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ON STRONGLY GORENSTEIN HEREDITARY RINGS

Kui Hu, Hwankoo Kim, Fanggui Wang, Longyu Xu, and Dechuan Zhou

Abstract. In this note, we mainly discuss strongly Gorenstein heredi-

tary rings. We prove that for any ring, the class of SG-projective modules

and the class of G-projective modules coincide if and only if the class of
SG-projective modules is closed under extension. From this we get that

a ring is an SG-hereditary ring if and only if every ideal is G-projective
and the class of SG-projective modules is closed under extension. We

also give some examples of domains whose ideals are SG-projective.

1. Introduction

Throughout this note, all rings are commutative with identity element and
all modules are unitary.

Recall that an R-module M is called Gorenstein projective (G-projective for
short) in [4] if there exists an exact sequence · · · → P1 → P0 → P 0 → P 1 → · · ·
of projective R-modules with M = ker(P 0 → P 1) such that HomR(−, Q) leaves
the sequence exact whenever Q is a projective module. The authors in [3] in-
troduced strongly Gorenstein projective (SG-projective for short) modules. An
R-module M is called SG-projective if there exists an exact sequence of pro-
jective modules · · · → P → P → P → P → · · · such that all these projective
modules are the same and all these arrows in this sequence are the same homo-
morphism with M to be an image of some arrow and HomR(−, Q) leaves the
sequence exact whenever Q is a projective module. The authors in [9] intro-
duced strongly Gorenstein hereditary rings. A ring R is called strongly Goren-
stein hereditary (for short, SG-hereditary) if every submodule of any projective
module is SG-projective. An SG-hereditary domain is called an SG-Dedekind
domain. Naturally, Dedekind domains are SG-Dedekind domains. Examples
of SG-hereditary rings are given in [9]. It is easy to see from the definition
that every ideal of an SG-hereditary ring is SG-projective. It is natural to
ask whether the converse also holds, that is to say, if every ideal of a ring is
SG-projective, can we say that the ring is SG-hereditary? Unfortunately, we
can not give a positive answer. But we prove that a ring is SG-hereditary if
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and only if every ideal is G-projective and the class of SG-projective modules is
closed under extension. Let R be a G-Dedekind domain with quotient field K
and T be its integral closure in K and the ideal (R :K T ) be a nonzero prime
ideal of R. If M is a G-projective R-module which has no projective direct
summand of rank 1, then M is also a T -module. If M is a finitely generated
G-projective R-module, then M is isomorphic to a direct sum of some ideals
of R. If every projective ideal of R is principal, then any projective R-module
is free. From this, we give some examples of G-Dedekind domains whose ideals
are SG-projective. That is, if p is a prime number and R = Z + pZi, then
every ideal of R is SG-projective. We also get that if R = Z + 2Zi, then every
projective R-module is free.

For unexplained concepts and notations, one can refer to [8, 12].

2. A characterization of SG-hereditary rings

In this section, we mainly prove the following:

Theorem 2.1. Let R be a ring. Then R is an SG-hereditary ring if and only
if every ideal of R is G-projective and the class of SG-projective modules is
closed under extension.

In order to prove this theorem, we need some lemmas. We begin with the
following:

Lemma 2.2. Let M be a module and P be a projective module. If M ⊕ P is
SG-projective, then M is SG-projective.

Proof. This follows easily from [15, Theorem 2.1]. �

A similar result of the following can be seen in [16, Theorem 3.14], but the
proof there is not suitable for SG-projective modules. So, we state this here.

Lemma 2.3. Let R be a ring and let 0 −→ A −→ B −→ C −→ 0 be a short
exact sequence of R-modules such that C is SG-projective.

(1) If A is projective, then B is SG-projective;
(2) If B is projective, then A is SG-projective.

Proof. (1) Since A is projective, the sequence splits. So B ∼= A ⊕ C is SG-
projective.

(2) This result follows directly from [10, Proposition 2.13]. We give its proof
for completeness.

Since C is SG-projective, we have a short exact sequence

0 −→ C −→ P −→ C −→ 0,
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where P is projective. So we have the following commutative diagram with
exact rows.

0 // C

��

// P

��

// C // 0

0 // A // B // C // 0

Now we consider the mapping cone sequence

0 −→ C −→ P ⊕A −→ B −→ 0.

Since B is projective, this sequence splits. So C⊕B ∼= A⊕P . Because C and B
are SG-projective, A⊕ P is also SG-projective. Therefore, A is SG-projective
by Lemma 2.2. �

Let X be a class of R-modules. We call X projectively resolving [5] if X
contains projective modules, and for every short exact sequence 0 −→ X ′ −→
X −→ X ′′ −→ 0 with X ′′ ∈ X the conditions X ′ ∈ X and X ∈ X are equivalent.
Denote by SGP the class of SG-projective modules.

Lemma 2.4. Let R be a ring. If SGP is closed under extension, then SGP is
projectively resolving.

Proof. Let 0 −→ A −→ B −→ C −→ 0 be an exact sequence such that C
is SG-projective. We must prove that A is SG-projective if and only if B is
SG-projective. If A is SG-projective, then B is SG-projective because SGP
is closed under extension. If B is SG-projective, then we have a short exact
sequence 0 −→ B −→ P −→ B −→ 0, where P is projective. So we have the
following commutative diagram with exact rows and columns:

0

��

0

��
0 // A // B

��

// C

��

// 0

0 // A // P

��

// T

��

// 0

B

��

B

��
0 0

Since B and C are SG-projective, it can be seen from the right vertical sequence
that T is also SG-projective. Now applying Lemma 2.3 to the middle horizontal
sequence, we get that A is SG-projective. �
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The following lemma shows some relations between G-projective modules
and SG-projective modules.

Lemma 2.5. The following statements are equivalent for a ring R:

(1) Every G-projective module is SG-projective.
(2) SGP is closed under extension.

Proof. (1) ⇒ (2) This is obvious since the class of G-projective modules is
closed under extension.

(2) ⇒ (1) By Lemma 2.4, SGP is projectively resolving. Also notice that
the SGP is closed under countable direct sums, and so direct summands by
[5, Proposition 1.4]. Since any G-projective module is a direct summand of
some SG-projective module by [3, Theorem 2.7], every G-projective module is
SG-projective. �

Now we are in the position to prove the main theorem.

Proof of Theorem 2.1. If R is SG-hereditary, then any G-projective module,
as a submodule of some projective module, must be SG-projective. So SGP
is closed under extension by Lemma 2.5. Also every ideal, as a submodule
of R, must be G-projective. For sufficiency part, if every ideal of R is G-
projective, then R is a G-hereditary ring by [6, Theorem 1.2]. If SGP is closed
under extension, by Lemma 2.5, every G-projective module is SG-projective.
Therefore, by [9, Proposition 2.8], R is SG-hereditary. �

3. A special kind of G-Dedekind domains

It is well known that a domain is a Dedekind domain if and only if sub-
modules of any free module are projective. It is proved in [6, Theorem 1.2]
that a domain R is a G-Dedekind domain if and only if every ideal of R is
G-projective. Since projective modules are SG-projective, Dedekind domains
are SG-Dedekind domains. Trivially SG-Dedekind domains are G-Dedekind
domains. Unfortunately, we have not found an SG-Dedekind domain which is
not a Dedekind domain, but we find some G-Dedekind domains whose ideals
are SG-projective. The induction trick of Theorem 3.3 can be found in [2, 6].

Let R be a G-Dedekind domain with quotient field K and T be its integral
closure in K. We study such a G-Dedekind domain R that the ideal (R :K T )
is a nonzero prime ideal of R.

In [11, Theorem], E. Matlis proved that every ideal of a domain R can be
generated by two elements if and only if R is a Noetherian ring and every
finitely generated torsion-free RM -module is a direct sum of RM -modules of
rank 1. The following lemma is inspired by his work.

Lemma 3.1. Let M be an R-module. Then M has a projective direct summand
of rank 1 if and only if there exists an f ∈M∗ such that Imf is projective.
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Proof. Since every projective module of rank 1 is isomorphic to an ideal, if
M = N ⊕ P , where P is a projective submodule of rank 1, then the canonical
composition f : M → P → R is an element of M∗ such that Imf is projective.
Conversely, if there is an f ∈M∗ such that Imf is projective, then we have an
exact sequence M → Imf → 0. Because Imf is projective, this sequence splits.
So, M has a projective direct summand of rank 1. �

Lemma 3.2. Let R be a G-Dedekind domain with quotient field K, T be its
integral closure in K, and the ideal (R :K T ) be a nonzero prime ideal of R. If
M is a G-projective module which has no projective direct summand of rank 1,
then Imf ⊂ (R :K T ) for any f ∈M∗.

Proof. If Imf * (R :K T ) for some f ∈ M∗, then Imf + (R :K T ) = R
because (R :K T ) is a nonzero prime ideal of R and dim(R) ≤ 1 ([14, Corollary
11.7.8]). Therefore Imf is projective by [7, Lemma 1.8]. This, by Lemma 3.1,
means that M has a projective direct summand of rank 1, which contradicts
the hypothesis. �

Theorem 3.3. Let R be a G-Dedekind domain with quotient field K, T be its
integral closure in K, and the ideal (R :K T ) be a nonzero prime ideal of R. If
M is a G-projective R-module which has no projective direct summand of rank
1, then M is also a T -module.

Proof. Let m ∈ M . Since M is a G-projective R-module, we can assume that
M is a submodule of some free module F , say F =

⊕
i∈ΓRxi. So, as an

element of F , m has only finitely many coordinates which are not zero. Well-
order the set Γ and let nonzero coordinates of m be the beginning ones, say
m ∈

⊕n
i=1Rxi. So every element of Γ is corresponding to an ordinal which is

not a limit ordinal. We add those related limit ordinals in Γ to obtain a new set
and still denote it by Γ. Then, for some k ∈ Γ, if k is corresponding to a limit
ordinal, we define Hk =

⊕
i<k Rxi; if k is corresponding to an ordinal which

is not a limit ordinal, we define Hk =
⊕

i6k Rxi. Denote M ∩Hk by Jk. Note

that m ∈ Jn and if k is corresponding to a limit ordinal, Jk =
⋃
i<k Ji. Now,

we prove that for any f ∈ J∗n (Hom(Jn, R)), Imf is not projective. Suppose
there is some f ∈ J∗n such that Imf is projective. We consider the following
commutative diagram with an exact row

0 // Jn

f

��

// Jn+1

fn+1

||

α // In+1
// 0

Imf

,

where α is the projective map to the (n+ 1)-th coordinate. The existence
of fn+1 can be verified because In+1, as an ideal of R, is G-projecitve and
Imf is projective. Since f : Jn → Imf is surjective, fn+1 : Jn+1 → Imf is
also surjective. Next, we prove that there exists a surjective homomorphism
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h : M → Imf . To this end, we show that f can be extended to a homomorphism
fi from Ji to Imf for every i ∈ Γ such that fi+1|Ji = fi. If there are exceptions,
then the set S of those exceptional ordinals admits a minimal element k. If
k is a limit ordinal, then Jk =

⋃
i<k Ji and for every a ∈ Jk, there is some

j < k such that a ∈ Jj . Therefore we can define fk(a) = fj(a). If k is an
ordinal which is not a limit ordinal, then k−1 exists and we have the following
commutative diagram with an exact row

0 // Jk−1

fk−1

��

// Jk
fk

}}

β // Ik // 0

Imf

,

where β is the projective map to the k-th coordinate. The existence of fk
follows because Ik, as an ideal of R, is G-projecitve and Imf is projective.
Both cases contradict the fact that k ∈ S. Now, for every b ∈ M =

⋃
i∈Γ Ji,

b ∈ Jt for some t ∈ Γ and we can define h(b) = ft(b). The existence of h
means, by Lemma 3.1, that M has a projective direct summand of rank 1,
which contradicts the hypothesis. Therefore, Jn is also a G-projective module
which has no projective direct summand of rank 1. For any q ∈ T , we define
qm ∈ J∗∗n such that qm(g) = qg(m) for every g ∈ J∗n. Since g(m) ∈ (R :K T )
by Lemma 3.2 and q ∈ T , this is well defined. Because Jn is a finitely generated
G-projective module, Jn is reflexive, i.e., Jn ∼= J∗∗n . So qm ∈ Jn ⊂ M . Thus
we have proved that Tm ⊂M . The arbitrariness of m ∈M tells us that M is
also a T -module. �

A domain R is called a Warfield domain if for any R-submodule A of the
quotient field of R, every A-torsion-free S := EndR(A)-module X of finite rank
is A-reflexive, that is, the natural homomorphism X → HomS(HomS(X,A), A)
is an isomorphism. In [13], it is proved that a Noetherian domainR is a Warfield
domain if and only if each ideal of R is 2-generated. It is proved in [7, Theorem
2.20] that every ideal of a Noetherian Warfield domain is 2-SG-projective.
Therefore Noetherian Warfield domains are G-Dedekind domains.

Example 3.4. Let p be a prime number and R = Z + pZi. Then every ideal
of R is SG-projective.

Proof. Clearly R is a subring of Z[i]. Since Z[i] is a free Z-module of rank 2,
every ideal of R is a submodule of Z[i]. Because Z is a principal ideal domain,
every submodule of a free Z-module of rank n is also free and its rank is at
most n. This means that every ideal of R can be generated by two elements as
a Z-module, and hence as an ideal. Therefore, R is also a Noetherian Warfield
domain, and hence a G-Dedekind domain.

Let J = (p, pi). First we prove that J−1 = Z[i] and J is strongly Gorenstein
projective. It is easy to see that the quotient field of R is Q[i]. That Z[i] is
included in J−1 is obvious since J is a common ideal of Z[i] and R. For the
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reverse inclusion, let b
a + d

c i be an element in J−1, where a, b, c, d are integers

and gcd(a, b) = 1, gcd(c, d) = 1. So, (pba + pd
c i) ∈ R and (pba i −

pd
c ) ∈ R. This

means that a | b and c | d. Thus, b
a + d

c i ∈ Z[i]. Therefore, J−1 = Z[i]. To see

that J is SG-projective, just notice that J−1 = Z[i] = R+Ri ∼= pR+ piR = J
and an application of [7, Corollary 2.14] will give the result.

Secondly, let I be an ideal of R. If I is projective, it is surely SG-projective.
Notice that R is a G-Dedekind domain with quotient field Q[i] and Z[i] is its
integral closure in Q[i] and the ideal J = (R :K Q[i]) is a nonzero prime ideal of
R. If I is not projective, by Theorem 3.3, I is also an ideal of Z[i]. But Z[i] is
a principal ideal domain. So I = aZ[i] for some a ∈ I. Any element of I can be
written as the form a(c+di), where c, d ∈ Z. But d = qp+m for some m, q ∈ Z,
where 0 6 m < p. Therefore a(c + di) = a(c + qpi + mi) = a(c + qpi) + mai.
Notice that ai ∈ I. So I = (a, ai) ∼= (p, pi) = J . Therefore I is SG-projective
from the first part. �

Considering the localization, we also have the following:

Example 3.5. Let p be a prime number, S = Z + pZi, P = (p, pi) be the
maximal ideal of S, and R = SP . Then every ideal of R is SG-projective.

Corollary 3.6. Let R be a G-Dedekind domain with quotient field K, T be its
integral closure in K, and the ideal (R :K T ) be a nonzero prime ideal of R. If
M is a G-projective R-module which has no projective direct summand, then
M is isomorphic to a direct sum of some ideals of R.

Proof. By Theorem 3.3, M is also a T -module. Since T is a Dedekind domain,
M is isomorphic to a direct sum of some ideals of T . Notice that any ideal I
of T , as an R-module, is isomorphic to some ideal aI (a ∈ (R :K T )) of R.
Therefore M is also isomorphic to a direct sum of some ideals of R. �

Lemma 3.7. Let R be a G-Dedekind domain with quotient field K, T be its
integral closure in K, and the ideal (R :K T ) be a nonzero prime ideal of R.
If M is a finitely generated G-projective R-module, then M is isomorphic to a
direct sum of some ideals of R.

Proof. Since R is Noetherian, M is a Noetherian R-module. So we have the
decomposition: M = M ′ ⊕ P , where M ′ has no projective direct summand
of rank 1 and P is a direct sum of some projective modules of rank 1. Since
any projective module of rank 1 is isomorphic to an ideal of R, P is already
isomorphic to a direct sum of some ideals of R. But, by Corollary 3.6, M ′ is
also isomorphic to a direct sum of some ideals of R. �

H. Bass proved in [1, Corollary 4.5] that if R is connected and Noetherian,
then every non-finitely generated projective R-module is free. In particular,
any non-finitely generated projective module over any Noetherian domain is
free. Inspired by his work, we have the following:
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Proposition 3.8. Let R be a G-Dedekind domain with quotient field K, T be
its integral closure in K, and the ideal (R :K T ) be a nonzero prime ideal of R.
If every projective ideal of R is principal, then any projective R-module is free.

Proof. First we notice that, by [1, Corollary 4.5], any non-finitely generated
projective R-module is free. So we only need to prove that any finitely gener-
ated projective R-module M is free. By Lemma 3.7, M is isomorphic to a direct
sum of some ideals of R. As direct summands of the projective R-module, these
ideals are also projective, and hence free by hypothesis. Therefore M is also
free. �

Example 3.9. The domain R = Z+2Zi is a domain which has only two types
of ideals: principal ideals and those ideals which are isomorphic to I = (2, 2i).
So any projective ideals of R is principal. Therefore any projective R-module
is free.

Proof. As in Example 3.4, every ideal of R can be generated by two elements.
Let J be any ideal of R. We can assume that J ∼= Rα+Rβ, where α, β ∈ Z[i]
and gcd(α, β) = 1. Since gcd(α, β) = 1, there exist u, v ∈ Z[i] such that
uα+ vβ = 1. So 2iuα+ 2ivβ = 2i, which means that 2i ∈ Rα+Rβ. Likewise,
we also have 2 ∈ Rα + Rβ. We assume that α = a + bi, β = c + di, where
a, b, c, d ∈ Z.

Case 1: Both b and d are in 2Z. Since gcd(α, β) = 1, a and c can not be inside
2Z at the same time. Without loss of generality, we assume that gcd(a, 2) = 1.
Notice that 2, 2i ∈ Rα+Rβ, and so we have Rα+Rβ = R(a+bi)+R(c+di) =
Ra+Rc+ 2Ri+ 2R = R. This means that Rα+Rβ is principal.

Case 2: One of the imaginary parts of α and β is not inside 2Z. Without
loss of generality, we assume that b = 2k+1 and d = 2l, where k, l are integers.
So Rα+Rβ = R(a+ i) +Rc+ 2iR+ 2R. If c ∈ 2Z, then a must also be inside
2Z because gcd(α, β) = 1. So Rα+Rβ = R(a+ i)+Rc+2iR+2R = Ri, which
is principal. If c is not inside 2Z, then Rα+Rβ = R(a+ i) +Rc+ 2iR+ 2R =
Ri+R ∼= (2, 2i).

Case 3: Neither b nor d is inside 2Z. Under this condition, the imaginary
part of α−β will be inside 2Z. Since Rα+Rβ = Rα+R(α−β), this case will
go back to Case 2. �

Let R and T be domains as in Theorem 3.3 which put forward a sufficient
condition for a G-projective R-module to be a T -module. The following theo-
rem shows that this condition is also necessary.

Theorem 3.10. Let R be a G-Dedekind domain with quotient field K, T be
its integral closure in K, and the ideal (R :K T ) be a nonzero prime ideal of R.
If M is a G-projective R-module, then M is a T -module if and only if M has
no projective direct summand.
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Proof. The sufficiency of this theorem is just Theorem 3.3. Now we assume
that M is a T -module. Then any direct summand of M must also be a T -
module. This will lead to the result that its projective direct summands will
be also T -modules. But it is easy to see that R, and hence any free R-module
can not be a T -module. So any nonzero projective R-module N can not be
a T -module (otherwise the free Rm-module Nm will be a Tm-module for the
maximal ideal m = (R :K T ) of R). This contradiction shows that M has no
projective direct summand. �

Let R and T be domains as before. The following theorem gives a sufficient
and necessary condition for a finitely generated G-projective R-module to be
projective.

Theorem 3.11. Let R be a G-Dedekind domain with quotient field K, T be
its integral closure in K, and the ideal (R :K T ) be a nonzero prime ideal of R.
If M is a finite generated G-projective R-module, then M is projective if and
only if any direct summand of M is not a T -module.

Proof. Let N be any direct summand of M . If N is a T -module, then by
Theorem 3.10, N is not projective, and hence M is not projective either. Con-
versely, assume that any nonzero direct summand of M is not a T -module.
Then M is not a T -module and by Theorem 3.10, M has a projective direct
summand P1, say M = P1 ⊕M1. But any nonzero direct summand of M1

is not a T -module either. So M1 has a projective direct summand P2, say
M1 = P2 ⊕ M2. Inductively, we get that M = P1 ⊕ P2 ⊕ · · · ⊕ Pk ⊕ Mk,
where Mk is not a T -modules. Since M is Noetherian, some Mk must be zero.
Therefore M = P1 ⊕ P2 ⊕ · · · ⊕ Pk is projective. �
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