
Bull. Korean Math. Soc. 56 (2019), No. 2, pp. 491–499

https://doi.org/10.4134/BKMS.b180347

pISSN: 1015-8634 / eISSN: 2234-3016

ON LACUNARY RECURRENCES WITH GAPS

OF LENGTH FOUR AND EIGHT FOR

THE BERNOULLI NUMBERS

Mircea Merca

Abstract. The problem of finding fast computing methods for Bernoulli
numbers has a long and interesting history. In this paper, the author

provides new proofs for two lacunary recurrence relations with gaps of

length four and eight for the Bernoulli numbers. These proofs invoked
the fact that the nth powers of π2, π4 and π8 can be expressed in terms

of the nth elementary symmetric functions.

1. Introduction

The rational numbers Bn (n = 0, 1, 2, . . .) defined by the Laurent series
expansion

x

ex − 1
=

∞∑
n=0

Bn
xn

n!
, |x| < 2π,

are well-known in literature as the Bernoulli numbers. Rewriting this relation
as ( ∞∑

n=1

xn

n!

)( ∞∑
n=0

Bn
xn

n!

)
= x, |x| < 2π,

and considering the Cauchy product for series, we derive the classical recurrence
relation for the Bernoulli numbers Bn (n = 0, 1, 2, . . .):

n∑
k=0

(
n+ 1

k

)
Bk = δ0,n,

where δi,j is the Kronecker delta [8, p. 229]. In this relation nearly half the
terms on the left hand side do not contribute anything since B2k+1 = 0 for
k > 0. On the other hand, it is well-known that B0 = 1, B1 = −1/2 and
(−1)k+1B2k > 0 for k > 0.
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The sequence of Bernoulli numbers is one of the most important number
sequences in mathematics having extensive applications on many areas. Re-
currence relations for the computation of these numbers have been the subject
of a large number of papers. In 1986, Namias [13] conjectured that an infinite
number of recurrence relations for Bernoulli numbers can be obtained. One
year later, Belinfante [1] published an infinite number of recurrence relations
for the Bernoulli numbers, namely

Bn =
1

m(1−mn)

n−1∑
k=0

mk

(
n

k

)
Bk

m−1∑
j=1

jn−k, m > 1.

In 1993, Howard [5] showed that this relation is not new; it is a special case of
the multiplication theorem for Bernoulli polynomials: If n and m are positive
integers with m > 1, then

Bn(mx) =
1

mn−1

m−1∑
j=0

Bn

(
x+

j

m

)
.

Very recently, Merca [11] uses the generating function for the Bernoulli poly-
nomials to introduce a number of infinite families of linear recurrence relations
for the Riemann zeta function at positive even integer arguments, ζ(2n). So by
[11, Theorems 2.1 and 3.1], with x replaced by 0, we derive two infinite families
of linear recurrence relations for the Bernoulli numbers:

n∑
k=0

(
αn−k − (−1)k(α− 1)n−k

)(n
k

)
Bk = 0

and

bn/2c∑
k=0

(
n

2k

)
α2kBn−2k =

n∑
k=0

(−1)n−k
(
n

k

)
(α− 1)k + (−1− α)k

2
Bn−k,

where n is a positive integer and α is a real or complex number.
Recurrence formulas of this kind have the disadvantage of demanding the

previous knowledge of all (non-zero) B0, B1, . . . , Bn−1 for the computation of
the nth Bernoulli numbers. The problem of finding fast computing methods for
Bernoulli numbers has a long and interesting history. Using different methods,
Ramanujan [14], Lehmer [9], Riordan [15, pp. 138–140], Chellali [3], Yalavigi
[18], Berndt [2], and Howard [6, 7] have all worked out lacunary recurrence
formulas for the Bernoulli numbers. Ramanujan’s paper [14] contains linear re-
currence relations for Bernoulli numbers, where the indices have gaps of lengths
4, 6, 8, and 10. The following relations, due to Ramanujan,

(1)

bn/2c∑
k=0

(−1)k2n−2k
(

2n+ 2

4k + 2

)
B2n−4k = (−1)bn/2c(n+ 1)
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is a classical example of a lacunary recurrence for the Bernoulli numbers. This
recurrence relation has gaps of length four. For example, to compute B4n, it is
not necessary to know the non-zero values of Bj for all j < 4n; we need only to
know the values of B4j . We remark that this lacunary recurrence was obtained
later by Lehmer [9] as a special case of a more general result. Another lacunary
recurrence relation with gaps of length four derived by Lehmer in [9] is given
by

bn/2c∑
k=0

(
(−1)k22k+1 + 1

)(2n+ 4

4k + 4

)
B2n−4k =

(
(−1)bn/2c2n+1 + 1

) n+ 2

2
.

The formulas become more complex, and difficult to obtained and write down,
as the gaps increase in size. By Ramanujan’s paper [14], it is an easy exercise
to derive the following complete set of lacunary recurrence formulas with gaps
of length eight:

n∑
k=0

(−1)kα4k+2

(
8n+ 4

8k + 4

)
B8n−8k = (−1)n(2n+ 1)α4n+2,

n∑
k=0

(−1)kα4k+2

(
8n+ 6

8k + 4

)
B8n+2−8k = (−1)n

4n+ 3

2
α4n+3,

n∑
k=0

(−1)kα4k+2

(
8n+ 8

8k + 4

)
B8n+4−8k = (−1)n+1

√
2(n+ 1)β4n+3,

n∑
k=0

(−1)kα4k+2

(
8n+ 10

8k + 4

)
B8n+6−8k = (−1)n

4n+ 5

2
√

2
β4n+4,

where

αn =

(
1 +

1√
2

)n
+

(
1− 1√

2

)n
and βn =

(
1 +

1√
2

)n
−
(

1− 1√
2

)n
.

A more concise example for the lacunary recurrence relation with gaps of length
eight is given by Lehmer in [9]:

bn/4c∑
k=0

2n+1−2bn+1
4 c−2ka4k+2

(
2n+ 4

8k + 4

)
B2n−8k = (−1)bn/2c(n+ 2)an+2,

where

an + 34an−4 + an−8 = 0,

with the initial condition

{an}06n67 = {2, 0, 3, 10, 14,−12,−99,−338}.

In this paper, motivated by these results, we shall provide new proofs for
two lacunary recurrence relations for the Bernoulli numbers. The first has gaps
of length four.
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Theorem 1.1. For n > 0,

bn/2c∑
k=0

(−1)k
(
22n−2k − 22k+1

)(2n+ 2

4k + 2

)
B2n−4k = (−1)n+1(n+ 1).

The second recurrence is more involved and has gaps of length eight.

Theorem 1.2. For n > 0,

bn/4c∑
k=0

(−1)kb4k+2(22n−2k − 26k+1)

(
2n+ 4

8k + 4

)
B2n−8k

= (−1)n+1(n+ 2)
b2n+3 − c2n+3

8
,

where

bn = 2bn−1 + bn−2 and cn = 2cn−1 − 3cn−2,

with the initial conditions

b0 = b1 = 1 and c0 = c1 = 1.

The recurrence formula in Theorems 1.1 and 1.2 are not new, they already
appear in [9], where Lehmer [9] defines the sequence {Rn}n>0 by:

∞∑
n=0

Rn
xn

n!
=

xex

e2x − 1
=

ex

ex − 1
− 1

2

2x

e2x − 1
.

It is clear that

Rn = (1− 2n−1)Bn.

So Theorem 1.1 is exactly formula 3 of [9, Eq. (15), p. 643] and Theorem 1.2
is exactly recurrence formula 3 with gaps of 8 on page 645 of [9].

Related to Theorem 1.2, we remark that bn is the first differences of the Pell
numbers, i.e.,

bn = Pn+1 − Pn.

It is well-known that the Pell numbers

Pn =
(1 +

√
2)n − (1−

√
2)n

2
√

2

satisfy the recurrence relation

Pn = 2Pn−1 + Pn−2

with P0 = 0 and P1 = 1. It is an easy exercise to prove that

bn =
(1 +

√
2)n + (1−

√
2)n

2
and cn =

(1 +
√
−2)n + (1−

√
−2)n

2
.



ON LACUNARY RECURRENCES 495

2. Proof of Theorem 1.1

In order to prove this theorem, we consider that the nth powers of π2 and
π4 can be expressed in terms of the nth elementary symmetric function [10,12]
as follows:

(2) en

(
1

12
,

1

22
,

1

32
, . . .

)
=

π2n

(2n+ 1)!
, n > 0

and

(3) en

(
1

14
,

1

24
,

1

34
, . . .

)
=

22n+1 · π4n

(4n+ 2)!
, n > 0.

On the other hand, according to Merca [10], the Riemann zeta function with
even arguments ζ(2n) can be expressed in terms of the nth complete homoge-
neous symmetric function of the numbers 1

12 ,
1
22 ,

1
32 , . . ., as follows:

(4) hn

(
1

12
,

1

22
,

1

32
, . . .

)
= 2

(
1− 2

22n

)
ζ(2n), n > 0.

These relations allow us to consider the following two identities of formal power
series in t:

∞∑
n=0

en

(
1

12
,

1

22
,

1

32
, . . .

)
tn =

∞∏
n=1

(
1 +

t

n2

)
and

∞∑
n=0

hn

(
1

12
,

1

22
,

1

32
, . . .

)
tn =

∞∏
n=1

(
1− t

n2

)−1
.

We have( ∞∑
n=0

(−1)nen

(
1

14
,

1

24
,

1

34
, . . .

)
t2n

)( ∞∑
n=0

hn

(
1

12
,

1

22
,

1

32
, . . .

)
tn

)

=

∞∏
n=1

(
1 +

t

n2

)

=

∞∑
n=0

en

(
1

12
,

1

22
,

1

32
, . . .

)
tn.

Considering the well-known Cauchy products of two power series, we can write( ∞∑
n=0

(−1)nen

(
1

14
,

1

24
,

1

34
, . . .

)
t2n

)( ∞∑
n=0

hn

(
1

12
,

1

22
,

1

32
, . . .

)
tn

)

=

∞∑
n=0

bn/2c∑
k=0

(−1)kek

(
1

14
,

1

24
,

1

34
, . . .

)
hn−2k

(
1

12
,

1

22
,

1

32
, . . .

) tn.
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So we deduce the identity

bn/2c∑
k=0

(−1)kek

(
1

14
,

1

24
,

1

34
, . . .

)
hn−2k

(
1

12
,

1

22
,

1

32
, . . .

)
= en

(
1

12
,

1

22
,

1

32
, . . .

)
.

Taking into account the relations (2)-(4) and the famous formula for the even-
argument ζ-values [17]

ζ(2n) = (−1)n+1 (2π)2n

2 · (2n)!
B2n,

we obtain the identity

bn/2c∑
k=0

(−1)n+1−k 22n−2k+1

(4k + 2)!(2n− 4k)!

(
1− 2

22n−4k

)
B2n−4k =

1

(2n+ 1)!
.

The proof follows easily.

3. Proof of Theorem 1.2

The proof of this theorem is quite similar to that of Theorem 1.1. In addition,
we consider [12] that the nth power of π8 can be expressed in terms of the nth
elementary symmetric function of the numbers 1

18 ,
1
28 ,

1
38 , . . ., as follows:

(5) en

(
1

18
,

1

28
,

1

38
, . . .

)
=

26n+3 · π8n

(8n+ 4)!
b4n+2.

We have( ∞∑
n=0

(−1)nen

(
1

18
,

1

28
,

1

38
, . . .

)
t4n

)( ∞∑
n=0

hn

(
1

12
,

1

22
,

1

32
, . . .

)
tn

)

=

∞∏
n=1

(
1− t4

n8

)(
1− t

n2

)−1
=

∞∏
n=1

(
1 +

t2

n4

)(
1 +

t

n2

)

=

( ∞∑
n=0

en

(
1

14
,

1

24
,

1

34
, . . .

)
t2n

)( ∞∑
n=0

en

(
1

12
,

1

22
,

1

32
, . . .

)
tn

)

=

∞∑
n=0

bn/2c∑
k=0

ek

(
1

14
,

1

24
,

1

34
, . . .

)
en−2k

(
1

12
,

1

22
,

1

32
, . . .

) tn.

On the other hand, we can write( ∞∑
n=0

(−1)nen

(
1

18
,

1

28
,

1

38
, . . .

)
t4n

)( ∞∑
n=0

hn

(
1

12
,

1

22
,

1

32
, . . .

)
tn

)



ON LACUNARY RECURRENCES 497

=

∞∑
n=0

bn/4c∑
k=0

(−1)kek

(
1

14
,

1

24
,

1

34
, . . .

)
hn−4k

(
1

12
,

1

22
,

1

32
, . . .

) tn.

In this way, we deduce the identity

bn/4c∑
k=0

(−1)kek

(
1

14
,

1

24
,

1

34
, . . .

)
hn−4k

(
1

12
,

1

22
,

1

32
, . . .

)

=

bn/2c∑
k=0

ek

(
1

14
,

1

24
,

1

34
, . . .

)
en−2k

(
1

12
,

1

22
,

1

32
, . . .

)
,

that can be rewritten as

bn/4c∑
k=0

(−1)n+1−kb4k+2
22n−2k+2 − 26k+3

(8k + 4)!(2n− 8k)!
B2n−8k

=

bn/2c∑
k=0

22k

(4k + 2)!(2n− 4k + 1)!

or

bn/4c∑
k=0

(−1)n+1−kb4k+2(22n−2k − 26k+1)

(
2n+ 4

8k + 4

)
B2n−8k

=
n+ 2

2

bn/2c∑
k=0

22k
(

2n+ 3

4k + 2

)
.

Now we consider the multisection formula first published by Simpson (see
[4, Ch. 16], [15, Ch. 4, S. 4.3] and [16]) as early as 1759. If

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n + · · ·

is a finite or infinite series, then for 0 6 r < n the sum

arx
r + ar+nx

r+n + ar+2nx
r+2n + · · ·

is given by

(6)
∑
k>0

ar+knx
r+kn =

1

n

n−1∑
k=0

z−krf(zkx),

where z = e
2πi
n is the nth root of 1.

Applying the multisection formula (6) to

f(x) = (1 +
√

2x)p =

p∑
k=0

(
p

k

)(√
2x
)k
,
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we obtain ∑
k>0

(
p

4k + 2

)(√
2x
)4k+2

=
1

4

3∑
k=0

e−kπi
(

1 + e
kπi
2

√
2x
)p
.

The case x = 1 and p = 2n+ 3 of this relation read as

bn/2c∑
k=0

22k+1

(
2n+ 3

4k + 2

)
=

1

4

(
(1 +

√
2)2n+3 − (1 +

√
−2)2n+3 + (1−

√
2)2n+3 − (1−

√
−2)2n+3

)
=

1

2
(b2n+3 − c2n+3) .

The proof is finished.

4. Concluding remarks

The relationships of the elementary symmetric functions to the natural pow-
ers of π2, π4 and π8 have been used in this paper to provide new proofs for two
lacunary recurrence relations for the Bernoulli numbers with gaps of length four
and eight. Theorem 1.1 can be combined to Ramanujan’s recurrence formula
(1) to get a different lacunary recurrence formula for the Bernoulli numbers
with gaps of length four.

Corollary 4.1. For n > 0,

bn/2c∑
k=0

(−1)k22k+1

(
2n+ 2

4k + 2

)
B2n−4k =

(
(−1)bn/2c2n + (−1)n

)
(n+ 1).

We note that, when the problem of finding a closed form for

en

(
1

12k
,

1

22k
,

1

32k
, . . .

)
in terms of π2kn and the problem of finding a closed form for

hn

(
1

12k
,

1

22k
,

1

32k
, . . .

)
in terms of ζ(2kn) for arbitrary k will be solved, then further, stronger lacunary
recurrences for the Bernoulli numbers will follow by the methods used in this
article.
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