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SKEW CONSTACYCLIC CODES OVER FINITE

COMMUTATIVE SEMI-SIMPLE RINGS
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Abstract. This paper investigates skew Θ-λ-constacyclic codes overR =

F0 ⊕F1 ⊕· · ·⊕Fk−1, where Fi’s are finite fields. The structures of skew
λ-constacyclic codes over finite commutative semi-simple rings and their

duals are provided. Moreover, skew λ-constacyclic codes of arbitrary

length are studied under a new definition. We also show that a skew
cyclic code of arbitrary length over finite commutative semi-simple rings

is equivalent to either a cyclic code over R or a quasi-cyclic code over R.

1. Introduction

It has been shown that skew polynomial rings are an important class of non-
commutative rings. In 2007, D. Boucher et al. [3] initiated the study of skew
cyclic codes. They generalized the notion of cyclic codes by using generator
polynomials in noncommutative skew polynomial rings. The principle motiva-
tion for studying codes in this setting is that polynomials in skew polynomial
rings have more factorizations than that in the commutative case. In 2009 and
2011, motivated by the work in 2007, D. Boucher and F. Ulmer ([4] and [6])
continued to study skew Θ-λ-constacyclic codes over Galois rings and codes as
modules over skew polynomial rings.

In [4], D. Boucher, P. Sole and F. Ulmer generalized the construction of linear
codes via skew polynomial rings by using Galois rings instead of finite fields
as coefficients. If finite fields are replaced by Galois rings, then the technical
difficulty in studying from finite fields alphabet to Galois rings alphabet is
that the skew polynomial rings are not Ore rings. They are neither left nor
right Euclidean rings. However, left and right divisor can be defined for some
suitable elements. D. Boucher and F. Ulmer also studied the factorization of
skew polynomial in skew polynomial rings [7]. These results allowed them to
study the skew self-dual cyclic codes with length 2s.
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The class of finite rings of the form Fpm + uFpm has been widely used as
alphabets of certain constacyclic codes. For example, the structure of F2 +uF2

is interesting, it is lying between F4 and Z4 in the sense that it is additively
analogous to F4, and multiplicatively analogous to Z4. It has been studied by
a lot of researchers (see, for example, [1, 2, 17]).

In 2009, I. Siap et al. developed the study of skew codes by presenting
the structures of skew cyclic codes of arbitrary length [16]. Further, in 2012,
Jitman et al. [14] introduced the notion of skew Θ-λ-constacyclic (briefly, skew
constacyclic) over finite chain rings. They studied the structure of skew Θ-
λ-constacyclic, the Euclidean and Hermitian dual codes of skew Θ-cyclic and
negacyclic codes over finite chain rings.

More recently, codes over rings are a very important class and many types
of codes with good parameters can be constructed over rings. J. Gao [11]
and F. Gursoy et al. [13] determined skew cyclic codes over Fp + vFp and
Fq + vFq with different automorphisms. In addition, skew generalized quasi-
cyclic codes over finite fields are also studied by J. Gao [12]. In a recent paper
[9], we established successfully constacyclic codes over semi-simple rings. As
a generalization of constacyclic codes over semi-simple rings [10], the aim of
this paper is to study skew Θ-constacyclic codes over finite commutative semi-
simple rings.

This paper is arranged as follows. Basic concepts are reviewed in Section 2.
After presenting preliminary concepts in Section 2, we study algebraic struc-
tures of skew Θ-λ-constacyclic codes over finite commutative semi-simple rings
in Section 3. The dual codes of skew Θ-λ-constacyclic codes over finite commu-
tative semi-simple rings are investigated in Section 4. Finally, in the Section 5,
we consider the structure of skew Θ-λ-constacyclic codes over finite commuta-
tive semi-simple rings for arbitrary length.

2. Preliminaries

We first recall the definition of skew Θ-λ-constacyclic codes over finite fields.

Definition 2.1. Given an automorphism Θ of Fpm and a unit λ in Fpm , a
linear code C is said to be a skew Θ-λ-constacyclic of length n if it is closed
under the skew Θ-λ-constacyclic shift τΘ,λ : Fnpm → Fpm defined by

τΘ,λ(c0, c1, . . . , cn−1) = (Θ(λcn−1),Θ(c0), . . . ,Θ(cn−2)).

In particular, when λ = 1 or λ = −1, such codes are called skew Θ-cyclic and
skew Θ-negacyclic codes, respectively. When Θ is the identity automorphism,
they become classical constacyclic cyclic, cyclic, and negacyclic codes. A right
factor of degree n − k of xn − λ generates a [n, k] linear code. While the ring
Fpm [x] is a commutative ring, so every ideals of Fpm [x] is two-sided ideals, the
skew polynomial ring Fpm [x; Θ] is noncommutative. Therefore, we need to have
conditions of Θ and λ to ensure that 〈xn−λ〉 is a two-sided ideal of Fpm [x; Θ].
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If n is divisible by the order of Θ and λ is fixed by Θ, then 〈xn − λ〉 is a two-
sided ideal of Fpm [x; Θ]. If Θ is not the identity, then Fpm [x; Θ] is in general
not a unique factorization ring. In this case, there are typically many more
right factors than in the commutative case, producing many Θ-λ-constacyclic
codes.

Lemma 2.2 ([3, Lemma 1]). Let Θ be an automorphism of Fpm , n an integer
divisible by the order of Θ, and λ a unit in Fpm which is fixed by Θ. The ring
Fpm [x;Θ]
〈xn−λ〉 is a principal left ideal ring, in which the left ideals are generated by

g(x), where g(x) is a right divisor of xn − λ in Fpm [x; Θ].

The following result is considered as a generalization of Lemma 1 and The-
orem 1 in [3].

Theorem 2.3 (Extended Theorem 1 of [3]). Let Θ be an automorphism of
Fpm , and n an integer divisible by the order of Θ, and λ a unit in Fpm which
is fixed by Θ. Then the code C is a skew Θ-λ-constacyclic code if and only if

C is a left ideal 〈g(x)〉 ⊆ Fpm [x;Θ]
〈xn−λ〉 , where g(x) is a right divisor of xn − λ.

Given a monic right divisor of degree n−k of xn−λ : g(x) =
∑n−k−1
i=0 gix

i+
xn−k. Then a generator matrix of the Θ-λ-constacyclic code C generated by
g(x) is given by the following theorem.

Proposition 2.4 ([14, Proposition 3.1]). Let C be a skew Θ-λ-cyclic code of

length n over Fq generated by a right divisor g(x) =
∑n−k−1
i=0 gix

i + xn−k of
xn − λ. Then the generator matrix of C is given by

G :=


g0 · · · gn−k−1 1 0 · · · 0
0 Θ(g0) · · · Θ(gn−k−1) 1 · · · 0
0 · · · · · · · · · Θ2(gn−k−1) · · · 0
...

...
...

...
...

...
...

0 · · · 0 Θk−1(g0) · · · Θk−1(gn−k−1) 1


and |C| = qn−deg(g(x)).

Lemma 2.5 ([5, Lemma 17]). Let Θ be an automorphism of Fpm , and n an
integer divisible by the order of Θ, and λ a unit in Fpm which is fixed by Θ.
Let C be the Θ-λ-constacyclic code generated by a monic right divisor g(x) of

〈xn − λ〉 and h(x) := xn−λ
g(x) . If h = h0 + h1x + · · · + xn−r, then the following

matrix

H :=


1 Θ(hn−r−1) · · · Θn−r(h0) 0 · · · 0
0 1 Θ2(hn−r−1) · · · Θn−r+1(h0) · · · 0
0 0 · · · · · · · · · · · · 0
...

...
. . .

. . .
...

. . .
...

0 0 · · · 1 Θr(hn−r−1) · · · Θn−1(h0)


is a parity-check matrix for C.
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For skew Θ-negacyclic and skew Θ-cyclic codes, the following two corollaries
are direct consequences of Theorem 2.3.

Corollary 2.6 ([3, Lemma 1]). Let Θ be an automorphism of Fpm , and n an
integer divisible by the order of Θ. Then the code C is a skew Θ-cyclic code if

and only if C is a left ideal 〈g(x)〉 ⊆ Fpm [x;Θ]
〈xn−1〉 , where g(x) is a right divisor of

xn − 1.

Corollary 2.7. Let Θ be an automorphism of Fpm , and n an integer divisible
by the order of Θ. Then the code C is a skew Θ-negacyclic code if and only if

C is a left ideal 〈g(x)〉 ⊆ Fpm [x;Θ]
〈xn+1〉 , where g(x) is a right divisor of xn + 1.

3. Structures of skew constacyclic codes over finite commutative
semi-simple rings

In this section, we study skew λ-constacyclic codes over finite commutative
semi-simple rings. We now consider the semi-simple ring R = F0 ⊕ F1 ⊕ · · · ⊕
Fk−1, where Fi’s are finite fields. Since R = F0 ⊕ F1 ⊕ · · · ⊕ Fk−1, the unit λ
of R is uniquely expressed as

λ = (λ0, . . . , λk−1).

Assume that Θ is an automorphism of R. Then Θ can be written as Θ =
(Θ0, . . . ,Θk−1), where Θi is an automorphism of Fi.

Proposition 3.1. The order of Θ is the least common multiple of the orders
of Θi for all i = 0, . . . , k − 1.

Proof. Assume that the least common multiple of the orders of Θi is t. For
any unit λ = (λ0, . . . , λk−1) of R, we can see that

Θ(λ) = (Θ0(λ0),Θ1(λ1), . . . ,Θk−1(λk−1)).

This implies that Θt(λ) = (Θt
0(λ0),Θt

1(λ1), . . . ,Θt
k−1(λk−1)). Since t is the

least common multiple of the orders of Θi, we have

Θt(λ) = (Θt
0(λ0),Θt

1(λ1), . . . ,Θt
k−1(λk−1)) = (λ0, λ1, . . . , λk−1).

Suppose that Θu(λ) = λ. We must show that u is an integer divisible by t.
Indeed, since Θu(λ) = λ, it follows that u is an integer divisible by the orders
of Θi for all i = 0, . . . , k− 1. Hence, u is an integer divisible by t, proving that
t is the order of Θ. �

Proposition 3.2. Assume that Θ is an automorphism of R. Then λ =
(λ0, . . . , λk−1) is a unit of R fixed by Θ if and only if λi is fixed by Θi for
all i = 0, . . . , k − 1.

Proof. It is routine to check. �



SKEW CONSTACYCLIC CODES 423

Assume that Θ is an automorphism of R and n is an integer divisible by the
order of Θ. If λ is a unit in R which is fixed by Θ, then it is readily to check
that the map

φ :
R[x,Θ]

〈xn − λ〉
−→

k−1⊕
i=0

Fi[x,Θi]

〈xn − λi〉
given by

a0 + a1x+ · · ·+ an−1x
n−1

7→
(
a0,0+a0,1x+ · · ·+a0,n−1x

n−1, . . . , ak−1,0+ak−1,1x+ · · ·+ ak−1,n−1x
n−1
)

is a ring isomorphism. Hence, the ring R[x,Θ]
〈xn−λ〉 can be decomposed as

R[x,Θ]

〈xn − λ〉
∼=

k−1⊕
i=0

Fi[x,Θi]

〈xn − λi〉
.

This implies that C is a left ideal of R[x,Θ]
〈xn−λ〉 if and only if C can be expressed

as C = ⊕k−1
i=0 Ci, where Ci is a left ideal of Fi[x,Θi]

〈xn−λi〉 . We refer to this as the

standard representation of C.

Proposition 3.3. Let Θ be an automorphism of R, and n an integer divisible
by the order of Θ and λ a unit in R which is fixed by Θ.

(i) Let C be a skew Θ-λ-constacyclic code over R. Then the skew Θ-λ-

constacyclic code C has the form C = ⊕k−1
i=0 Ci, where Ci is a skew Θi-

λi-constacyclic code of length n over Fi (i = 0, . . . , k − 1). Moreover,
the skew Θ-λ-constacyclic C is a linear code over R if and only if the
skew Θ-λ-constacyclic code Ci is a linear code over Fi.

(ii) Let λ = (λ0, . . . , λk−1) be a unit of R. A skew Θ-λ-code C = ⊕k−1
i=0 Ci

is a skew Θ-λ-constacyclic code of length n over R if and only if each
code Ci is a skew Θi-λi-constacyclic code of length n over Fi.

Proof. (i) Since λ = (λ0, . . . , λk−1) is fixed by Θ = (Θ0, . . . ,Θk−1), then λi
is a unit in Fi fixed by Θi, where i = 0, . . . , k − 1. It is well-known that

φ : R[x,Θ]
〈xn−λ〉 −→

⊕k−1
i=0

F[x,Θi]
〈xn−λi〉 is a ring isomorphism. Hence, C = ⊕k−1

i=0 Ci,

where Ci is a skew Θi-λi constacyclic code over Fi (i = 0, . . . , k − 1). Then,
it is easy to verify that the skew Θ-λ-constacyclic C is a linear code of length
n over R if and only if the skew Θi-λi-constacyclic code Ci is a linear code of
length n over Fi (i = 0, . . . , k − 1).

(ii) Consider any codeword (c0, c1, . . . , ck−1) ∈ C, where ci=(ci,0, . . . , ci,n−1)
∈ Ci. Since

λcn−1 = (λ0, λ1, . . . , λk−1)(cn−1,0, cn−1,1, . . . , cn−1,k−1)

= (λ0cn−1,0, . . . , λk−1cn−1,k−1),

we have

(Θ(λcn−1), c0, . . . , cn−2) = Θ0(λ0cn−1,0), c0,0, . . . , cn−2,0)
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⊕ (Θ1(λ1cn−1,1), c0,1, . . . , cn−2,1) · · ·
⊕ (Θk−1(λk−1cn−1,k−1), c0,k−1, . . . , cn−2,k−1).

Therefore, C is a skew Θ-λ-constacyclic code of length n over R if and only if
Ci is a skew Θi-λi-constacyclic code of length n over Fi. �

For a skew Θ-λ-constacyclic code C = ⊕k−1
i=0 Ci of length n over R, the code

Ci (i = 0, . . . , k−1) is a skew Θi-λi-constacyclic code of length n over the field

Fi, so Ci is a principal left ideal of the ring Fi[x,Θ]
〈xn−λi〉 generated by right factors

of xn − λi, say Ci = 〈gi(x)〉. Let g(x) = (g1(x), . . . , gk(x)) ∈ R[x,Θ], then it
is straightforward to see that C = 〈g(x)〉. Moreover, a generator matrix of C

is G :=

 G0

G1

...
Gk−1

, where the matrices Gi are generator matrices of Ci for all

i = 0, . . . , k−1. One can also deduce an expression for the parity check matrix

of skew Θ-λ-constacyclic code C as follows: H :=

 H0

H1

...
Hk−1

, where the matrices

Hi are the parity check matrices of skew Θi λi-constacyclic codes Ci for all
i = 0, . . . , k − 1.

Thus, we have the following result.

Proposition 3.4. Let Θ be an automorphism of R, and n an integer divisible
by the order of Θ and λ a unit in R which is fixed by Θ. Suppose that C =
⊕k−1
i=0 Ci is a skew Θ-λ-constacyclic code of length n over R, where each Ci is

a skew Θi-λi-constacyclic code of length n over Fi. Then

(i) C = 〈(g0(x), . . . , gk−1(x))〉, where g0(x), . . . , gk−1(x) are the generator
polynomials of Ci (i = 0, . . . , k − 1).

(ii) C is generated by g(x) = (g0(x), . . . , gk−1(x)). In particular, R[x,Θ]
〈xn−λ〉 is

a principal left ideal ring.
(iii) Suppose that C is generated by g(x) = (g0(x), . . . , gk−1(x)), where

deg gi(x) = ri (i = 0, . . . , k − 1). Then C has the following genera-
tor matrix:

G :=



g0(x)
xg0(x)

...
xn−r0−1g0(x)

g1(x)
xg1(x)

...
xn−r1−1g1(x)

...
...

...
...

gk−1(x)
xgk−1(x)

...
xn−rk−1−1gk−1(x)
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Lemma 3.5. Let α = (α0, . . . , αk−1) and β = (β0, . . . , βk−1) be distinct
nonzero unit elements of the R fixed by Θ = (Θ0, . . . ,Θk−1), where Θ =
(Θ0, . . . ,Θk−1) is a ring automorphism of R. Then C is both skew α-and
β-constacyclic if and only if each Ci is both skew αi-and βi-constacyclic.

Proof. It is a direct consequence of Proposition 3.3. �

4. Dual codes

Given n-tuples x = (x0, x1, . . . , xn−1); y = (y0, y1, . . . , yn−1) ∈ Fnpm , their
inner product or dot product is defined in the usual way:

x ◦ y = x0y0 + x1y1 + · · ·+ xn−1yn−1,

evaluated in Fpm . Two codewords x, y are called orthogonal if x ◦ y = 0. For a
linear code C over Fpm , its dual code C⊥ is the set of n-tuples over Fpm that
are orthogonal to all codewords of C, i.e.,

C⊥ = {x |x ◦ y = 0,∀y ∈ C}.
A code C is called self-orthogonal if C ⊂ C⊥, and it is called self-dual if C = C⊥.
The following result is well known (cf. [5]).

Lemma 4.1 ([5, Corollary 18]). Let Θ be an automorphism of Fpm , and n
an integer divisible by the order of Θ, and λ a unit in Fpm which is fixed by

Θ. Let g(x) =
∑r−1
i=0 gix

i + xr, and h(x) =
∑n−r−1
i=0 hix

i + xn−r such that
h(x)g(x) = xn − λ. The dual of the skew Θ-λ-cyclic code generated by g(x) in
Fpm [x;Θ]
〈xn−λ〉 is the skew Θ-λ-cyclic code generated by

g⊥(x) = 1 + Θ(hn−r−1)x+ · · ·+ Θn−r(h0)xn−r.

Theorem 4.2. Let Θ be an automorphism of R, and n an integer divisible by
the order of Θ and λ a unit in R which is fixed by Θ. If C = ⊕k−1

i=0 Ci is a skew
Θ-λ-constacyclic code of length n over R generated by

g(x) = (g0(x), . . . , gk−1(x)),

then the dual of skew Θ-λ-cyclic code is generated by

g⊥(x) = (g⊥0 (x), . . . , g⊥k−1(x)).

Proof. It is straightforward from Proposition 3.3 and Lemma 4.1. �

It is well-known in [14] that C is a skew Θ-λ-constacyclic code over Fpm

if and only if C⊥ is a skew Θ-λ−1-constacyclic code over Fpm . The following
result is used to characterize the dual code of a skew Θ-λ-constacyclic code
over R.

Proposition 4.3. Let Θ be an automorphism of R, and n an integer divisible
by the order of Θ and λ a unit in R which is fixed by Θ. If C = ⊕k−1

i=0 Ci is
a skew Θ-λ-constacyclic code of length n over R, then the dual code of skew
Θ-λ-constacyclic code C is a skew Θ-λ−1-constacyclic code and C⊥ = ⊕k−1

i=0 C
⊥
i .
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Proof. Let (x0, x1, . . . , xk−1) be arbitrary in ⊕k−1
i=0 C

⊥
i , i.e., xi ∈ C⊥i . For any

codeword (c0, c1, . . . , ck−1) ∈ C, ci ∈ Ci, so xici = 0, and hence,

(x0, x1, . . . , xk−1) · (c0, c1, . . . , ck−1) = x0c0 + x1c1 + · · ·+ xkck−1 = 0.

It follows that (x0, x1, . . . , xk−1) ∈ C⊥. Thus, ⊕k−1
i=0 C

⊥
i ⊆ C⊥. On the other

hand,

|C⊥| = |R|
n

|C|
=

(∏k−1
i=0 qi

)n
∏k−1
i=0 |Ci|

=

k−1∏
i=0

qni
|Ci|

=

k−1∏
i=0

|C⊥i | =
∣∣⊕k−1

i=0 C
⊥
i

∣∣ .
Therefore, C⊥ = ⊕k−1

i=0 C
⊥
i . �

The following result is well-known from [8].

Proposition 4.4 ([8, Proposition 2.5]). Let α, β be distinct nonzero elements
of the field F. Then a linear code C of length n over F is both α- and β-
constacyclic if and only if C = {0} or C = Fn.

Using Proposition 4.4, we have the following result.

Theorem 4.5. Let α, β be distinct nonzero elements of the field F fixed by Θ,
where Θ is an automorphisms of F. Assume that n is an integer divisible by
the order of Θ. Then a skew Θ-α-and β-linear code C of length n over F is
both skew Θ-α-and β-constacyclic if and only if C = {0} or C = Fn.

Proof. (⇐) is obvious.
To prove (⇒), we assume that C is a non-zero code of length n over F, and

C is both skew α- and β-constacyclic. Hence, there exists a codeword with a
nonzero entry in C. Without loss of generality, assume that (c0, c1, . . . , cn−1) ∈
C, where cn−1 6= 0. Since C is both skew α- and β-constacyclic, we can see that
(Θ(αcn−1),Θ(c0), . . . ,Θ(cn−2)) and (Θ(βcn−1),Θ(c0), . . . ,Θ(cn−2)) belong to
C. Therefore, (1, 0, . . . , 0) ∈ C. Because (1, 0, . . . , 0) and all its shifts give a
basis for Fn, implying that C = Fn. �

The Hermitian inner product is defined as

x ◦Fq2
y = x0ȳ0 + x1ȳ1 + · · ·+ xn−1ȳn−1,

where x = (x0, x1, . . . , xn−1), y = (y0, y1, . . . , yn−1) ∈ Fnq2 and ȳi = yqi . The
Hermitian dual code of C is defined as

C⊥H = {x ∈ Fnq2 |
n−1∑
i=0

xiȳi = 0,∀y ∈ C}.

If C ⊆ C⊥H , then C is called a Hermitian self-orthogonal code. The code C
satisfying C⊥H ⊆ C is called a Hermitian dual-containing code. Hermitian
dual-containing codes are also known as weakly Hermitian self-dual codes. If
C⊥H = C, then C is called a Hermitian self-dual code. It is easy to see that
{0} is a Hermitian self-orthogonal code and Fnq2 is a Hermitian dual-containing
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code, which are referred to as the trivial Hermitian self-orthogonal and trivial
Hermitian dual-containing codes, respectively.

For a nonempty subset V of Fnq2 , we define V q to be the set

V q = {(vq0, v
q
1, . . . , v

q
n−1) : (v0, v1, . . . , vn−1) ∈ V }.

It is well-known from [9] that |V | = |V q|. If C is a q2-ary linear code, then Cq

is also a q2-ary linear code, and by definition, C⊥H = (C⊥)q. Since |C⊥| =
|(C⊥)q|, it follows that |C⊥H | = |C⊥|, i.e., |C||C⊥H | = q2n. Furthermore, it is
easy to check that (C⊥H )⊥H = C. Since the Hermitian inner product over Fq
is only defined when q is a square, hereafter, we only consider finite fields whose
cardinalities are even powers of primes. From now on, our finite commutative
semi-simple rings are of the form R = F0 ⊕ F1 ⊕ · · · ⊕ Fk−1, where Fi = Fq2i
for all i = 0, . . . , k − 1.

Recall that xi ◦Fi
yi denotes the Hermitian inner product over Fi for all

i = 0, . . . , k − 1. Then the Hermitian inner product over R is defined as

x ◦R y = (x0, . . . , xk−1) ◦R (y0, . . . , yk−1)

= (x0 ◦F0 y0, x1 ◦F1 y1, . . . , xk−1 ◦Fk−1
yk−1),

where xi = (xi,0, xi,1, . . . , xi,n−1), yi = (yi,0, yi,1, . . . , yi,n−1) for all i = 0, . . . ,
k − 1. The Hermitian dual code of C is defined as

C⊥H = {x ∈ Rn |x ◦R y = (x0 ◦F0 y0, x1 ◦F1 y1, . . . , xk−1 ◦Fk−1
yk−1)

= 0R,∀y ∈ C}.

A skew code is called skew linear code with complementary dual if C∩C⊥ = 0.
In particular, a code is called a linear code with complementary dual, or an LCD
code if C ∩ C⊥ = 0. The concept of LCD code was first given by Massey [15]
in 1992. We get the following result for the case of Hermitian dual codes.

Proposition 4.6. Let Θ be an automorphism of R, and n an integer divisible
by the order of Θ and λ a unit in R which is fixed by Θ. Suppose that C =
⊕k−1
i=0 Ci is a skew Θ-λ-constacyclic code of length n over R. Then the following

statements hold:

(i) For any skew Θ-λ-constacyclic code C = ⊕k−1
i=0 Ci of length n over R,

its Hermitian dual code is C⊥H = ⊕k−1
i=0 C

⊥H
i .

(ii) C is skew Θ-λ-Hermitian self-dual if and only if Ci are skew Θi-λi-
Hermitian self-dual for all i = 0, . . . , k − 1.

(iii) C is Hermitian self-orthogonal if and only if Ci are skew Θi-λi-Hermit-
ian self-orthogonal for all i = 0, . . . , k − 1.

(iv) C is skew Θ-λ-Hermitian dual-containing if and only if Ci are skew
Θi-λi-Hermitian dual-containing for all i = 0, . . . , k − 1.

(v) C is skew Θ-λ-Hermitian LCD if and only if Ci are skew Θi-λi-Hermit-
ian LCD for all i = 0, . . . , k − 1.

(vi) For any skew Θ-linear code C of length n over R, |C||C⊥H | = |Rn|.
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Proof. We first prove the part (i). The proof of part (ii), (iii), (iv) and (v)
are straightforward to see from (i). Let (x0, x1, . . . , xk−1) be arbitrary in

⊕k−1
i=0 C

⊥H
i . That means, for 0 ≤ i ≤ k − 1, xi ∈ C⊥H

i , and hence, for any
c = (c0, c1, . . . , ck−1) ∈ C,

x ◦R c = (x0, x1, . . . , xk−1) ∗ (c̄0, c̄1, . . . , c̄k−1)

= (x0 ◦F0 c̄0, x1 ◦F1 c̄1, . . . , xk−1 ◦Fk−1
c̄k−1) = 0R,

implying (x0, x1, . . . , xk−1) ∈ C⊥H . This shows that ⊕k−1
i=0 C

⊥H
i ⊆ C⊥H . On

the other hand, for all x = (x0, . . . , xk−1) ∈ C⊥H , we have

(x0, . . . , xk−1) ∗ (ȳ0, . . . , ȳk−1) = (x0 ◦F0 ȳ0, . . . , xk−1 ◦Fk−1
ȳk−1) = 0R

for all y = (y0, y1, . . . , yk−1) ∈ C. Note that xi = (xi,0, . . . , xi,n−1), ȳi =
(ȳi,0, . . . , ȳi,n−1) ∈ Ci for all i = 0, . . . , k− 1. Since xi ◦Fi

ȳi = 0Fi
for any ȳi ∈

Ci, we have xi ∈ C⊥H
i for all i = 0, . . . , k− 1. This means that x ∈ ⊕k−1

i=0 C
⊥H
i .

It follows that C⊥H ⊆ ⊕k−1
i=0 C

⊥H
i . Hence C⊥H = ⊕k−1

i=0 C
⊥H
i . From (i), we have

|C⊥H | =
k−1∏
i=0

|C⊥H
i | =

k−1∏
i=0

|q2n
i |
|Ci|

=

(∏k−1
i=0 q

2
i

)n
∏k−1
i=0 |Ci|

=
|Rn|
|C|

.

Therefore, |C||C⊥H | = |Rn|. �

Due to the constraint in the definition of the Hermitian inner product, the
Hermitian dual codes of skew Θ-λ-constacyclic codes are studied only when the
order of Θ is 2. Therefore, we always suppose that the order of Θ is 2.

Lemma 4.7. Let C be a code of even length n over R. Assume that the order
of Θ is 2. Then C is a skew Θ-λ-constacyclic code if and only if C⊥H is
a skew Θ-λ−1-constacyclic code. In particular, if λ2 = 1, then C is a skew
Θ-λ-constacyclic code if and only if C⊥H is a skew Θ-λ-constacyclic code.

Proof. We first observe that for each unit λ in Fq2 , λ ∈ FΘ
q2 if and only if

λ−1 ∈ FΘ
q2 . Let u = (u0, u1, . . . , un−1) ∈ C and v = (v0, v1, . . . , vn−1) ∈ C⊥H .

We have

((Θn−1(λu1),Θn−1(λu2), . . . ,Θn−1(λun−1),Θn−1(u0)) ◦R (v0, v1, . . . , vn−1))

= λ〈(Θn−1(u1),Θn−1(u2), . . . ,Θn−1(un−1),Θ(λ−1u0)) ◦R (v0, v1, . . . , vn−1)〉

= λ(Θn−1(λ−1u0)v̄n−1 +

n−1∑
i=1

Θn−1(ui)v̄i−1).

By assumption, n is a multiple of the order of Θ and λ−1 is fixed by Θ. It
follows that

0 = Θ(0) = Θ(λ(Θn−1(λ−1u0)v̄n−1 +

n−1∑
i=1

Θn−1(ui)v̄i−1))
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= λ(u0Θ(λ−1v̄n−1) +

n−1∑
i=1

uiΘ(v̄i−1)).

Hence, C⊥H is a skew Θ-λ−1-constacyclic code. The converse follows from the
fact that (C⊥H )⊥H = C. This implies that C is a skew Θ-λ-constacyclic code
if and only if C⊥H is a skew Θ-λ−1-constacyclic code over R. �

Put S = {xi | i ∈ N}. Before determining the structure of Hermitian dual
codes, we recall the following results.

Proposition 4.8.

(i) [14, Proposition 2.4] Let ϕi : Fq2i [x; Θ] −→ Fq2i [x; Θ]S−1 be defined by

ϕi(

t∑
j=0

ajx
j) =

t∑
j=0

x−jaj .

Then ϕi is a ring anti-monomorphism for all i = 0, . . . , k − 1.
(ii) [14, Section 3] Let φi : Fq2i [x; Θ] −→ Fq2i [x; Θ] be defined by

φi(

t∑
j=0

ajx
j) =

t∑
j=0

θj(aj)x
j .

Then φi is a ring automorphism for all i = 0, . . . , k − 1.

Lemma 4.9. Let Θ be an automorphism of R. Assume that the order of Θ
is 2 and λ2 = 1 ∈ R. Let a(x) = a0 + a1x + · · · + an−1x

n−1 and b(x) =
b0 + b1x+ · · ·+ bn−1x

n−1 be in R[x; Θ], where ai = (ai,0, ai,1, · · · , ai,k−1); bi =
(bi,0, bi,1, · · · , bi,k−1). Then the following statements are equivalent:

(i) The coefficient vector of a(x) is Hermitian orthogonal to the coefficient
vector of xiφ(xn−1ϕ(b(x))) for all i ∈ {0, 1, . . . , n − 1}, where φ =
(φ0, . . . , φk−1) and ϕ = (ϕ0, . . . , ϕk−1).

(ii) (a0, a1, . . . , an−1) is Hermitian orthogonal to

(Θ−1(bn−1), bn−2, . . . ,Θ
n−2(b0))

and all its Θ-λ-constacyclic shifts.

(iii) a(x)b(x) = 0 in R[x;Θ]
〈xn−λ〉 .

Proof. (i)⇔(ii) follows directly from the definition of ϕ. We need to prove that

(ii)⇔(iii). Suppose that a(x)b(x) = c0 + c1x+ · · ·+ cn−1x
n−1 ∈ R[x;Θ]

〈xn−λ〉 . Since

λ ∈ R such that λ2 = 1 and n is even, we have

ck =
∑
i+j=k

aiΘ
i(bj) +

∑
i+j=k+n

λaiΘ
i(bj)

= λ

 ∑
i+j=k

aiΘ
k−j(λbj) +

∑
i+j=k+n

aiΘ
n+k+j(bj)
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= λ(a0, a1, . . . , an−1) ◦R
(
λbk,Θ(λbk−1), . . . ,Θk(λb0),Θk+1(bn−1), . . . ,

Θn−1(bk+1)
)

= λ(a0, a1, . . . , an−1) ◦R
(
Θn(λbk),Θn+1(λbk−1), . . . ,

Θk(λb0),Θk+1(bn−1), . . . ,Θn−1(bk+1)
)

= λ(a0, a1, . . . , an−1) ◦R
(

Θ(n−k)+k(λbk),Θ(n−k+1)+k(λbk−1), . . . ,

Θk(λb0),Θk+1(bn−1), . . . ,Θ(n−k−1)+k(bk+1)
)

for 0 ≤ i ≤ n − 1, 0 ≤ j ≤ n − 1. Hence, a(x)b(x) = 0 if and only if ck = 0
for all k ∈ {0, 1, . . . , n − 1}. This implies that (a0, a1, . . . , an−1) is Hermitian
orthogonal to (bn−1,Θ(bn−2), . . . ,Θn−1(b0)) and its skew constacyclic shifts.

�

Theorem 4.10. Let Θ be an automorphism of R. Assume that the order of
Θ is 2 and λ2 = 1. Let g(x) be a right divisor of xn − λ and h(x) := xn−λ

g(x) .

Let C be the skew Θ-λ-constacyclic code generated by g(x). Then the following
statements hold:

(i) The skew polynomial φ(xdeg h(x)ϕ(h(x))) is a right divisor of xn − λ.
(ii) The Hermitian dual C⊥H is a skew Θ-λ-constacyclic code generated by

φ(xdeg h(x)ϕ(h(x))).

Proof. We have

(ϕ(g(x))(−λ)xn−deg(h(x)))φ(xdeg(h(x))ϕ(h(x))) = ϕ(g(x))(−λ)xnϕ(h(x))

= −λxnϕ(g(x))ϕ(h(x))

= −λxnϕ(h(x)g(x))

= −λxnϕ(xn − λ)

= −λxn(x−n − λ)

= xn − λ.

Therefore,

φ(ϕ(g(x)))(−λxn−deg(h(x)))φ(xdeg(h(x)))ϕ(h(x))) = φ(xn − λ) = xn − λ.

Hence, φ(xdeg(h(x))ϕ(h(x))) is a right divisor of xn−λ, proving (i). We can see

that g(x)h(x) = xn − λ = 0 in
Fq2 [x;Θ]

〈xn−λ〉 . Applying Lemma 4.7, we have

〈φ(xdeg(h(x))ϕ(h(x)))〉 ⊆ C⊥H .

By Theorem 2.3, we have

|〈φ(xdeg(h(x))ϕ(h(x)))〉| = q2(n−deg(h(x))).

This implies that 〈φ(xdeg(h(x))ϕ(h(x)))〉 = C⊥H , showing (ii). �
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Theorem 4.11. Let Θ be an automorphism of R. Assume that the order of Θ

is 2, λ2 = 1 and n is even, i.e., n = 2k. Suppose that g(x) =
∑k−1
i=0 gix

i + xk

is a right divisor of xn − λ. Then the skew Θ-λ-constacyclic code generated by
g(x) is Hermitian self-dual if and only if

(

k−1∑
i=0

gix
i + xk)(Θ−k−1(g−1

0 ) +

k−1∑
i=1

Θi−k−1(g−1
0 gk−i)x

i + xk) = xn − λ.

Proof. Let C be the skew Θ-λ-constacyclic code generated by g(x) and g⊥H be
the generator polynomial of the Hermitian dual code C. By assumption, we

have g(x) =
∑k−1
i=0 gix

i + xk and h(x) =
∑k−1
i=0 hix

i + xk = xn−λ
g(x) . Applying

Theorem 4.10, we have g⊥H = Θk+1(h0)xk + · · · + Θ2(hk−1)x + 1. Since C is

Hermitian self-dual, we have g⊥H (x) = Θk+1(h0)g(x) = Θk+1(h0)(
∑k−1
i=0 gix

i+
xk). Comparing coefficients, we have

(

k−1∑
i=0

gix
i + xk)(Θ−k−1(g−1

0 ) +

k−1∑
i=1

Θi−k−1(g−1
0 gk−i)x

i + xk) = xn − λ.

Conversely, if

(

k−1∑
i=0

gix
i + xk)(Θ−k−1(g−1

0 ) +

k−1∑
i=1

Θi−k−1(g−1
0 gk−i)x

i + xk) = xn − λ,

then h(x) = Θ−k−1(g−1
0 ) +

∑k−1
i=1 Θi−k−1(g−1

0 gk−i)x
i + xk. By applying Theo-

rem 4.10 again, g⊥H = φ(xdeg h(x)ϕ(h(x))), completing our proof. �

Remark 4.12. Suppose that there is a Hermitian self-dual skew Θ-λ-constacyclic
code over R. By theorem above, we must have a condition−λ = g0Θ−k−1(g−1

0 ).
Since λ is fixed by Θ, we can see that λ can be expressed as λ = −Θk+1(g0)g−1

0 .
Note that the order of Θ is 2. Then we have λ = −1 if k is odd or λ =
−Θ(g0)g−1

0 if k is even. Therefore, if k is odd and λ 6= −1, then there are no
Hermitian self-dual skew λ-constacyclic codes of length n = 2k.

5. Skew constacyclic codes of arbitrary length over finite
semi-simple rings

If n is divisible by the order of Θ, then there is a one-to-one correspondence
between skew Θ-λ-constacyclic codes and left ideals in R. However, the set

Rn = F[x;Θ]
〈xn−1〉 fails to be a ring if n is not divisible by the order of Θ [5]. This is

the reason why we can not study skew Θ-λ-constacyclic codes as previous way
when n is not divisible by the order of Θ. In [16], Siap et al. gave a new way

to study skew Θ-codes that Rn = F[x;Θ]
〈xn−1〉 can be considered as a left F[x; Θ]

module when n is not divisible by the order of Θ. From this, the skew Θ-cyclic
codes of arbitrary length were studied. Let (f(x) + (xn − 1)) be an element in
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the set Rn, and let r(x) ∈ F[x; Θ]. Define multiplication of the element of Rn
by the elements of F[x; Θ] as follows:

r(x) ? (f(x) + (xn − 1)) = r(x) ? f(x) + (xn − 1) (1)

for any r(x) ∈ F[x; Θ]. Then, we have the following result provided in [16].

Theorem 5.1 ([16, Theorem 9]). Rn is a left F[x; Θ]-module where multipli-
cations is defined as in Equation 1.

Using theorem above, Siap et al. [16] gave the definition of skew cyclic codes
for any length as follows.

Theorem 5.2 ([16, Theorem 10]). A code C in Rn is a skew Θ-cyclic code if
and only if C is a left F[x; Θ]-submodule of the left F[x; Θ]-module Rn.

We now give a definition of skew Θ-λ-constacyclic codes of arbitrary length
over semi-simple rings R = F0 ⊕ F1 ⊕ · · · ⊕ Fk−1.

Definition 5.3. A code C in R is a skew Θ-constacyclic code if C is a left
R-submodule of the left R[x; Θ]-module Rn.

We have the following result.

Proposition 5.4. Let C be a skew Θ-λ-constacyclic code of arbitrary length n
over R. Then the following results hold true:

(i) The skew Θ-λ-constacyclic code C has the form C = ⊕k−1
i=0 Ci, where

Ci is a Θ-λ-constacyclic code of length n over Fi (i = 0, . . . , k − 1).
Moreover, the skew Θ-λ-constacyclic code C is a linear code over R
if and only if the skew Θ-λ-constacyclic code Ci is a linear code over
Fi (i = 0, . . . , k − 1).

(ii) Let λ = (λ0, . . . , λk−1) be a unit of R, where λi is fixed by Θi. A code

C = ⊕k−1
i=0 Ci is a skew Θ-λ-constacyclic code of length n over R if and

only if each code Ci is a skew Θi-λi-constacyclic code of length n over
Fi.

Proof. We can see that the structure of skew Θ-λi-constacyclic code Ci of
length n can be identified with the structure of the left Fi[x; Θ]-submodule of
R for all i = 0, . . . , k − 1. Therefore, part (i) and (ii) are held. �

From Proposition 5.4, we have a characterization of skew Θ-λ-constacyclic
codes as follows.

Theorem 5.5. A code C over R is a skew Θ-λ-constacyclic code if and only
if C is a left R[x; Θ]-submodule of the left R[x; Θ]-module Rn.

Suppose that M is an R-module and U is a submodule of M . If U is
generated by m ∈M , i.e.,

U = 〈m〉 = {rm : r ∈ R},
then U is called a cyclic submodule generated by m. The following lemma is
given in [16]. It is easy to extend for skew Θ-λ-constacyclic codes over R.
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Proposition 5.6 ([16, Lemma 11]). Let C be a left submodule of Rn. Then C
is a cyclic submodule generated by a monic polynomial of minimal degree in C.

Motivated by this, we have the following result for the case of skew Θ-λ-
constacyclic codes over R.

Proposition 5.7. Let λ = (λ0, . . . , λk−1) be a unit of R, and C = ⊕k−1
i=0 Ci

a skew Θ-λ-constacyclic code of length n over R, where Ci is a skew Θi-λi-
constacyclic code of length n over Fi. Then C = 〈(g0(x), . . . , gk−1(x))〉, where
Ci is a skew Θi-λi-constacyclic code generated by a monic polynomial of mini-
mal degree gi(x) in Ci for i = 0, . . . , k − 1.

Proof. It is straightforward from that

φ :
R[x,Θ]

〈xn − λ〉
−→

k−1⊕
i=0

Fi[x,Θi]

〈xn − λi〉

is a ring isomorphism. �

Remark 5.8. It is well-known from [16, Theorem 12] that if Ci = 〈gi(x)〉 is a
left submodule of Rn, then g(x) is a right divisor of xn − λ. Therefore, we can
prove that if C is a skew Θ-λ-constacyclic code and C = 〈g0, . . . , gk−1〉 is a
left submodule of R, then each gi(x) is a right divisor of xn − λi over Fi for
i = 0, . . . , k − 1.

We recall the definition of quasi-cyclic codes over finite fields.

Definition 5.9. Let F be a finite field. A subset C of Fn is called a quasi-cyclic
code of length n = sl and index l if C satisfies the following conditions:

(a) C is a subspace of Fn.
(b) If

c = (c0,0, c0,1, . . . , c0,l−1, c1,0, . . . , c1,l−1, . . . , cs−1,0, cs−1,1, . . . , cs−1,l−1) ∈ C,
then

TΘ,s,l(c) = (cs−1,0, cs−1,1, . . . , cs−1,l−1, c0,0, . . . , c0,l−1, . . . , cs−2,0, . . . , cs−2,l−1)

∈ C.
Equivalently, C is a quasi-cyclic code of length n = sl and index l if C

is a F[x]
〈xs−1〉 -submodule of

(
F[x]
〈xs−1〉

)l
.

The following result was proven in [16].

Proposition 5.10 ([16, Corollary 17]). For gcd(m,n) = 1, if f(x) is a factor
of xn−1 in F[x; Θ], then f(x) is also a factor of xn−1 in the usual polynomial
ring F[x].

Applying Proposition 5.10, we have a result for skew Θ-cyclic codes of length
n over R.
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Theorem 5.11. Let Θ = (Θ0, . . . ,Θk−1) be an automorphism of R with
|〈Θi〉| = mi, and C = 〈g(x)〉 = (g0(x), . . . , gk−1(x)) be a skew Θ-λ-cyclic
code of length n over R. If gcd(mi, n) = 1 for all i = 0, . . . , k − 1, then C is a
cyclic code of length n over R.

Proof. From Proposition 5.10, we can see that Ci is a cyclic code of length n
over Fi for all i = 0, . . . , k − 1. Hence, C = ⊕k−1

i=0 Ci is a cyclic code of length
n over R, by Proposition 3.3. �

Let Θ be an automorphism with order m such that gcd(m,n) = d and C be
a skew Θ-cyclic code of length n over F. Suppose that n = sd and

c(x) = c0,0 + c0,1x+ · · ·+ c0,d−1x
d−1 + c1,0x

d + · · ·+ c1,d−1x
2d−1 + · · ·

+ cs−1,0x
sd−d + · · ·+ cs−1,d−1x

sd−1 ∈ C.
Since gcd(m,n) = d, there exist integers a, t such that am = d− tn > 0. Now,
we consider

xam ∗ c(x) = xd−tn ∗
(
c0,0 + · · ·+ c0,d−1x

d−1 + c1,0x
d + · · ·

+c1,d−1x
2d−1 + · · ·+ cs−1,0x

sd−d + · · ·+ cs−1,d−1x
sd−1

)
= xd−tn ∗ c0,0 + · · ·+ xd−tn ∗ c0,d−1x

d−1 + xd−tn ∗ c1,0xd + · · ·

+ xd−tn ∗ c1,d−1x
2d−1 + · · ·+ xd−tn ∗ cs−1,0x

sd−d + · · ·

+ xd−tn ∗ cs−1,d−1x
sd−1

= Θd−tn(c0,0)xd−tn + · · ·+ Θd−tn(c0,d−1)xd−tn+d−1 + · · ·

+ Θd−tn(cs−2,0)xd−tn+sd−2d + · · ·

+ Θd−tn(cs−2,d−1))xd−tn+sd−d−1

+ Θd−tn(cs−1,0)xd−tn+sd−d + Θd−tn(cs−1,1)xd−tn+sd−d+1 + · · ·

+ Θd−tn(cs−1,d−1)xd−tn+sd−1

= Θd−tn(cs−1,0)xd−tn+sd−d + Θd−tn(cs−1,1)xd−tn+sd−d+1 + · · ·

+ Θd−tn(cs−1,d−1)xd−tn+sd−1 + Θd−tn(c0,0)xd−tn + · · ·

+ Θd−tn(c0,d−1)xd−tn+d−1 + · · ·

+ Θd−tn(cs−2,0)xd−tn+sd−2d + · · ·

+ Θd−tn(cs−2,d−1))xd−tn+sd−d−1.

Since xn = 1 and Θd−tn(cs−1,0) = Θam(cs−1,0) = cs−1,0, we have

Θd−tn(cs−1,0)xd−tn+sd−d = Θam(cs−1,0)xn−tn = cs−1,0.

Similarly, we can see that

Θd−tn(cs−1,1)xd−tn+sd−d+1 = Θam(cs−1,1)xn−tn+1 = cs−1,1 · x,
...
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Θd−tn(cs−1,d−1)xd−tn+sd−1 = Θam(cs−1,d−1)xn−tn+d−1 = cs−1,d−1 · xd−1,

Θd−tn(c0,0)xd−tn = Θam(c0,0)xd = c0,0 · xd,
...

Θd−tn(c0,d−1)xd−tn+d−1 = Θam(c0,d−1)x2d−1 = c0,d−1 · x2d−1,

...

Θd−tn(cs−2,0)xd−tn+sd−2d = Θam(cs−2,0)x−d = cs−2,0 · xn−d,
...

Θd−tn(cs−2,d−1)xd−tn+sd−d−1 = Θam(cs−2,d−1)x−1 = cs−2,d−1 · xn−1.

Thus,

xam ∗ c(x) = cs−1,0 + cs−1,1x+ · · ·+ cs−1,d−1x
d−1 + c0,0x

d + · · ·

+ c0,d−1x
2d−1 + · · ·+ cs−2,0x

n−d + · · ·+ cs−2,d−1x
n−1.

Since (xam ∗ c(x)) ∈ C, we can conclude that

(cs−1,0, cs−1,1, . . . , cs−1,d−1, c0,0, . . . , c0,d−1, . . . , cs−2,0, . . . , cs−2,d−1) ∈ C.
This shows that C is equivalent to a quasi-cyclic code of length n with index d
over F. This relationship between skew Θ-cyclic codes and quasi-cyclic codes
was provided in [16].

Theorem 5.12 ([16, Theorem 18]). Let Θ be an automorphism of F with
|〈Θ〉| = m, and C = 〈g(x)〉 be a skew Θ-cyclic code of length n over F. If
gcd(m,n) = d, then C is equivalent to a quasi-cyclic code of length n and index
d.

We consider the general case gcd(mi, n) = di for all i = 0, . . . , k − 1, where
di is not necessarily be equal to 1 as in Theorem 5.13.

Theorem 5.13. Let C = 〈g(x)〉 = 〈g0(x), g1(x), . . . , gk−1(x)〉 be a skew Θ-
cyclic code of length n and Θ an automorphism of Fi with |〈Θi〉| = mi. If

gcd(mi, n) = di for all i = 0, . . . , k−1, then C = ⊕k−1
i=0 Ci, where Ci is equivalent

to a quasi-cyclic code of length n and index di.

Proof. Since gcd(mi, n) = di for all i = 0, . . . , k−1, by applying Theorem 5.12,
we can see that Ci is equivalent to a quasi-cyclic code of length n and index
di. �

Remark 5.14.

(i) Theorem 5.11 is a special case of Theorem 5.13, where all di = 1.
(ii) When all di = d, the skew Θ-cyclic code C is equivalent to a quasi-cyclic

code of index d.

We conclude this section by providing some examples to illustrate our results.



436 H. Q. DINH, B. T. NGUYEN, AND S. SRIBOONCHITTA

Example 5.15. We consider F8 = F2(a), where a3 = a + 1. Let Θ be the
Frobenius homomorphism of F8, i.e., Θ(u) = u2 for all u ∈ F8. It is easy to
see that the order of Θ is m = 3. Let us consider the skew Θ-cyclic code of
length 5. According to Proposition 5.10, in this case gcd(3, 5) = 1, if f(x) is
a factor of x5 − 1 in F8[x,Θ], then f(x) is also a factor of x5 − 1 in the usual
polynomial ring F8[x]. In fact, nontrivial right divisors of x5 − 1 in F8[x,Θ]
are f1(x) = x− 1, f2 = x4 + x3 + x2 + x+ 1. These factors are also factors of
x5 − 1 in F8[x].

Example 5.16. We consider F = Z2(a), a is a root of x4+x+1, and Θ(z) = z2.
It is clear that the order of Θ is 4. In F[x; Θ], we can see that x6 − 1 =
(x3 +a10x2 +a5x+a5)∗(x3 +a5x2 +a5x+a10). As mentioned in Theorem 5.13,
the skew Θ-cyclic code generated by f(x) = x3 +a5x2 +a5x+a10 is equivalent
to a quasi-cyclic code of length 6 and index 2 generated by g(x) = x+ a5.
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