a;
(M2) if a < b, then a < M(a, b) < b;
(M3) for any positive constant r, M(ra, rb) = rM(a, b);
(M4) M(a, b) is increasing with respect to both a and b.

The most basic examples are the harmonic mean, the geometric mean and
the arithmetic mean defined by

H(a, b) =
2ab

a+ b
, G(a, b) =

√
ab and A(a, b) =

a+ b

2
,

respectively. Moreover, they have the well-known mean inequalities:

H(a, b) ≤ G(a, b) ≤ A(a, b).

In [1], B. C. Carlson studied the logarithmic mean and some inequalities.
The logarithmic mean of two positive numbers a and b is defined by

L(a, b) =


b− a

log b− log a
if a < b,

a if a = b

and the logarithmic mean L refines the arithmetic and geometric means:

G(a, b) ≤ L(a, b) ≤ A(a, b),

with strict inequalities if a 6= b.
On the other hand, the three means H(a, b), G(a, b) and A(a, b) are the

positive roots of the three polynomials

(a+ b)X − 2ab = 0, X2 − ab = 0 and 2X − (a+ b) = 0,

respectively.
Let’s consider the positive root gldk(a, b) of the quadric equation

(2.1) X2 − aX − a(b− a)

k
= 0,
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where a, b and k are three positive numbers with a ≤ b and k > 0. Equivalently,
we have

(2.2) gldk(a, b) =
a+

√
{a(4b+ (k − 4)a)}/k

2
.

For a fixed positive number k, we call the function gldk in (2.2) the k-golden
function. Remark that the domain of the function gldk of two variables is the
set {(a, b) ∈ R2 | 0 < a ≤ b}.

Proposition 2.1. If k ≥ 1, the function gldk given in (2.2) is a mean, i.e., for
two positive numbers a and b with a ≤ b, gldk(a, b) satisfies the mean properties
(M1)-(M4).

Proof. (M1) and (M3) are trivial. By using that a ≤ b, a = (4a+ (k − 4)a)/k,
the geometric-arithmetic mean inequality and k ≥ 1, we have (M2) as follows:

a =
a+
√
a · a

2
=
a+

√
a · (4a+ (k − 4)a)/k

2

≤
a+

√
a · (4b+ (k − 4)a)/k

2
= gldk(a, b)

≤
a+

(
a+ (4b+ (k − 4)a)/k

)
/2

2
=
b+ (k − 1)a

k

≤ b+ (k − 1)b

k
= b,

∂

∂a

(
gldk(a, b)

)
=

1

2

{
1 +

2(b− a) + (k − 2)a√
a · (4b+ (k − 4)a)/k

}

≥ 1

2

{
1− a√

a · (4b+ (k − 4)a)/k

}
(∵ b ≥ a, k ≥ 1)

≥ 1

2

{
1− a√

a · (4a+ (k − 4)a)/k

}
= 0. (∵ b ≥ a > 0).

Thanks to calculus, gldk(a, b) is an increasing function with respect to a. For
fixed a > 0, the function gldk(a, b) is a root function of b and hence it is
increasing with respect to b. �

Let a and b be two positive numbers with a ≤ b. When k ≥ 1, we denote
gldk(a, b) by Gldk(a, b) and we call the number Gldk(a, b) the k-golden mean
of a and b.

Now, we give some properties of the k-golden mean related to the mean
inequalities.

Proposition 2.2. For any numbers a and b with 0 < a < b, the mean inequality
H(a, b) < Gldk(a, b) holds if and only if 1 ≤ k ≤ 2.
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Proof. By the direct computation, we have{
Gldk(a, b)− a

2

}2

−
{
H(a, b)− a

2

}2

=
a2(b− a)

k(a+ b)2

{(
a− (k − 1)b

)2
+ k(2− k)b2

}
.

Thus, if 1 ≤ k ≤ 2, then the inequality holds. In the case of k > 2, the
inequality holds if and only if

(2.3)
a

b
< k − 1−

√
k(k − 2).

Since 0 < k− 1−
√
k(k − 2) < 1 for k > 0, the inequality (2.3) depends on all

variables a, b and k, from which, our mean inequality does not hold. �

Proposition 2.3. For any numbers a and b with 0 < a < b,

(i) the mean inequality Gldk(a, b) < G(a, b) holds if and only if k ≥ 2,
(ii) the mean inequality Gldk(a, b) > G(a, b) holds if and only if k = 1.

Proof. Similar to the proof of Proposition 2.2, it follows from{
G(a, b)− a

2

}2

−
{
Gldk(a, b)− a

2

}2

=
a

k
(
√
b−
√
a)
(
(k − 1)

√
b−
√
a
)
. �

Theorem 2.4. The k-golden mean Gldk refines the harmonic and geometric
means if and only if k = 2.

Proposition 2.5. Let a and b be two positive numbers with 0 < a < b. Then,
the inequality Gldk(a, b) < A(a, b) holds if and only if it holds b > 4−k

k a.
Furthermore, if k ≥ 2, then Gldk(a, b) < A(a, b).

Corollary 2.6 (Harmonic-2-golden-geometric-logarithmic-arithmetic mean in-
equalities). For any number a and b with 0 < a ≤ b, the following means
inequalities hold:

(2.4) H(a, b) ≤ Gld2(a, b) ≤ G(a, b) ≤ L(a, b) ≤ A(a, b),

with strict inequalities if a < b.

When k is a special number, the k-golden mean can be expressed by a simple
iterative composition of the arithmetic mean and the geometric mean. For a
natural number n, let’s set Ãn(a, b) inductively by

Ã0(a, b) = b, Ãn(a, b) = A(a, Ãn−1(a, b)),

where A(a, b) is the arithmetic mean of a and b. By the simple computation,
we get that

Ã1(a, b) =
a+ b

2
, Ã2(a, b) = A(a, Ã1(a, b)) =

a+ a+b
2

2
=
b+ 3a

4
, . . . ,

Ãn(a, b) =
b+

∑n−1
k=0 2ka

2n
=
b+ (2n − 1)a

2n
.

Therefore, we have the following theorem.
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Theorem 2.7. For a natural number n ≥ 2, the 2n-golden mean of two positive
numbers a and b (a ≤ b) is expressed by

Gld2n(a, b) = A(a,G(a, Ãn−2(a, b))).

Remark 2.8. It follows from Theorem 2.7 that Gld4(a, b) = A(a,G(a, b)). In-

deed, the 4-golden mean of a and b is the arithmetic mean of a and
√
ab,

that is, Glk22(a, b) = a+
√
ab

2 . Also, the 8-golden mean of a and b is given by

Glk23(a, b) = A(a,G(a,A(a, b))) =
a+
√

a
2 (a+b)

2 .

3. A generalization of the golden ratio

3.1. The golden ratio vs. the k-golden function

The golden ratio φ := 1+
√

5
2 is one of the most famous numbers and there

are various methods to explain it. Among them, we give the extreme and mean
ratios to define it.

Let A, B, C be three points on a real line R corresponding the positive
numbers a, b and c (a < c < b), respectively. Then, the golden ratio φ is a
special number given by dividing the line segment AB into two parts AC and
CB so that the ratio of the length |AC| to the length |CB| is equal to the ratio
of the length |AB| to the length |AC|, i.e., b−ac−a = c−a

b−c = φ. Moreover, the point

C corresponds to the real number c = a + φ(b − a) = φ · b − 1
φ · a. Similarly,

we consider a point C̄ on R corresponding the positive number c̄ such that the

ratio of |OC̄| to |AB| is equal to k times the ratio of |OA| to |OC̄|, i.e.,

(3.1)
b− a
c̄− a

= k · c̄
a

=: φk,

where we denotes O by the origin on R.
The following proposition is a property of the k-golden function related to

the extreme and mean ratios.

Proposition 3.1. Let a, b be two positive real numbers with a < b. Then, a
number c̄ is the k-golden mean of a and b if and only if it holds (3.1).

Proof. It follows from the equation a+
√
a{4b+ (k − 4)a}/k = 2c̄. �

Remark 3.2. The value gldk(a, b) of the k-golden function give the number
c̄ satisfying the ratio condition b−a

c̄−a = k · c̄a , while the golden ratio give the

number c satisfying the ratio condition b−a
c−a = c−a

b−c .

3.2. The k-golden ratio

For two positive numbers k and `, it satisfies that gldk(1, 1+`) =
1+
√

1+4`/k

2 .
Here, the value gldk(1, 1 + `) is depend on the ratio of ` to k. As setting ` = 1,
we can give a generalization of golden ratio.
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Definition 3.3. For a positive numbers k, the value gldk(1, 2) is called the

k-golden ratio. Equivalently, the k-golden ratio is a number
1+
√

1+4/k

2 which

is the positive root of the quadratic equation X2 −X − 1
k = 0.

Trivially, the 1-golden ratio equals to golden ratio. This means that the
notion of k-golden ratio is a generalization of golden ratio. Now, we denote by
φk := gldk(1, 2).

Proposition 3.4. For a number k > 0, it has that φk > 1, limk→0 φk = ∞
and limk→∞ φk = 1. Moreover, if k > 1, then φ 1

k(k−1)
= k.

Proof. It follows from φk =
1+
√

1+4/k

2 . �

It is well-known two representations of the golden ratio φ that

φ =

√
1 +

√
1 +
√

1 + · · · and φ = 1 +
1

1 + 1
1+···

called respectively the nested square root and the continued fraction (see [3]).
Similarly, we have two representations of k-golden ratio.

Theorem 3.5 (Representations of k-golden ratio). For a number k > 0, it
satisfies that

φk =

√
1

k
+

√
1

k
+ · · · and φk = 1 +

1

k
· 1

1 + 1
k ·

1
1+ 1

k ···
.

Proof. It is clear from the quadratic equation (φk)2 − φk − 1
k = 0. �

In geometry, the golden ratio φ appears when a square is inscribed in a
semi-circle. The following theorem is a geometrical property of k-golden ratio
φk as a generalization of the golden ratio φ.

Theorem 3.6 (Geometry of the k-golden ratio). Given a semi-ellipse S̄ on
x-axis given by kx2 + y2 = a, y ≥ 0 and a square B̄ inscribed in S̄ for fixed
positive numbers k and a. Let b and ` be the length of one side of B̄ and the
length of the line between two x-intercepts of S̄, respectively (see Fig. 1). Then,
the ratio of b to b+`

2 equals to k-golden ratio φk, that is,

(3.2)
b+ `

2b
=

1

2

(
1 +

`

b

)
= φk.

Proof. It follows from that ` = 2
√

a
k and k

(
b
2

)2
+ b2 = a. �

Remark 3.7. Sometime, a rectangle having sides with the ratio 1 : φ is called
the golden rectangle. Similarly, we call a rectangle having sides with the ratio
1 : φk the k-golden rectangle (see Fig. 1).
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Figure 1. A square inscribed in a semi-ellipse and k-golden rectangle

(a) Approximation of 1
2 -golden spiral (b) Approximation of 2-golden spiral

(c) 1
2 -golden(blue) spiral, golden(yellow) sprial and 2-golden(green) spiral

Figure 2. Approximation of k-golden spirals

A golden rectangle has an interesting geometric property that when a square
section is removed, the remainder is also a golden rectangle. Naturally, this
property is generalized by the k-golden rectangle as follows:

Proposition 3.8. Let �ABCD be a k-golden rectangle having sides with the
ratio |AB| : |BC| = 1 : φk and �ABEF a square section of �ABCD. Then it
satisfies the followings:
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(i) The rectangle �FECD is also k-golden rectangle if and only if k = 1.
In that case, the golden rectangle �FECD has sides with the ratio
|FD| : |FE| = 1 : φ.

(ii) For a positive number k, let �FEPQ be a rectangle which has the
length condition |FQ| = k · |FC|. Then the rectangle �FEPQ is a
k-golden rectangle having sides with the ratio |FQ| : |FE| = 1 : φk.

Remark 3.9. A golden spiral often appears in nature. It is a well-known algo-
rithm that a golden spiral can be approximated by a golden rectangle. Applying
Proposition 3.8(2) into the approximation algorithm of a golden spiral, we can
give new spirals approximated by the k-golden rectangle (See Fig. 2).

4. Applications to matrix mean

For two positive definite matrices A and B, the geometric mean is given by
an explicit formula

(4.1) A]B = A
1
2

(
A−

1
2BA−

1
2

) 1
2A

1
2 .

The geometric mean has various characterizations and applications in matrix
inequalities, geometry and dynamical systems. In [2], Lim introduced a new
matrix mean having characteristics similar to the geometric mean in Riccati
matrix equations and called it the matrix golden mean which is a matrix version
of the golden mean of two positive numbers. He considered in [2] the Riccati
matrix equations under 0 < A ≤ B,

(4.2) XA−1X ±X − (B −A) = 0,

and the associated Riccati matrix differential equations,

(4.3) Ẋ = XA−1X ±X − (B −A) = 0

and proved that the matrix golden means are attracting fixed points of the
Riccati differential equations (see [2]).

In this section, motivated by [2], we generalize the notion of the k-golden
mean of two positive numbers to the k-golden mean of two positive definite ma-
trices and we list some related results. This is an improvement of Lim’s results
[2] for which the matrix golden mean. Moreover, we give a new inequalities
related to matrix means.

Lemma 4.1 (Riccati). Let A be a positive definite and B a (semi-)positive
definite. Then the geometric mean A]B is a unique (semi-)positive definite
solution of the Riccati equation

(4.4) XA−1X = B.

Lemma 4.2 ([2]). The geometric mean has the following properties:

(i) A]B = B]A.
(ii) (A]B)−1 = A−1]B−1.
(iii) M(A]B)MT = (MAMT )](MBMT ) for any nonsingular matrix M .



THE k-GOLDEN MEAN AND ITS APPLICATIONS 529

(iv) 2(A−1 +B−1)−1 ≤ A]B ≤ 1
2 (A+B) for positive definite A, B.

Theorem 4.3. Let k, A and B be a positive number, a positive definite matrix
and a positive semi-definite matrix, respectively. Then the nonlinear matrix
equations

X2 ± kX −A2 = 0,

BX−1B − kX ±A = 0,

XA−1X ± kX −B = 0

have the unique positive definite solutions

S±k,1(A) =
1

2

(
∓ kI + I](k2I + 4A2)

)
,

S±k,2(A,B) =
1

2

(
± kA+A](k2A+

4

k
BA−1B)

)
,

S±k,3(A,B) =
1

2

(
∓ kA+A](k2A+ 4B)

)
,

respectively.

Proof. (i) From the fact A](k2B) = (kA)](kB) = k(A]B) and k > 0, it is easy
to check that S±k,1(A) = 1

2

(
∓ kI + I](k2I + 4A2)

)
= k

2

(
∓ I + I](I + 4

k2A
2)
)

are positive definite. By the direct computation, we know that S±k,1(A) are

solutions of X2 ± kX −A2 = 0.
Suppose that X is a positive definite solution of X2+kX−A2 = 0. Using the

equality X2 +kX−A2 = (X+ k
2 I)2−(A2 + k2

4 I), we have X+ k
2 = (A2 + k2

4 I)
1
2 ,

from which, X = S+
k,1(A). Similarly, we have a unique positive definite solution

X = S−k,1(A) of X2 − kX −A2 = 0.

(ii) Consider the matrix equations kX = ±A + BX−1B. Setting Y =

A−
1
2XA−

1
2 and D = A−

1
2DA−

1
2 , we have respectively

(4.5) kY = ±I +DY −1D.

Since A]B is a unique positive definite solution of XA−1X = B, if Y is a
positive definite solution of (4.5), then Y satisfies

D = Y ](kY ∓ I) = Y
1
2

(
Y −

1
2 (kY ∓ I)Y −

1
2

) 1
2Y

1
2 = (kY 2 ∓ Y )

1
2 ,

equivalently,

(4.6) Y 2 ∓ 1

k
Y − (

1√
k
D)2 = 0.

Conversely, if Y is a positive definite solution of (4.6), then Y and D com-
mute and hence Y satisfies (4.5). Therefore (4.5) and (4.6) are equivalent,
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respectively. Solving Y we then have Y = S∓k,1( 1√
k
D) by (i). Thus, we have

S±k,2 = A
1
2Y A

1
2 = A

1
2S∓k,1(

1√
k
A−

1
2BA−

1
2 )

= A
1
2

(1

2

(
± kI + I](k2I +

4

k
(A−

1
2BA−

1
2 )2)

))
A

1
2

=
1

2

(
± kA+A](k2A+

4

k
BA−1B)

)
,

where the last equality follows from (iii) in Lemma 4.2.

(iii) By setting in (ii), we have Y 2±kY −D = 0, from which, Y = S±k,1(D
1
2 ).

Thus, we have

S±k,3(A,B) = A
1
2Y A

1
2 = A

1
2S±k,1(D

1
2 )A

1
2

= A
1
2

(1

2

(
± kI + I](k2I + 4D)

))
A

1
2

=
1

2

(
∓ kA+A](k2A+ 4B)

)
.

Our assertions are completed. �

Corollary 4.4. Let k be a fixed number with k ≥ 1. Suppose that A and B
are two positive definite matrices with the order relation A ≤ B.

(i) The Riccati matrix equation

XA−1X −X − 1

k
(B −A) = 0

has a unique positive definite solution

X = A\kB :=
1

2

(
A+A]

1

k

(
4B + (k − 4)A

))
.

(ii) The Riccati matrix equation

XA−1X +X − 1

k
(B −A) = 0

has a unique positive definite solution

X = A\̄kB :=
1

2

(
−A+A]

1

k

(
4B + (k − 4)A

))
.

Corollary 4.5. Let a and b be two positive real number with a ≤ b. Then, for
a fixed k ≥ 1, it satisfies that

(aA)\k(bA) = Gldk(a, b)A,

where Gldk(a, b) denotes the k-golden mean of a and b.

For a real number k ≥ 1 and two positive definite matrices A and B, now, we
call the positive definite matrix Gk(A,B) the k-golden matrix mean. A suitable
choice of positive number k leads to the simple and interesting expressings of
the k-golden mean as follows:
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Corollary 4.6. For two positive definite matrices A and B with A ≤ B, the
followings are satisfied.

(i) A\1B = A\B, A\2B = 1
2

(
A+A](B − 1

2A)
)
.

(ii) A\4B = 1
2 (A + A]B), that is, A\4B is the arithmetic matrix mean of

A and A]B.
(iii) For m > 0, A\4mB = 1

2

(
A+ 1√

m
A](B + (m− 1)A)

)
.

We give some properties about the expression of the k-golden mean.

Proposition 4.7. Let A and B be two arbitrary positive definite matrices with
A ≤ B and k a fixed real number with k ≥ 1. Then, it satisfies the following
properties:

(i) M(A\kB)MT = (MAMT )\k(MBMT ) and
M(A\̄kB)MT = (MAMT )\̄k(MBMT ) for any nonsingular matrix M .

(ii) A\kB = 1
2A

1
2

(
I + 1√

k

(
4A−

1
2BA−

1
2 + (k − 4)I

) 1
2

)
A

1
2 .

(iii) If A < B, then A\kB = 1
2

(
A+ 1√

k

(
B −A

)
]
(
4A+ kA(B −A)−1A

))
.

(iv) (A\kB)](A\̄kB) = 1
kA](B −A).

(v) A\kB = A]
(

1
k (B + (k − 1)A) + A\̄kB

)
and A\̄kB = A]

(
1
k (B + (k −

1)A)−A\kB
)
.

Proof. (i) It follows from the linearity of the congruence transformations and
Lemma 4.2(iii).

(ii) It follows from (i).

(iii) Suppose that A < B and set C := A−
1
2BA−

1
2 . Then, it follows that

C − I > 0. By (ii) and Lemma 4.2(iii), the k-golden mean is calculated by

A\kB =
1

2
A

1
2

(
I +

1√
k

(
4A−

1
2BA−

1
2 + (k − 4)I

) 1
2

)
A

1
2

=
1

2
A

1
2

(
I +

1√
k

(
4C + (k − 4)I

) 1
2

)
A

1
2

=
1

2
A

1
2

(
I +

1√
k

(
4(C − I) + kI

) 1
2

)
A

1
2

=
1

2
A

1
2

(
I +

1√
k

(
C − I

)
]
(
4I + k(C − I)−1

))
A

1
2

=
1

2

(
A+

1√
k

(
B −A

)
]
(
4A+ kA(B −A)−1A

))
.

(iv) It follows from

(I\kC)(I\̄kC) =
1

4

(
I +

1√
k

(4C + (k − 4)I)
1
2

)(
− I +

1√
k

(4C + (k − 4)I)
1
2

)
=

1

k
(C − I),

the invariance property (i) and the commutativity of (I\kC)(I\̄kC).
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(v) By the direct computation, we have

(A\kB)A−1(A\kB)

=
1

4

(
A+

1√
k
·A]

(
4B + (k − 4)A

))
A−1

(
A+

1√
k
·A]

(
4B + (k − 4)A

))
=

1

4

(
I +

1√
k
·A]

(
4B + (k − 4)A

)
·A−1

)(
A+

1√
k
·A]

(
4B + (k − 4)A

))
=

1

4

(
A+

2√
k
·A]

(
4B + (k − 4)A

)
+

1

k

(
4B + (k − 4)A

))
=

1

2

(
−A+

1√
k
·A]

(
4B + (k − 4)A

))
+

1

k

(
B + (k − 1)A

)
= A\̄kB +

1

k

(
B + (k − 1)A

)
,

where the third equality follows from the Riccati lemma for the geometric mean.
Thus, we have A\kB = A]

(
A\̄kB + 1

k (B + (k− 1)A)
)

from the Riccati lemma.
Similarly, we have the second equation of (v). �

Now, we give some inequalities related to the k-golden mean.

Proposition 4.8. Let A and B be two arbitrary positive definite matrices with
A ≤ B and k a fixed real number with k ≥ 1. Then, it satisfies the following
properties:

(i) If 1 ≤ k1 < k2, then A\k2B < A\k1B.
(ii) A ≤ A\kB ≤ B with strict inequalities if A < B.
(iii) A\kB = A]B if and only if k = 1 and A = B.
(iv) (The harmonic-k-golden mean inequalities) If 1 ≤ k ≤ 2, then

2(A−1 +B−1)−1 ≤ A\kB
with strict inequalities if A < B.

(v) (The k-golden-geometric mean inequalities) If k ≥ 2, then

A\kB ≤ A]B
with strict inequalities if A < B.

(vi) ([2]) (1-golden-geometric mean inequalities)

A]B ≤ A\1B = A\B

with strict inequalities if A < B.
(vii) (The harmonic-2-golden-geometric-arithmetic inequalities)

A ≤ 2(A−1 +B−1)−1 ≤ A\2B ≤ A]B ≤
1

2
(A+B) ≤ B

with strict inequalities if A < B.

Proof. (i) If k1 6= k2, then 1
k1

(
4B + (k1 − 4)A

)
− 1

k2

(
4B + (k2 − 4)A

)
=

4(k2−k1)
k1k2

(B − A). Hence, it follows from the geometric mean inequality that if
B1 < B2, then A]B1 < A]B2.
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(ii) Since A = 1
k

(
4A + (k − 4)A

)
≤ 1

k

(
4B + (k − 4)A

)
, A = 1

2 (A + A) =
1
2 (A+A]A) ≤ 1

2

(
A+A] 1

k (4B + (k − 4)A)
)

= A\kB.

(ii) If k1 6= k2, then 1
k1

(
4B+(k1−4)A

)
− 1
k2

(
4B+(k2−4)A

)
= 4(k2−k1)

k1k2
(B−

A). Hence, it follows from the property of the geometric mean that if A ≤ B1 <
B2, then A]B1 < A]B2.

(iii) In the case of k = 1, A\1B = A]B if and only if A = B (see [2]). Since
A\k ≤ A\1B, from (ii), our assertion (iii) holds.

(iv) Using Proposition 2.2 and the spectral decomposition of a positive def-
inite matrix D, we have

2(I +D−1)−1 ≤ 1

2

{
I + I]

1√
k

(
4D + (k − 4)I

)}
,

from which, our inequality is reduced by putting A−
1
2BA−

1
2 .

(v) It follows by the similar method of (iv).
(vi) See [2].
(vii) It follows from (iv) and (v). �

5. Conclusions

In this paper, using the notion of the k-golden mean of two positive num-
bers, we show that the 2-golden mean refines the harmonic, geometric mean
inequalities and we apply in the matrix mean inequalities.
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