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CONFORMAL TRANSFORMATION OF LOCALLY DUALLY

FLAT FINSLER METRICS

Laya Ghasemnezhad and Bahman Rezaei

Abstract. In this paper, we study conformal transformations between

special class of Finsler metrics named C-reducible metrics. This class
includes Randers metrics in the form F = α + β and Kropina metric in

the form F = α2

β
. We prove that every conformal transformation be-

tween locally dually flat Randers metrics must be homothetic and also

every conformal transformation between locally dually flat Kropina met-
rics must be homothetic.

1. Introduction

Let F be a Finsler metric on an n-dimensional manifold M . For a non-zero
vector y ∈ TxM , F induces an inner product gy on TxM by

gy(u, v) := gij(x, y)uivj =
1

2
[F 2]yiyju

ivj .

For two arbitrary non-zero vectors v, y ∈ TxM the angle θ(v, y) between y and
v is defined by

cos θ(y, v) := yiv
i/F (x, y)

√
gij(x, y)vivj ,

where yi := gij(x, y)yj . It should be remarked that the notion of angle is not
symmetric, in that the angle θ(y, v) between y and v is different from the angle
θ(v, y) between v and y generally. Now assume that F and F̄ are two Finsler
metrics on an n-dimensional manifold M . If the angle θ(y, v) with respect to F
is equal to the angle θ̄(y, v) with respect to F̄ for any vectors v, y ∈ TxM\{0}
and any x ∈ M then F is called conformal to F̄ . The transformation F → F̄
of the metric is called conformal transformation [1, 2].

In conformal geometry, it is one of interesting issues to study the conformal
transformation. In [3], S. Basco and X. Cheng obtained the relations between
some geometric quantities of two conformally related Finsler metrics and dis-
cussed the properties of those conformal transformations which preserve these
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quantities. Later G. Chen, X. Cheng and Y. Zhu proved that if both con-
formally related (α, β)-metrics F and F̄ are Douglas metrics of non-Randers
type, then the conformal transformation must be homothety, and also confor-
mal transformation between two Finsler metrics of isotropic S-curvature must
be homothety [4]. In this paper we study the conformal transformation be-
tween two special class of Finsler metrics of locally dually flat type. Locally
dually flat Finsler metrics are studied in information geometry and naturally
arise from the investigation of the flat information structure, this notion is in-
troduced in [12]. X. Cheng and Y. Tian in 2011 found some equations that
characterize locally dually flat Randers metrics [8]. By assuming conformally
related two locally dually flat Randers metrics we get the following theorem:

Theorem 1.1. Every conformal transformation between locally dually flat Ran-
ders metrics must be homothetic.

Moreover in 2016 G. Chen and L. Liu studied locally dually flat Kropina
metrics [5]. By using the results of this research we prove the following theorem.

Theorem 1.2. Every conformal transformation between locally dually flat
Kropina metrics must be homothetic.

C-reducible Finsler metrics are a special class of Finsler metrics which was
introduced by M. Matsumoto. By Theorems 1.1 and 1.2 we can get this corol-
lary.

Corollary 1.3. Every conformal transformation between locally dually flat C-
reducible Finsler metrics must be homothetic.

2. Preliminaries and notations

Let M be an n-dimensional C∞ manifold. Denote by TxM as the tangent
space at x ∈ M , and by TM = ∪x∈MTxM as the tangent bundle of M .
Each element of TM has the form (x, y), where x ∈ M and y ∈ TxM . Let
TM0 = TM\{0}. The natural projection π : TM →M is given by π(x, y) = x.
The pull-back tangent bundle π∗TM is a vector bundle over TM0 whose fiber
π∗vTM at v ∈ TM0 is just TxM , where π(v) = x. Then

π∗TM = {(x, y, v) | y ∈ TxM0, v ∈ TxM}.

A Finsler metric on a manifold M is a function F : TM → [0,∞) which has
the following properties: (i) F is C∞ on TM0; (ii) F (x, λy) = λF (x, y), λ > 0;
and (iii) For any tangent vector y ∈ TxM , the vertical Hessian of F 2/2 given
by

gij(x, y) =

[
1

2
F 2

]
yiyj

is positive definite.
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Every Finsler metric F induces a spray G = yi ∂
∂xi − 2Gi(x, y) ∂

∂yi by (see

[11])

Gi(x, y) :=
1

4
gil(x, y){2∂gjl

∂xk
(x, y)− ∂gjk

∂xl
(x, y)}yjyk.(1)

In Finsler geometry there is a quite important class of metrics called (α, β)-

metric. An (α, β)-metric is a scalar function F on TM defined by F := αφ(βα ),

where φ = φ(s) is a C∞ on (−b0, b0) with certain regularity, α =
√
aij(x)yiyj

is a Riemannian metric and β = bi(x)yi is a 1-form on M . As we know that
the geodesic coefficients Gi of F and geodesic coefficients Giα of α are related
as follows:

(2) Gi = Giα + αQsi◦ + α−1Θ{r00 − 2αQs◦}yi + Ψ{r00 − 2αQs◦}bi,

where

Q =
φ′

φ− sφ′
,

Θ =
φφ′ − s(φφ′′ − φ′φ′)

2{(φ− sφ′) + (b2 − s2)φ′′}
,

Ψ =
φ′′

2{(φ− sφ′) + (b2 − s2)φ′′}
.

The Randers metric F = α + β, the Kropina metric F = α2

β , the generalized

Kropina metric F = α1−mβm and Matsumoto metric F = α2

α−β are (α, β)-

metrics with φ(s) = 1 + s, φ(s) = 1
s , φ(s) = sm and φ = 1

1−s , respectively.

Denote the Levi-Civita connection of α by ∇ and define bi|j by (bi|j)θ
j :=

dbi − bjθ j
i , where θi := dxi and θ j

i := Γjikdx
k. For a generic (α, β)-metric, we

use usually the following notations:

rij :=
1

2
(bi|j + bj|i), sij :=

1

2
(bi|j − bj|i).

Furthermore, we denote

rij := aikrkj , r00 := rijy
iyj , ri0 := rijy

j , r := rijb
ibj ,

sij := aikskj , sj := bisij , s0 := siy
i, si0 := sijy

j , b2 := bibi.

Randers metric is an important class of Finsler metrics which is a special
case of (α, β)-metrics with φ(s) = 1 + s. By (2) the spray coefficients Gi of F
and geodesic coefficients Giα of α are related as follows:

Gi = Giα + (
e00

2F
− s0)yi + αsi0,(3)

where eij = rij + bisj + bjsi and e00 = eijy
iyj [6].

Another (α, β)-metric that we are interested to study in this paper is Kropina

metric. Let F = α2

β be a Kropina metric on a manifold M , then geodesic



410 L. GHASEMNEZHAD AND B. REZAEI

coefficients Gi(x, y) are [13]:

(4) Gi = Giα −
α2

2β
si0 +

1

2b2
(
α2

β
s0 + r00)bi − 1

b2
(s0 +

β

α2
r00)yi.

A Finsler metric on a manifold is said to be locally dually flat if at any point
there is a local coordinate system in which the spray coefficients of F are in
the form

Gi = −1

2
gijHyj ,

where H = H(x, y) is a scalar function on the tangent bundle TM . Such a
coordinate system is called an adapted coordinate system. It is easy to see
that every locally Minkowskian metric is locally dually flat. But the converse
is not true [7]. In [12], Z. Shen proved that a Finsler metric F (x, y) on an open
subset U ⊆ Rn is dually flat if and only if the following PDEs hold:

(5) [F 2]xkyly
k − 2[F 2]xl = 0.

In this case, H = − 1
6 [F 2]xlyl. Locally dually flat Finsler metrics are stud-

ied in Finsler information geometry in [12]. In [7], the authors studied and
characterized locally dually flat Randers metrics and obtained the following
theorem:

Theorem 2.1 (see [7]). Let F = α+β be a Randers metric on an open subset
U ⊆ Rn. Then F is dually flat if and only if in an adapted coordinate system,
α and β satisfy

Giα = (2θ + τβ)yi − α2(τbi − θi),(6)

r00 = 2θβ − 5τβ2 + (3τ + 2τb2 − 2bkθ
k)α2,

si0 = βθi − θbi,

where θ = θk(x)yk is a 1-form on U , θi := aikθk, and τ = τ(x) is a scalar
function.

The same theorem was studied for Kropina metrics in 2016 as follows.

Theorem 2.2 (see [5]). Let F = α2

β be a Kropina metric on a manifold M .

Then F is dually flat if and only if in an adapted coordinate system, β and α
satisfy

Giα =
1

b2

[
α2ξi + (θb2 − ξ)yi

]
,(7)

r00 =
1

2b2

[
β(θb2 + ξ)− 4(ξkb

k)α2
]
,(8)

sk0 =
1

4b2

[
b2(θbk − βθk) + 7(βξk − bkξ)

]
,(9)

where θ = θi(x)yi and ξ = ξi(x)yi are 1-forms on M and ξi := aijξj.
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Two Finsler metrics F and F̄ on a manifold M are said to be conformally
related if there is a scalar function σ(x) on M such that F̄ = eσ(x)F . A
Finsler metric which is conformally related to a Minkowski metric is called a
conformally flat Finsler metric. Let F and F̄ be two conformally related Finsler
metrics on an n-dimensional manifold M . It follows from (1) that the geodesic
coefficients of F and F̄ satisfy

Ḡi = Gi +
1

2F̄
F̄;ky

kyi +
1

2
F̄ ḡil{F̄;k.ly

k − F̄;l}.

If F̄ = eσ(x)F , then F̄;k = σke
σ(x)F , where σk := ∂σ

∂xk and σ0 = σky
k. Conse-

quently

Ḡi = Gi +
1

2
(σ0)yi +

F

2
gil{(σkyk)Fyl − σlF}

= Gi + (σ0)yi − F 2

2
σi.(10)

By a conformal change F̄ = eσ(x)F various quantities in (α, β)-metrics are
changed as follows:

ᾱ = eσ(x)α, β̄ = eσ(x)β.

Let ᾱ =
√
āijyiyj , β̄ = b̄i(x)yi. Then āij = e2σ(x)aij , ā

ij = e−2σ(x)aij ,

b̄i = eσ(x)bi, b̄
i = e−σ(x)bi. Further, we have [6]

b̃i||j = eκ(x)
(
bi;j − bjκi + faij

)
,(11)

where b̄i||j denote the covariant derivative of b̄i with respect to ᾱ and f :=
bmσm. From (11), we get

s̄ij = eσ(x)
[
sij +

1

2
(biσj − bjσi)

]
,

r̄ij = eσ(x)
[
rij −

1

2
(biσj + bjσi) + faij

]
.(12)

3. Proof of Theorem 1.1

Now assume that both F̄ = ᾱ + β̄ and F = α + β are Finsler metrics of
Randers type. By Theorem 2.1, if F̄ and F are locally dually flat metrics, then
by plugging F̄ = eσ(x)F we obtain the following equations

Giᾱ = (2θ̄ + eσ(x)τ̄β)yi − e2σ(x)α2(e−σ τ̄ bi − θ̄i),(13)

r̄00 = 2eσ θ̄β − 5e2σ τ̄β2 + (3τ̄ + 2τ̄ b2 − 2eσbkθ̄
k)e2σα2,(14)

s̄i0 = eσβθ̄i − eσ θ̄bi,(15)

where θ̄ = θ̄k(x)yk is a 1-form on U , θ̄i := āikθ̄k, and τ̄ = τ̄(x) is a scalar
function and Giᾱ denote the spray coefficients of F̄ . We need the following
lemma for the proof of Theorem 1.1.
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Lemma 3.1. Let F̄ and F be two Randers metrics which they are conformally
related i.e., F̄ = eσ(x)F . Then

s̄0 = eσ(x)K(x)s0,(16)

ē00 = 2eσK(x)θβ − 5e2σQ(x)τβ2 + 2eσK(x)s0β

+ (3Q(x)τ + 2Q(x)τb2 − 2eσbkK(x)θk)e2σα2,

where K(x) = θ̄
θ and Q(x) = τ̄

τ .

These equations can be obtained by using (6), (14) and (15). As we know
the spray coefficients of two conformally related Finsler metrics satisfy in (10).
Plugging (3) into (10), we get

Giᾱ + (
ē00

2F̄
− s̄0)yi + ᾱs̄i0 = Giα + (

e00

2F
− s0)yi + αsi0 + σ0y

i − F 2

2
σi.(17)

By replacing quantities that we get in (6), (13) and (16) in (17), one can see

0 = (2K(x)θ + eσQ(x)τβ)yi − e2σα2(Q(x)τe−σbi −K(x)θi)

+
{ 1

2eσF
(−5e2σQ(x)τβ2 + eσK(x)θβ + 2eσK(x)s0β)− s0

+ 2(3Q(x)τ + 2Q(x)τb2 − 2eσbkK(x)θk)e2σα2
}
yi −

{
− s0

+
1

2F
(2θβ + 2s0β − 5τβ2 + α2(3τ + 2τb2 − 2bkθ

k))
}
yi − α2θi

− (2θ + τβ)yi + e2σα(βK(x)θi − biK(x)θ)− α(βθi − θbi)

+ α2τbi − σ0y
i +

F 2

2
σi.

By multiplying both sides of the equation mentioned above by 2F to remove
the denominators and sort this equation by α, we get

0 = α3
{1

2
σi +K(x)e2σθi + τbi −Q(x)τeσbi − θi

}
+ α2

{
K(x)e2σθiβ +

3

2
σiβ

− yiτb2 + biK(x)e2σθ − yie2σbkK(x)θk + yieσQ(x)τb2 +
3

2
yieσQ(x)τ

+ τbiβ + biθ −Q(x)τeσbiβ − 2βθi + yibkθ
k + e2σβK(x)θi − 3

2
yiτ
}

+ α
{

2yiK(x)θ + e2σβ2K(x)θi + yieσQ(x)τβ − β2θi − σ0y
i − yiτβ

+ biθβ − e2σbiK(x)θβ − 2yiθ +
3

2
σiβ2

}
− σ0y

iβ +K(x)(yis0β + 3yiθβ)

− 3yiθβ +
1

2
σiβ3 − yis0β + (

3

2
)yiτβ2 − 3

2
yieσQ(x)τβ2.

We can rewrite this equation as the following

0 = α
{
α2
{1

2
σi +K(x)e2σθi + τbi −Q(x)τeσbi − θi

}
+ α

{
K(x)e2σθiβ
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+
3

2
σiβ + biK(x)e2σθ−Q(x)τeσbiβ−yiτb2 + yieσQ(x)τb2 +

3

2
yieσQ(x)τ

+ yibkθ
k + biθ − yie2σbkK(x)θk − 2βθi + τbiβ + e2σβK(x)θi − 3

2
yiτ
}

+ e2σβ2K(x)θi + yieσQ(x)τβ−β2θi−yi(τβ + σ0−2K(x)θ) + θ(biβ−2yi)

− e2σbiK(x)θβ +
3

2
σiβ2

}
−
{
σ0y

iβ−yiK(x)s0β + 3yiθβ +
3

2
yieσQ(x)τβ2

− 3yiK(x)θβ + yis0β −
1

2
σiβ3 − 3

2
yiτβ2

}
.

From this equation, we know that

0 = σ0y
iβ − yiK(x)s0β + 3yiθβ − 3yiK(x)θβ

− 1

2
σiβ3 + yis0β +

3

2
yieσQ(x)τβ2 − 3

2
yiτβ2.(18)

By contracting (18) with yi, we have

0 = α2σ0β + α2K(x)s0β + 3α2θβ − 3α2K(x)θβ

− 1

2
σ0β

3 + α2s0β +
3

2
α2eσQ(x)τβ2 − 3

2
α2τβ2.(19)

It follows from (22) that{
K(x)s0β + 3θβ − 3K(x)θβ +

3

2
eσQ(x)τβ2 + σ0β −

3

2
τβ2 + s0β

}
α2(20)

=
1

2
σ0β

3.

This equality holds if and only if σiyiβ
3 = 0 then

σi = 0.

It means that σ must be a constant function, i.e., conformal transformation
must be homothetic.

4. Proof of Theorem 1.2

In this section we try to prove Theorem 1.2. Let F̄ be a Kropina metric that
satisfies dually flat conditions. Then Theorem 2.2 we have

Giᾱ =
1

b2

[
ᾱ2ξ̄i + (θ̄b2 − ξ̄)yi

]
,

r̄00 =
1

2b2

[
β̄(θ̄b2 + ξ̄)− 4(ξ̄k b̄

k)ᾱ2
]
,

s̄k0 =
1

4b2

[
b2(θ̄b̄k − β̄θ̄k) + 7(β̄ξ̄k − b̄k ξ̄)

]
,

where θ̄ = θ̄i(x)yi and ξ̄ = ξ̄i(x)yi are 1-forms on M and ξ̄i := āij ξ̄j .
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Lemma 4.1. Let F̄ and F be two dually flat Kropina metrics which they are
conformally related, i.e., F̄ = eσ(x)F . Then

r̄00 =
eσ

2b2

[
β(Kθb2 +Qξ)− 4(Qξkb

k)α2
]
,(21)

Ḡiᾱ =
1

b2

[
e2σα2Qξi + (Kθb2 −Qξ)yi

]
,(22)

s̄i0 =
1

4b2

[
b2(Ke−σθbi − eσβKθi) + 7(eσβQξi − e−σbiQξ)

]
,(23)

s̄0 =
1

4b2

[
b2K(θb2 − βθkbk) + 7Q(βξkb

k − b2ξ)
]
,(24)

where θ̄
θ = K(x) and ξ̄

ξ = Q(x).

Proof of this lemma by using (7)-(9) is straight.
By contracting (12) by yi and yj we have following equality

(25) r̄00 = eσ(x)(r00 + fα2 − βσ0).

Input (8) and (21) into (25) we can get

0 =
eσ

2b2

[
β(Kθb2 +Qξ)− 4(Qξkb

k)α2
]

− eσ
{ 1

2b2

[
β(θb2 + ξ)− 4(ξkb

k)α2
]

+ fα2 − βσ0

}
.

To remove denominators multiply both sides of equation mentioned above by
2b2 and sort by α

0 = eσ
{

[−4(Qξkb
k) + 4(ξkb

k)− 2b2f ]α2

+ [(Kθb2 +Qξ)− (θb2 + ξ) + 2b2σ0]β
}
.

We know that α2 and β are relatively prime polynomial then

0 = 2(Qξkb
k)− 2(ξkb

k) + b2f,(26)

0 = (Kθb2 +Qξ)− (θb2 + ξ) + 2b2σ0.(27)

Moreover the relation between spray geodesic coefficients of two conformally
related Finser metrics are as follows:

Giᾱ = Giα + σ0y
i − α2

2
σi.

By replacing (7) and (22) into this very equation we can get

0 =
1

b2

[
e2σQξiα2 + (Kθb2 −Qξ)yi

]
− 1

b2

[
α2ξi + (θb2 − ξ)yi

]
− σ0y

i +
α2

2
σi.

Multiply both sides of this equation by 2b2β2bi

0 =
{

2e2σQξibi − 2ξibi + b2f
}
α2
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+
{

2(Kθb2 −Qξ)− 2(θb2 − ξ)− 2b2σ0

}
β.

This means that

0 = 2e2σQξibi − 2ξibi + b2f,(28)

0 = 2(Kθb2 −Qξ)− 2(θb2 − ξ)− 2b2σ0.(29)

By (28)− (26) we have the following

2Qξibi(e
2σ − 1) = 0.

Because of σ = σ(x) is a nonzero function then

(30) Qξibi = 0.

Replace equation (30) into (26)

(31) ξib
i =

1

2
b2f.

Moreover by computing (27)× 2− (29) we can get

4Qξ − 4ξ + 6b2σ0 = 0.

Differentiating with respect to yi and contracting by bi we have

(32) 4Qξib
i − 4ξib

i + 6b2f = 0.

By using (30) and (31), equation (32) can simplified as follows:

4b2f = 0.

This means that f = 0. By (27)× 2− (29) we can get

(33) 2b2(2Kθ − 2θ − σ0) = 0.

Differentiating with respect to yi and contracting by bi we have

2Kθib
i − 2θib

i − f = 0.

By the above calculation we know that f = 0, then

(34) θib
i(K − 1) = 0.

Case 1: Let K = 1 then by (33) we have

σ0 = 0,

i.e., the conformal transformation must be homothetic.

Case 2: In the case of θib
i = 0, geodesic coefficients of F̄ by (4) is as follows:

(35) Ḡi = Giᾱ −
ᾱ2

2β̄
s̄i0 +

1

2b̄2
(
ᾱ2

β̄
s̄0 + r̄00)b̄i − 1

b̄2
(s̄0 +

β̄

ᾱ2
r̄00)yi.

By replacing (4), (35) into (10) we have

0 = Giᾱ −
ᾱ2

2β̄
s̄i0 +

1

2b̄2
(
ᾱ2

β̄
s̄0 + r̄00)b̄i − 1

b̄2
(s̄0 +

β̄

ᾱ2
r̄00)yi −Giα
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+
α2

2β
si0 −

1

2b2
(
α2

β
s0 + r00)bi +

1

b2
(s0 +

β

α2
r00)yi − (σky

k)yi +
F 2

2
σi.(36)

By using (9), it is easy to get the following quantities for dually flat Kropina
metric F

si0 =
1

4b2

[
b2(θbi − βθi) + 7(βξi − biξ)

]
,(37)

s0 =
1

4b2

[
b2(θb2 − βθkbk) + 7(βξkb

k − b2ξ)
]
.(38)

Replace (7)-(9), (21)-(24) and (37), (38) into (36)

0 =
1

b2

[
e2σα2Qξi + (Kθb2 −Qξ)yi

]
+

bi

4b4

[
β(Kθb2 +Qξ)− 4(Qξkb

k)α2
)
bi

− eσα2

8βb2

[
b2(Ke−σθbi − eσβKθi) + 7(eσβQξi − e−σbiQξ)

]
+

2βyi

b2
Qξkb

k

+
α2bi

8b4β

[
b2K(θb2 − βθkbk) + 7Q(βξkb

k − b2ξ)
]
− β2yi

2b2α2
(Kθb2 +Qξ)

]
− yi

4b4

[
b2K(θb2 − βθkbk) + 7Q(βξkb

k − b2ξ)
]
− 1

b2

[
α2ξi + (θb2 − ξ)yi

]
+

α2

8βb4

[
b2(θbi − βθi) + 7(βξi − biξ)

]
+

βyi

2α2b4

[
β(θb2 + ξ)− 4(ξkb

k)α2

− α2bi

8βb4

[
b2(θb2 − βθkbk) + 7(βξkb

k − b2ξ)
]
− bi

4b4

[
β(θb2 + ξ)− 4(ξkb

k)α2
]

+
yi

4b4

[
b2(θb2 − βθkbk) + 7(βξkb

k − b2ξ)
]
− σ0y

i +
F 2

2
σi.

Multiply both sides of this equation by bi and replace ξib
i = θib

i = f = 0 we
get

0 =
1

b2
[
Kθb2 −Qξ

]
β − α2

8βb2
[
b4Kθ − 7b2Qξ

]
+

α2

8b2β

[
b4Kθ − 7Qb2ξ)

]
+

1

4b2
[
β(Kθb2 +Qξ)

]
− β

4b4
[
b4Kθ − 7Qb2ξ

]
+

β2

2b4α2

[
β(Kθb2 +Qξ)

]
− 1

b2
[
(θb2 − ξ)β

]
+

α2

8βb2
[
b4θ − 7b2ξ)

]
− α2

8βb2
[
b2θb2 − 7b2ξ

]
− 1

4b2
[
β(θb2+ ξ)

]
)b2 +

β

4b4
[
b4θb2 − 7b2ξ)

]
+

β2

2b4α2

[
β(θb2 + ξ)

]
− σ0β.(39)

Multiply both sides of equation mentioned above by 8b4α2β to remove de-
nominators and sort it by α. So we can obtain

0 = α2
{

8Kθb4β2 − 8b2Qξβ2 + 2β2
[
Kθb4 +Qξb2

]
− 2β2

[
b4Kθ − 7Qb2ξ

]
− 8b2β2

[
θb2 − ξ

]
− 2β2

[
θb4 + ξb2

]
+ 2β2

[
b4θ − 7b2ξ)

]
− 8b4β2σ0

}
− 4β4

[
Kθb2 +Qξ

]
+ 4β4

[
θb2 + ξ

]
.
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Then we get

0 = 4β2
{

2α2[Kθb4 +Qξb2 − θb4 − ξb2 − b4σ0]

+ β2[−Kθb2 −Qξ + θb2 + ξ]
}
.

Since β 6= 0 then

0 = 2α2[Kθb4 +Qξb2 − θb4 − ξb2 − b4σ0] + β2[−Kθb2 −Qξ + θb2 + ξ].

α2 and β2 are relatively prime, this means that the coefficients of β2 and α2

must be equal to zero

0 = −Kθb2 −Qξ + θb2 + ξ,(40)

0 = b2[Kθb2 +Qξ − θb2 − ξ]− b4σ0.(41)

Replace (40) into (41) we get

σ0 = 0.

This completes the proof of theorem.

C-reducible Finsler metrics are a class of Finsler spaces which their Cartan
torsion has special form. These spaces first were introduced by M. Matsumoto
[9]. In [10] Matsumoto and Hojo proved that a Finsler space is C-reducible if
and only if the space is either a Randers or a Kropina space. By Theorems 1.1
and 1.2 we can obtain Corollary 1.3.

At the end, we improved the result into general case and get the following
theorem.

Theorem 4.2. Every conformal transformation between locally dually flat
Finsler metrics must be homothetic.

Proof. Let F̄ and F be conformally related Finsler metrics such that F̄ = eσF
and both of them are locally dually flat, then we have

[F̄ 2]xkyly
k − 2[F̄ 2]xl = 0, [F 2]xkyly

k − 2[F 2]xl = 0.

Substituting the relation F̄ = eσF into second equation and by making use the
first one, we get following equation

(42) 4e2σ(σkFFyly
k − σlF 2) = 0.

If we put hkl = F 2δkl − FFylyk, then σkh
k
l = 0. By fundamental tensor gij we

may also write it as

σjhlj = 0,

where hlj = F 2(glj − FylFyj ) and σj = σlg
lj . Matrix hlj is symmetric of

rank n − 1, whose kernel is spanned by the vector (y1, . . . , yn). So the vector
(σ1, . . . , σn) is proportional to (y1, . . . , yn), namely

σk = λ.yk
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for some function λ = λ(x, y). Lowering indices yields

σj = λgjky
k = λ.FFyj .

Namely, the vector(σ1, . . . , σn) is proportional to (FFy1 , . . . , FFyn). However,
we know that the Legendre transformation, which sends the vector (y1, . . . , yn)
to (FFy1 , . . . , FFyn), is a diffeomorphism between TxM \ {0} and T ∗xM \ {0}.
For each fixed x, one can choose two values of y such the corresponding vectors
(FFy1 , . . . , FFyn) are linearly independent. Being proportional to these two
vectors, (σ1, . . . , σn) must be zero. As a result, σ is a constant. �
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