
Bull. Korean Math. Soc. 56 (2019), No. 2, pp. 461–470

https://doi.org/10.4134/BKMS.b180330

pISSN: 1015-8634 / eISSN: 2234-3016

ON THE GROWTH OF SOLUTIONS TO LINEAR COMPLEX

DIFFERENTIAL EQUATIONS ON ANNULI

Nan Wu and Zuxing Xuan

Abstract. In this note, we consider the growth of solutions to second

order and higher order linear complex differential equations on annuli
instead of the complex plane. We establish several theorems that are

analogues of the results in the complex plane.

1. Introduction

We assume that the readers are familiar with the fundamental results and
standard notations of the Nevanlinna theory in the unit disk ∆ = {z : |z| < 1}
and in the complex plane C (see [1,3,11]), such as T (r, f), N(r, f),m(r, f). The
growth of solutions to linear complex differential equations in the complex plane
C is an important subject in the value distribution theory (see [8]). According
to a result of Gol’dberg ([2]), if f is any entire function with zeros of multiplicity
at most n − 1, then there exists a linear differential equation of order n with
entire coefficients to which f is a solution. Any growth of solutions is possible if
one does not care about the growth of the coefficients. Heitiokangas studied the
growth of solutions to linear complex differential equations in the unit disk ∆
([4]). The author once studied the growth order of solutions to linear differential
equations in an angular domain Ω = {z : α < arg z < β}(0 < β − α < 2π) of
the complex plane ([9]) and in a sector ω = {z : α < arg z < β, |z| < 1}(0 <
β − α < 2π) of the unit disk ([10]). However, the domains such as C,∆, Ω, ω
are all simply connected domains. Here we pose the following question.

Question. How does the solutions to linear complex differential equations grow
in doubly connected domains of complex plane C?

By the Doubly Connected Mapping Theorem, each doubly connected domain
is conformally equivalent to the annulus {z : r < |z| < R, 0 ≤ r < R ≤ +∞}.
We consider only two cases: r = 0, R = +∞ simultaneously and 0 < r < R <
∞. In the latter case the homothety z → z√

rR
reduces the given domain to the
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annulus 1
R0

< |z| < R0, where R0 =
√

R
r . Thus, in two cases every annulus is

invariant with respect to the inversion z → 1
z .

Recently, Khrystiyanyn and Kondratyuk [5,6] have proposed the Nevanlinna
theory for meromorphic functions on annuli. Readers can also refer to an
important paper [7]. We will show the basic notions of the Nevanlinna theory
on annuli in the next section. It is interesting to consider growth of solutions
to linear differential equations on annuli. The main purpose of this paper is to
deal with this subject. We shall prove several genera1 theorems on the annulus
A = {z : 1

R0
< |z| < R0}, where 1 < R < R0 ≤ +∞.

2. Basic notions in the Nevanlinna theory on annuli and some
lemmas

Let f be a meromorphic function on the annulus A = {z : 1
R0

< |z| < R0},
where 1 < R0 ≤ +∞. We recall the classical notations of Nevanlinna theory
as follows:

N(r, f) =

∫ r

0

n(t, f)− n(0, f)

t
dt+ n(0, f) log r,

m(r, f) =
1

2π

∫ 2π

0

log+ |f(reiθ)|dθ, T (r, f) = N(r, f) +m(r, f),

where log+ x = max{log x, 0}, and n(t, f) is the counting function of poles of
function f in {z : |z| ≤ t}. Here we give the notations of the Nevanlinna theory
on annuli. Let

N1(r, f) =

∫ 1

1
r

n1(t, f)

t
dt, N2(r, f) =

∫ r

1

n2(t, f)

t
dt,

m0(r, f) = m(r, f) +m

(
1

r
, f

)
− 2m(1, f),

N0(r, f) = N1(r, f) +N2(r, f),

where n1(t, f) and n2(t, f) are the counting functions of poles of function f in
{z : t < |z| ≤ 1} and {z : 1 < |z| ≤ t}, respectively. Set

N0(r,
1

f − a
) = N1(r,

1

f − a
) +N2(r,

1

f − a
)

=

∫ 1

1
r

n1(t, 1
f−a )

t
dt+

∫ r

1

n2(t, 1
f−a )

t
dt,

in which each zero of the function f − a is counted only once. The Nevanlinna
characteristic of f on the annulus A is defined by

T0(r, f) = m0(r, f) +N0(r, f).

Throughout, we denote by S(r, ∗) quantities satisfying the following cases:
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(i) In the case R0 =∞,

S(r, ∗) = O(log(rT0(r, ∗)))

for r ∈ (1,+∞) except for the set 4r such that
∫
4r r

λ−1dr < +∞(λ ≥ 0);

(ii) If R0 <∞, then

S(r, ∗) = O

(
log

(
T0(r, ∗)
R0 − r

))
for r ∈ (1, R0) except for the set 4′r such that

∫
4′
r

dr
(R0−r)λ+1 < +∞(λ ≥ 0);

Thus for an admissible meromorphic function on the annulus A, S(r, f) =
o(T0(r, f)) holds for all 1 ≤ r < R0 except for the set4r or the above mentioned
set 4′r, respectively.

Lemma 2.1 ([5, 7]). Let f be a nonconstant meromorphic function on the
annulus A = {z : 1

R0
< |z| < R0}, where 1 ≤ r < R0 ≤ +∞. Then

(i) T0(r, f) = T0

(
r, 1
f

)
,

(ii) max

{
T0(r, f1 · f2), T0

(
r,
f1

f2

)
, T0(r, f1 + f2)

}
≤ T0(r, f1) + T0(r, f2) +O(1).

According to Lemma 2.1, the first fundamental theorem on the annulus A
is immediately obtained.

Lemma 2.2 ([5, 7] The first fundamental theorem). Let f be a nonconstant
meromorphic function on the annulus A = {z : 1

R0
< |z| < R0}, where 1 ≤ r <

R0 ≤ +∞. Then

T0

(
r,

1

f − a

)
= T0(r, f) +O(1)

for every fixed a ∈ C.

Lemma 2.3 ([6,7] The lemma of the logarithmic derivative). Let f be a non-
constant meromorphic function on the annulus A = {z : 1

R0
< |z| < R0}, where

1 ≤ r < R0 ≤ +∞. Then for every k ∈ N

m0

(
r,
f (k)

f

)
= S(r, f).

By a simple deduction, we can establish the following lemma.

Lemma 2.4 (The revised lemma of the logarithmic derivative). Let f be a
nonconstant meromorphic function on the annulus A = {z : 1

R0
< |z| < R0},

where 1 ≤ r < R0 ≤ +∞. Then

m0

(
r,
f (k)

f

)
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=


O(log r), R0 = +∞ and ρ(f) < +∞,
O
(

log 1
R0−r

)
, R0 < +∞ and ρ(f) < +∞,

O (log r + log T0(r, f)) , r /∈ ∆r R0 = +∞ and ρ(f) = +∞,
O
(

log 1
R0−r + log T0(r, f)

)
, r /∈ ∆′r R0 < +∞ and ρ(f) = +∞.

Next we give two lemmas concerning Pólya peaks of real functions.

Lemma 2.5 ([12]). Let T (r) be a real, increasing and non-negative function
defined in (0,∞) with lower order

µ = lim inf
r→∞

log T (r)/ log r <∞

and order

0 < λ = lim sup
r→∞

log T (r)/ log r ≤ ∞.

Then for any positive number µ ≤ σ ≤ λ and a set ∆r ⊂ (0,∞) with
∫

∆r
r−1dr

<∞, there exist five sequences {rn}, {r′n}, {r′′n}, {εn} and {ε′n} such that

(1) rn /∈ ∆r, lim
n→∞

rn
r′n

=∞, lim
n→∞

r′′n
rn

=∞, lim
n→∞

εn = lim
n→∞

ε′n = 0;

(2) lim inf
n→∞

log T (rn)
log rn

≥ σ;

(3) T (t) < (1 + εn)( t
rn

)σT (rn), t ∈ [r′n, r
′′
n];

(4) T (t) ≤ KT (rn)( t
rn

)σ−ε
′
n , 1 ≤ t ≤ r′′n and for a positive constant K.

By a transformation t = R0 − r−1, we can establish the following lemma.

Lemma 2.6. Let T (r) be a real, increasing and non-negative function defined
in (0, R0) with lower order

µ = lim inf
r→R0−

log T (r)

log 1
R0−r

<∞

and order

0 < λ = lim sup
r→∞

log T (r)

log 1
R0−r

≤ ∞.

Then for any positive number µ ≤ β ≤ λ and a set ∆r ⊂ (0, R0) with∫
∆r

dr
R0−r < ∞, there exist five sequences {rn}, {r′n}, {r′′n}, {εn} and {ε′n}

such that

(1) rn /∈ ∆r, 0 < r′n < rn < r′′n < R0, r′n → R0−, R0−r′n
R0−rn → ∞, R0−rn

R0−r′′n
→

∞, εn → 0, ε′n → 0(n→∞);

(2) lim inf
n→∞

log T (rn)
− log(R0−rn) ≥ β;

(3) T (t) < (1 + εn)(R0−rn
R0−t )βT (rn), t ∈ [r′n, r

′′
n];

(4) T (t) ≤ KT (rn)(R0−rn
R0−t )β−ε

′
n , 0 < t ≤ r′′n and for a positive constant K.
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3. Results

Before stating the results, we give the definition of order of a mermorphic
function on annuli.

Definition 3.1. Let f(z) be a nonconstant mermorphic function on the annu-
lus A = {z : 1

R0
< |z| < R0}, where 1 < R0 ≤ +∞. The function f is called a

transcendental or admissible meromorphic function on the annulus A provided
that

lim sup
r→∞

T0(r, f)

log r
= +∞, 1 < r < R0 = +∞

or

lim sup
r→R0−

T0(r, f)

− log(R0 − r)
= +∞, 1 < r < R0 <∞,

respectively. The order is defined as

ρA(f) = lim sup
r→∞

log T0(r, f)

log r
, 1 < r < R0 = +∞

or

ρA(f) = lim sup
r→R0−

log T0(r, f)

− log(R0 − r)
, 1 < r < R0 <∞,

respectively. The hyper-order is defined as

ρ2
A(f) = lim sup

r→∞

log log T0(r, f)

log r
, 1 < r < R0 = +∞

or

ρ2
A(f) = lim sup

r→R0−

log log T0(r, f)

− log(R0 − r)
, 1 < r < R0 <∞,

respectively.

Now we are in position to state our results, which are analogues of the results
in the complex plane.

Theorem 3.1. Let A(z) be an admissible (or transcendental) analytic coeffi-
cient of

(3.1) f (k) +A(z)f = 0

on the annulus A = {z : 1
R0

< |z| < R0}(1 < R0 ≤ +∞). Then all solutions

f 6≡ 0 of (3.1) are of infinite order of growth, i.e., ρA(f) = +∞.

Theorem 3.2. Let Ai(z)(i = 0, 1, . . . , k − 1) be the analytic coefficients of

(3.2) f (k) +Ak−1(z)f (k−1) + · · ·+A0(z)f = 0

on the annulus A = {z : 1
R0

< |z| < R0}(1 < R0 ≤ +∞). If either

(1) max
1≤j≤k−1

{ρA(Aj)} < ρA(A0) or

(2) Aj(z)(j = 1, 2, . . . , k − 1) are non-admissible (or non-transcendental)
while A0(z) is admissible (or transcendental) on A,
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then all solutions f 6≡ 0 of (3.2) are of infinite order of growth, i.e., ρA(f) =
+∞.

Theorem 3.3. Let B(z) and C(z) be the analytic coefficients of

(3.3) f ′′ +B(z)f ′ + C(z)f = 0

on the annulus A = {z : 1
R0

< |z| < R0}(1 < R0 ≤ +∞) satisfying ρA(C) <

ρA(B). Then every solution f 6≡ 0 of finite order of (3.3) satisfies ρA(f) ≥
ρA(B).

Theorem 3.4. Let Ai(z)(i = 0, 1, . . . , k − 1) be analytic functions on the an-
nulus A = {z : 1

R0
< |z| < R0}(1 < R0 ≤ +∞) that satisfy max

1≤j≤k−1
{ρA(Aj)} <

ρA(A0). Then all solutions f 6≡ 0 of (3.2) satisfy ρ2
A(f) ≥ ρA(A0).

Theorem 3.5. Let Ai(z)(i = 0, 1, . . . , k − 1) be mermorphic functions on the
annulus A = {z : 1

R0
< |z| < R0}(1 < R0 ≤ +∞) that satisfy

max
0≤j≤k−1,j 6=l

{ρA(Aj)} < ρA(Al)(l = 1, 2, . . . , k − 1).

Then all solutions f 6≡ 0 of (3.2) satisfy ρA(f) ≥ ρA(Al).

4. Proof of theorems

Proof of Theorem 3.1. Suppose that f 6≡ 0 is a solution to (3.1) of finite
order of growth. Then, from Lemma 2.3, we can obtain

T0(r,A) = m0(r,A) = m0

(
r,−f

(k)

f

)
=

{
O(log r), R0 = +∞,
O
(

log 1
R0−r

)
, R0 < +∞.

However, this implies that A(z) is non-admissible (or non-transcendental),
which is a contradiction.

Theorem 3.1 follows. �

Proof of Theorem 3.2. Assume that on the contrary to both cases (1) and
(2) that f 6≡ 0 is a solution to (3.2) with ρ(f) <∞, writing (3.2) in a form

A0(z) = −A1(z)
f ′(z)

f(z)
− · · · −Ak−1

f (k−1)(z)

f(z)
− f (k)(z)

f(z)

and make use of Nevanlinna’s fundamental theorem and Lemma 2.4, then we
obtain

T0(r,A0) ≤
k−1∑
j=1

T0(r,Aj) +

{
O(log r), R0 = +∞,
O
(

log 1
R0−r

)
, R0 < +∞.

The desired contradictions to both cases (1) and (2) now follow easily.
Theorem 3.2 follows. �
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Proof of Theorem 3.3. Suppose that f 6≡ 0 is a solution to (3.2) with ρ(f) <
+∞. It follows from (3.2) that

−B =
f ′′

f ′
+ C

f

f ′
.

Hence from Nevanlinna’s fundamental theorem, i.e., Lemmas 2.1 and 2.2, we
have

(4.1) m0(r,B) = m0(r, C) +m0

(
r,
f

f ′

)
+

{
O(log r), R0 = +∞,
O
(

log 1
R0−r

)
, R0 < +∞.

It follows that

2T0(r, f) ≥ T0(r,B)− T0(r, C)−

{
O(log r), R0 = +∞,
O
(

log 1
R0−r

)
, R0 < +∞.

Hence the result of the theorem follows from the fact that ρA(C) < ρA(B).
The proof is complete. �

Proof of Theorem 3.4. Set max{ρA(Aj) : j = 1, 2, . . . , k−1} = ρ, ρA(A0) =
α. We can rewrite (3.2) as

(4.2) −A0 =
f (k)

f
+Ak−1

f (k−1)

f
+ · · ·+A1

f ′

f
.

By Lemma 2.1 and Lemma 2.4, the inequality

(4.3) m0(r,A0) ≤
k−1∑
j=1

m0(r,Aj)+

{
O(log r + log T0(r, f)), R0 = +∞,
O
(

log 1
R0−r + log T0(r, f)

)
, R0 < +∞,

holds for all r outside a set ∆r ⊂ (0,+∞) with a linear measure
∫

∆r
r−1dr <

+∞ when R0 = +∞, and for all r outside a set ∆′r ⊂ (0, R0) with
∫

∆′
r

dr
R0−r <

+∞ when R0 < +∞.
Case I. R0 = +∞.
Since ρA(A0) = α, by (2) in Lemma 2.5, there exists a sequence {rn} outside

∆r such that

lim inf
n→∞

logm0(rn, A0)

log rn
≥ α.

For any given 0 < ε < (α− ρ)/2, and for j = 1, 2, . . . , k − 1

(4.4) m0(rn, Aj) < rρ+εn , m0(rn, A0) > rα−εn

hold for sufficiently large rn. From (4.3) and (4.4), we conclude that for suffi-
ciently rn,

rα−εn < O(rρ+εn ) +O(log rn + log T0(rn, f)).

Therefore, we have ρ2
A(f) ≥ α.

Case II. R0 < +∞.
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Since ρA(A0) = α, by (2) in Lemma 2.6, there exists a sequence {rn} outside
∆′r such that

lim inf
n→∞

logm0(rn, A0)

log 1
R0−rn

≥ α.

For any given 0 < ε < (α− ρ)/2, and for j = 1, 2, . . . , k − 1

(4.5) m0(rn, Aj) <

(
1

R0 − rn

)ρ+ε
, m0(rn, A0) >

(
1

R0 − rn

)α−ε
hold for rn → R0−. From (4.3) and (4.5), we get for rn → R0−(

1

R0 − rn

)α−ε
< O

((
1

R0 − rn

)ρ+ε)
+O

(
log

1

R0 − rn
+ log T0(rn, f)

)
.

Therefore, we have ρ2
A(f) ≥ α.

The proof is complete. �

Proof of Theorem 3.5. Set max
0≤j≤k−1,j 6=l

{ρA(Aj)} = ρ, ρA(Al) = α. We can

rewrite (3.2) as

(4.6) −Al =
f (k)

f (l)
+Ak−1

f (k−1)

f (l)
+ · · ·+A0

f

f (l)
.

By Nevanlinna theory, i.e., Lemma 2.1 and the inequality T0(r, f (k)) ≤ (k +

1)T0(r, f) +m0

(
r, f

(k)

f

)
, the following

(4.7)

T0(r,Al) ≤
k−1∑
j=0,6=l

T0(r,Aj) +

k∑
j=0,6=l

T0

(
r,
f (j)

f (l)

)

≤
k−1∑
j=0,6=l

T0(r,Aj) +O(T (r, f))

+

{
O(log r + log T0(r, f)), R0 = +∞,
O
(

log 1
R0−r + log T0(r, f)

)
, R0 < +∞,

holds for all r outside a set ∆r ⊂ (0,+∞) with a linear measure
∫

∆r
r−1dr <

+∞ when R0 = +∞ and for all r outside a set ∆′r ⊂ (0, R0) with
∫

∆′
r

dr
R0−r <

+∞ when R0 < +∞.
Case I. R0 = +∞.
Since ρA(Al) = α, by (2) in Lemma 2.5, there exists a sequence {rn} outside

∆r such that

lim inf
n→∞

log T0(rn, Al)

log rn
≥ α.

For any given 0 < ε < (α− ρ)/2, and for j 6= l

(4.8) T0(rn, Aj) < rρ+εn , T0(rn, Al) > rα−εn
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hold for sufficiently large rn. From (4.7) and (4.8), we get for sufficiently rn,

rα−εn < O(rρ+εn ) +O(T0(rn, f)) +O(log rn + log T0(rn, f)).

Therefore, we have ρA(f) ≥ α.
Case II. R0 < +∞.
Since ρA(Al) = α, by (2) in Lemma 2.6, there exists a sequence {rn} outside

∆′r such that

lim inf
n→∞

log T0(rn, Al)

log 1
R0−rn

≥ α.

For any given 0 < ε < (α− ρ)/2, and for j 6= l

(4.9) T0(rn, Aj) <

(
1

R0 − rn

)ρ+ε
, T0(rn, Al) >

(
1

R0 − rn

)α−ε
hold for rn → R0−. From (4.7) and (4.9), we get for rn → R0−(

1

R0 − rn

)α−ε
< O

((
1

R0 − rn

)ρ+ε)
+O(T0(rn, f))

+O

(
log

1

R0 − rn
+ log T0(rn, f)

)
.

Therefore, we have ρA(f) ≥ α.
The proof is complete. �
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