CYCLIC CODES FROM THE FIRST CLASS TWO-PRIME WHITEMAN'S GENERALIZED CYCLOTOMIC SEQUENCE WITH ORDER 6

Pramod Kumar Kewat and Priti Kumari

Abstract

Let p_{1} and p_{2} be two distinct odd primes with $\operatorname{gcd}\left(p_{1}-\right.$ $\left.1, p_{2}-1\right)=6$. In this paper, we compute the linear complexity of the first class two-prime Whiteman's generalized cyclotomic sequence (WGCS-I) of order $d=6$. Our results show that their linear complexity is quite good. So, the sequence can be used in many domains such as cryptography and coding theory. This article enrich a method to construct several classes of cyclic codes over $\operatorname{GF}(q)$ with length $n=p_{1} p_{2}$ using the two-prime WGCS-I of order 6 . We also obtain the lower bounds on the minimum distance of these cyclic codes.

1. Introduction

Let q be a power of a prime p. An $[n, k, d]$ linear code C over a finite field $\mathrm{GF}(q)$ is a k-dimensional subspace of the vector space $\mathrm{GF}(q)^{n}$ with minimum distance d. A linear code C is a cyclic code if the cyclic shift of a codeword in C is again a codeword in C, i.e., if $\left(c_{0}, \ldots, c_{n-1}\right) \in C$, then $\left(c_{n-1}, c_{0}, \ldots, c_{n-2}\right) \in$ C. Let $\operatorname{gcd}(n, q)=1$. We denote by R the ring $\mathrm{GF}(q)[x] /\left\langle x^{n}-1\right\rangle$. We can consider a cyclic code of length n over $\mathrm{GF}(q)$ as an ideal in R via the following correspondence

$$
\mathrm{GF}(q)^{n} \rightarrow R, \quad\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \mapsto c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1} .
$$

The total number of cyclic codes over $\mathrm{GF}(q)$ and their construction are closely related to the cyclotomic cosets modulo n. One way to construct cyclic codes over $\operatorname{GF}(q)$ with length n is to use the generator polynomial

$$
\begin{equation*}
\frac{x^{n}-1}{\operatorname{gcd}\left(x^{n}-1, S(x)\right)} \tag{1.1}
\end{equation*}
$$

where $S(x)=\sum_{i=0}^{n-1} s_{i} x^{i} \in \mathrm{GF}(q)[x]$ and $s^{\infty}=\left(s_{i}\right)_{i=0}^{\infty}$ is a sequence of period n over $\operatorname{GF}(q)$. The cyclic code C_{s} generated by the polynomial in (1.1) is called
the cyclic code defined by the sequence s^{∞}, and the sequence s^{∞} is called the defining sequence of the cyclic code C_{s}.

Cyclic codes have been studied in a series of papers due to their efficient coding and decoding properties and a lot of progress have been adapted (see, for example [1], [6], [7], [9] and [10]). The Whiteman's generalized cyclotomy was introduced by Whiteman and its properties were studied in [12], is an important technique to sequence design. Ding defined the two-prime Whiteman's generalized cyclotomic sequence (WGCS) using Whiteman cyclotomic classes in [4] and its coding properties were studied in [5] and [11]. For keystream sequences for additive synchronous stream ciphers there are some common cryptographic measures of their strength such as good autocorrelation property and large linear complexity. In this correspondence, we calculate the exact value of the linear complexity of this sequence. This article enrich a method to construct several classes of cyclic codes over GF (q) using the two-prime WGCS-I with order 6 . We also obtain the lower bounds on the minimum distance of these cyclic codes.

Our technique to calculate the linear complexity is same as in [4] and construction of cyclic codes over $\operatorname{GF}(q)$ follow from [5]. But we need to remark that in this paper, we investigate the linear complexity of two prime WGCS-I of order six are same as two prime sequence of order two. Therefore, we construct many classes of cyclic codes over $\operatorname{GF}(q)$ for large length. In particular, we give the parameters of several classes of cyclic codes for $q=2$ and $q=3$.

2. Preliminaries

2.1. Linear complexity and minimal polynomial

The linear span L_{s} and the minimal polynomial $m_{s}(x)$ of binary sequence s^{∞} of a period n over $G F(q)$ can be calculated by the following equations:

$$
\begin{aligned}
m_{s}(x) & =\frac{x^{n}-1}{\operatorname{gcd}\left(x^{n}-1, S^{n}(x)\right)} \\
L_{s} & =n-\operatorname{deg}\left(\operatorname{gcd}\left(x^{n}-1, S^{n}(x)\right)\right)
\end{aligned}
$$

We refer the readers to [8] for detailed informations of the linear complexity and the minimal polynomial.

2.2. The Whiteman's generalized cyclotomic sequences and its construction

Let n be a positive integer. The multiplicative order of an integer a modulo n is equal to $\phi(n)$, then the integer a is known as primitive root of modulo n, where $\phi(n)$ is the Euler phi function and $\operatorname{gcd}(a, n)=1$. Define $n=p_{1} p_{2}, d=$ $\operatorname{gcd}\left(p_{1}-1, p_{2}-1\right)$ and $e=\left(p_{1}-1\right)\left(p_{2}-1\right) / d$, where p_{1} and p_{2} are two distinct odd primes. From the Chinese Remainder theorem, there are common primitive roots of both p_{1} and p_{2}. Let g be a fixed common primitive root of both p_{1}
and p_{2}. Let u be an integer satisfying

$$
\begin{equation*}
u \equiv g\left(\bmod p_{1}\right), u \equiv 1\left(\bmod p_{2}\right) . \tag{2.1}
\end{equation*}
$$

The Whiteman's generalized cyclotomic classes D_{i} of order d are defined by

$$
D_{i}=\left\{g^{s} u^{i}(\bmod n): s=0,1, \ldots, e-1\right\}, i=0,1, \ldots, d-1
$$

Let

$$
\begin{aligned}
& P=\left\{p_{1}, 2 p_{1}, 3 p_{1}, \ldots,\left(p_{2}-1\right) p_{1}\right\}, Q=\left\{p_{2}, 2 p_{2}, 3 p_{2}, \ldots,\left(p_{1}-1\right) p_{2}\right\}, \\
& C_{0}=\{0\} \cup Q \cup \bigcup_{i=0}^{\frac{d}{2}-1} D_{2 i} \text { and } C_{1}=P \cup \bigcup_{i=0}^{\frac{d}{2}-1} D_{2 i+1}, \\
& C_{0}^{*}=\{0\} \cup Q \cup \bigcup_{i=0}^{\frac{d}{2}-1} D_{i}, C_{1}^{*}=P \cup \bigcup_{i=\frac{d}{2}}^{d-1} D_{i} .
\end{aligned}
$$

It is clear that if $d>2$, then $C_{0} \neq C_{0}^{*}$ and $C_{1} \neq C_{1}^{*}$. Now we define two types of Whiteman's generalized cyclotomic sequences of order d (see [2]).

Definition. The first class two-prime Whiteman's generalized cyclotomic sequence (WGCS-I) $\lambda^{\infty}=\left(\lambda_{i}\right)_{i=0}^{n-1}$ of order d and period n, is defined by

$$
\lambda_{i}= \begin{cases}0, & \text { if } i \in C_{0} \tag{2.2}\\ 1, & \text { if } i \in C_{1}\end{cases}
$$

The second class two-prime Whiteman's generalized cyclotomic sequence (WGCS-II) $s^{\infty}=\left(s_{i}\right)_{i=0}^{n-1}$ of order d and period n, is defined by

$$
s_{i}= \begin{cases}0, & \text { if } i \in C_{0}^{*}, \\ 1, & \text { if } i \in C_{1}^{*}\end{cases}
$$

The sets C_{1} and $C_{1}^{*} \subseteq \mathbb{Z}_{n}$ are known as the characteristic sets of the sequence λ^{∞} and s^{∞}, respectively and the sequences λ_{i} and s_{i} are referred to as the characteristic sequences of C_{1} and C_{1}^{*}, respectively.

The cyclotomic numbers corresponding to these cyclotomic classes are defined as

$$
(i, j)_{d}=\left|\left(D_{i}+1\right) \cap D_{j}\right|, \quad \text { where } 0 \leq i, j \leq d-1
$$

Additionally, for any $t \in \mathbb{Z}_{n}$, we define

$$
d(i, j ; t)=\left|\left(D_{i}+t\right) \cap D_{j}\right|,
$$

where $D_{i}+t=\left\{w+t \mid w \in D_{i}\right\}$.

2.3. Properties of Whiteman's cyclotomy of order d

Here, we review some of properties of Whiteman's generalized cyclotomy of order $d=\operatorname{gcd}\left(p_{1}-1, p_{2}-1\right)$. The proof of the following lemma follows from Theorem 4.4.6 of [3].

Lemma 1. Let the notations be defined as above and $t \neq 0$. We have

$$
d(i, j ; t)= \begin{cases}\frac{\left(p_{1}-1\right)\left(p_{2}-1\right)}{d^{2}}, & i \neq j, t \in P \cup Q \\
\frac{\left(p_{1}-1\right)\left(p_{2}-1-d\right)}{d^{2}}, & i=j, t \in P, t \notin Q \\
\frac{\left(p_{1}-1-d\right)\left(p_{2}-1\right)}{\left(i^{\prime}, j^{\prime}\right)_{d} \text { for some }\left(i^{\prime}, j^{\prime}\right),}, & i=j, t \in Q, t \notin P \\
\left(\begin{array}{l}
\text { forwise }
\end{array}\right.\end{cases}
$$

The following two lemmas follow from [8].
Lemma 2. Let the notations be defined as before. The four statements given below are equivalent:
(1) $-1 \in D_{\frac{d}{2}}$.
(2) $\frac{\left(p_{1}-1\right)\left(p_{2}-1\right)}{d^{2}}$ is even.
(3) One of the sets of equations given below are satisfied:

$$
\left\{\begin{array} { l }
{ p _ { 1 } \equiv 1 (\operatorname { m o d } 2 d) , } \\
{ p _ { 2 } \equiv d + 1 (\operatorname { m o d } 2 d) , }
\end{array} \quad \left\{\begin{array}{l}
p_{1} \equiv d+1(\bmod 2 d) \\
p_{2} \equiv 1(\bmod 2 d)
\end{array}\right.\right.
$$

(4) $p_{1} p_{2} \equiv d+1(\bmod 2 d)$.

Lemma 3. Let the symbols be defined as before. The following four statements are equivalent:
(1) $-1 \in D_{0}$.
(2) $\frac{\left(p_{1}-1\right)\left(p_{2}-1\right)}{d^{2}}$ is odd.
(3) The following set of equation is satisfied:

$$
\left\{\begin{array}{l}
p_{1} \equiv d+1(\bmod 2 d), \\
p_{2} \equiv d+1(\bmod 2 d)
\end{array}\right.
$$

(4) $p_{1} p_{2} \equiv(d+1)^{2} \equiv 1(\bmod 2 d)$.

Now, we employ the sequence λ^{∞} (defined in (2.2)) to construct cyclic codes over $\operatorname{GF}(q)$.
3. A class of cyclic codes over GF (q) defined by two-prime WGCS-I

In this section, we compute the parameters of the cyclic code C_{λ} defined by the sequence λ^{∞} over finite field $\operatorname{GF}(q)$, where q is a power of a prime p. We have $\operatorname{gcd}(n, q)=1$, where $n=p_{1} p_{2}$ (product of two distinct primes) is the length of the cyclic code. Let r be the order of q modulo n. Then, the field $\mathrm{GF}\left(q^{r}\right)$ has a primitive nth root of unity. Let α be a primitive $n t h$ root of unity over the finite field $\mathrm{GF}(q)$. We define

$$
\begin{equation*}
\Lambda(x)=\sum_{i \in C_{1}} x^{i}=\left(\sum_{i \in P}+\sum_{i \in D_{1}}+\sum_{i \in D_{3}}+\sum_{i \in D_{5}}\right) x^{i} \in \mathrm{GF}(q)[x] . \tag{3.1}
\end{equation*}
$$

To find the parameters of the cyclic code, for this, first we find the generator polynomial

$$
g_{\lambda}(x)=\frac{x^{n}-1}{\operatorname{gcd}\left(x^{n}-1, \Lambda(x)\right)}
$$

of the cyclic code C_{λ} defined by the sequence λ^{∞}. In the sequel, we need following results. We have

$$
0=\alpha^{n}-1=\left(\alpha^{p_{1}}\right)^{p_{2}}-1=\left(\alpha^{p_{1}}-1\right)\left(1+\alpha^{p_{1}}+\alpha^{2 p_{1}}+\cdots+\alpha^{\left(p_{2}-1\right) p_{1}}\right)
$$

It follows that

$$
\begin{equation*}
\alpha^{p_{1}}+\alpha^{2 p_{1}}+\cdots+\alpha^{\left(p_{2}-1\right) p_{1}}=-1 \text {, i.e., } \sum_{i \in P} \alpha^{i}=-1 . \tag{3.2}
\end{equation*}
$$

By symmetry, we get

$$
\begin{equation*}
\alpha^{p_{2}}+\alpha^{2 p_{2}}+\cdots+\alpha^{\left(p_{1}-1\right) p_{2}}=-1, \text { i.e., } \sum_{i \in Q} \alpha^{i}=-1 . \tag{3.3}
\end{equation*}
$$

The following two lemmas follow from [8].
Lemma 4. Let the symbols be same as before. For $0 \leq j \leq 5$, we have

$$
\sum_{i \in D_{j}} \alpha^{i t}= \begin{cases}-\frac{p_{1}-1}{6}(\bmod p), & \text { if } t \in P \\ -\frac{p_{2}-1}{6}(\bmod p), & \text { if } t \in Q\end{cases}
$$

Lemma 5. For any $r \in D_{i}$, we have $r D_{j}=D_{(i+j)(\bmod d)}$, where $r D_{j}=$ $\left\{r t \mid t \in D_{j}\right\}$.

Throughout this paper, let $d_{0}=D_{0} \cup D_{2} \cup D_{4}$ and $d_{1}=D_{1} \cup D_{3} \cup D_{5}$.
Lemma 6. Let the symbols be same as before. For all $t \in \mathbb{Z}_{n}$ we have

$$
\Lambda\left(\alpha^{t}\right)=\left\{\begin{array}{cl}
-\frac{p_{1}+1}{2}(\bmod p), & \text { if } t \in P \\
\frac{p_{2}-1}{2}(\bmod p), & \text { if } t \in Q \\
\Lambda(\alpha), & \text { if } t \in D_{0} \\
-(\Lambda(\alpha)+1), & \text { if } t \in D_{1}
\end{array}\right.
$$

Proof. Since $\operatorname{gcd}\left(p_{1}, p_{2}\right)=1$, we have $t P=P$ if $t \in P$. By (3.1), (3.2) and Lemma 4, we get

$$
\begin{aligned}
\Lambda\left(\alpha^{t}\right) & =\sum_{i \in C_{1}} \alpha^{t i}=\left(\sum_{i \in P}+\sum_{i \in D_{1}}+\sum_{i \in D_{3}}+\sum_{i \in D_{5}}\right) \alpha^{t i} \\
& =(-1 \bmod p)-\left(\frac{p_{1}-1}{6} \bmod p\right)-\left(\frac{p_{1}-1}{6} \bmod p\right)-\left(\frac{p_{1}-1}{6} \bmod p\right) \\
& =-\frac{p_{1}+1}{2} \bmod p .
\end{aligned}
$$

If $t \in Q$, then $t P=0$. By (3.1), (3.2) and Lemma 4, we get

$$
\begin{aligned}
\Lambda\left(\alpha^{t}\right) & =\sum_{i \in C_{1}} \alpha^{t i}=\left(\sum_{i \in P}+\sum_{i \in D_{1}}+\sum_{i \in D_{3}}+\sum_{i \in D_{5}}\right) \alpha^{t i} \\
& =\left(p_{2}-1 \bmod p\right)-\left(\frac{p_{2}-1}{6} \bmod p\right)-\left(\frac{n_{2}-1}{6} \bmod p\right)-\left(\frac{p_{2}-1}{6} \bmod p\right)
\end{aligned}
$$

$$
=\frac{p_{2}-1}{2} \bmod p .
$$

If $t \in D_{0}$, we have three cases:
Case I: Let $t \in D_{0}$, then by Lemma 5 , we have $t D_{i}=D_{i}$. Since $\operatorname{gcd}\left(t, p_{2}\right)=1$, we have $t P=P$ if $t \in D_{0}$. Hence,

$$
\begin{aligned}
\Lambda\left(\alpha^{t}\right)=\sum_{i \in C_{1}} \alpha^{t i} & =\left(\sum_{i \in P}+\sum_{i \in D_{1}}+\sum_{i \in D_{3}}+\sum_{i \in D_{5}}\right) \alpha^{t i} \\
& =\left(\sum_{i \in P}+\sum_{i \in D_{1}}+\sum_{i \in D_{3}}+\sum_{i \in D_{5}}\right) \alpha^{i} \\
& =\Lambda(\alpha) .
\end{aligned}
$$

Case II: Let $t \in D_{2}$, then by similar to the proof of the Case I, we have $\Lambda\left(\alpha^{t}\right)=\Lambda(\alpha)$ and Case III: Let $t \in D_{4}$, then by similar to the proof of the Case I, we have $\Lambda\left(\alpha^{t}\right)=\Lambda(\alpha)$.

Similarly, if $t \in D_{1}$, we have three cases:
Case I: Let $t \in D_{1}$, then by Lemma 5 , we have $t D_{i}=D_{i+1}(\bmod 6)$. Since $\operatorname{gcd}\left(t, p_{2}\right)=1$, we have $t P=P$ if $t \in D_{1}$. We have $\alpha^{n}-1=(\alpha-1)\left(\sum_{i=0}^{n-1} \alpha^{i}\right)=$ 0 and $\alpha-1 \neq 0$, this give $\sum_{i=0}^{n-1} \alpha^{i}=0$. Therefore,

$$
\sum_{i=0}^{n-1} \alpha^{i}=1+\sum_{i \in P} \alpha^{i}+\sum_{i \in Q} \alpha^{i}+\sum_{i \in \bigcup_{j=0}^{5} D_{j}} \alpha^{i}=0 .
$$

From (3.2) and (3.3), we get

$$
\begin{equation*}
\sum_{i \in \bigcup_{j=0}^{5} D_{j}} \alpha^{i}=1 . \tag{3.4}
\end{equation*}
$$

Hence

$$
\Lambda\left(\alpha^{t}\right)=\sum_{i \in C_{1}} \alpha^{t i}=\left(\sum_{i \in P}+\sum_{i \in D_{1}}+\sum_{i \in D_{3}}+\sum_{i \in D_{5}}\right) \alpha^{t i}=-(\Lambda(\alpha)+1) .
$$

Similarly, we can prove other two cases namely, Case II : $t \in D_{3}$ and Case III $: t \in D_{5}$.

Lemma 7. If $q \in d_{0}$, we have $\Lambda(\alpha) \in \operatorname{GF}(q)$ and $(\Lambda(\alpha))^{q}=\Lambda(\alpha)$. If $q \in d_{1}$, we have $\Lambda(\alpha)^{q}=-(\Lambda(\alpha)+1)$.

Proof. We have $\operatorname{gcd}(n, q)=1$, i.e., $q \in \mathbb{Z}_{n}^{*}$, then $q \in \bigcup_{i=0}^{5} D_{i}=d_{0} \cup d_{1}$. If $q \in d_{0}$, by Lemma 6, we have $(\Lambda(\alpha))^{q}=\Lambda\left(\alpha^{q}\right)=\Lambda(\alpha)$. So, $\Lambda(\alpha) \in \operatorname{GF}(q)$.
Similarly, if $q \in d_{1}$, from Lemma 6, the result follows.
Lemma 8. If $p_{1} p_{2} \equiv 1(\bmod 12)$, we have

$$
\Lambda(\alpha)(\Lambda(\alpha)+1)=\frac{n-1}{4}
$$

If $p_{1} p_{2} \equiv 7(\bmod 12)$, we have

$$
\Lambda(\alpha)(\Lambda(\alpha)+1)=-\frac{n+1}{4} .
$$

Proof. We have

$$
\Lambda(\alpha)=-1+\sum_{i \in D_{1}} \alpha^{i}+\sum_{i \in D_{3}} \alpha^{i}+\sum_{i \in D_{5}} \alpha^{i},
$$

and

$$
\begin{align*}
\Lambda(\alpha)(\Lambda(\alpha)+1)= & -\left(\sum_{i \in D_{1}} \alpha^{i}+\sum_{i \in D_{3}} \alpha^{i}+\sum_{i \in D_{5}} \alpha^{i}\right) \\
& +\sum_{i \in D_{1}} \sum_{j \in D_{1}} \alpha^{i+j}+\sum_{i \in D_{3}} \sum_{j \in D_{3}} \alpha^{i+j} \\
& +\sum_{i \in D_{5}} \sum_{j \in D_{5}} \alpha^{i+j}+2 \sum_{i \in D_{1}} \sum_{j \in D_{3}} \alpha^{i+j} \\
& +2 \sum_{i \in D_{3}} \sum_{j \in D_{5}} \alpha^{i+j}+2 \sum_{i \in D_{5}} \sum_{j \in D_{1}} \alpha^{i+j} . \tag{3.5}
\end{align*}
$$

Let $p_{1} p_{2} \equiv 1(\bmod 12)$ from Lemma $3,-1 \in D_{0}$ and from Lemma $5,-D_{j}=$ $\left\{-t: t \in D_{j}\right\}=D_{j}$.

$$
\begin{aligned}
& \sum_{i \in D_{1}} \sum_{j \in D_{1}} \alpha^{i+j}= \sum_{i \in D_{1}} \sum_{j \in D_{1}} \alpha^{i-j} \\
&=\left|D_{1}\right|+\sum_{r \in P \cup Q} d(1,1 ; r) \alpha^{r}+(1,1)_{6} \sum_{i \in D_{0}} \alpha^{i}+(0,0)_{6} \sum_{i \in D_{1}} \alpha^{i} \\
&+(5,5)_{6} \sum_{i \in D_{2}} \alpha^{i}+(4,4)_{6} \sum_{i \in D_{3}} \alpha^{i} \\
&+(3,3)_{6} \sum_{i \in D_{4}} \alpha^{i}+(2,2)_{6} \sum_{i \in D_{5}} \alpha^{i}, \\
& \sum_{i \in D_{3}} \sum_{j \in D_{3}} \alpha^{i+j}= \sum_{i \in D_{3}} \sum_{j \in D_{3}} \alpha^{i-j} \\
&=\left|D_{3}\right|+\sum_{r \in P \cup Q} d(3,3 ; r) \alpha^{r}+(3,3)_{6} \sum_{i \in D_{0}} \alpha^{i}+(2,2)_{6} \sum_{i \in D_{1}} \alpha^{i} \\
&+(1,1)_{6} \sum_{i \in D_{2}} \alpha^{i}+(0,0)_{6} \sum_{i \in D_{3}} \alpha^{i} \\
&+(5,5)_{6} \sum_{i \in D_{4}} \alpha^{i}+(4,4)_{6} \sum_{i \in D_{5}} \alpha^{i}, \\
&3.7) \\
& \sum_{i \in D_{5}} \sum_{j \in D_{5}} \alpha^{i+j}= \sum_{i \in D_{5}} \sum_{j \in D_{5}} \alpha^{i-j}
\end{aligned}
$$

$$
\begin{align*}
= & \left|D_{5}\right|+\sum_{r \in P \cup Q} d(5,5 ; r) \alpha^{r}+(5,5)_{6} \sum_{i \in D_{0}} \alpha^{i}+(4,4)_{6} \sum_{i \in D_{1}} \alpha^{i} \\
& +(3,3)_{6} \sum_{i \in D_{2}} \alpha^{i}+(2,2)_{6} \sum_{i \in D_{3}} \alpha^{i} \\
& +(1,1)_{6} \sum_{i \in D_{4}} \alpha^{i}+(0,0)_{6} \sum_{i \in D_{5}} \alpha^{i}, \tag{3.8}
\end{align*}
$$

$2 \sum_{i \in D_{1}} \sum_{j \in D_{3}} \alpha^{i+j}=2 \sum_{i \in D_{1}} \sum_{j \in D_{3}} \alpha^{i-j}$
$=2\left(\sum_{r \in P \cup Q} d(3,1 ; r) \alpha^{r}+(3,1)_{6} \sum_{i \in D_{0}} \alpha^{i}+(2,0)_{6} \sum_{i \in D_{1}} \alpha^{i}\right.$

$$
+(1,5)_{6} \sum_{i \in D_{2}} \alpha^{i}+(0,4)_{6} \sum_{i \in D_{3}} \alpha^{i}
$$

$$
\left.+(5,3)_{6} \sum_{i \in D_{4}} \alpha^{i}+(4,2)_{6} \sum_{i \in D_{5}} \alpha^{i}\right),
$$

$$
\begin{aligned}
& 2 \sum_{i \in D_{3}} \sum_{j \in D_{5}} \alpha^{i+j}= 2 \sum_{i \in D_{3}} \sum_{j \in D_{5}} \alpha^{i-j} \\
&=2\left(\sum_{r \in P \cup Q} d(5,3 ; r) \alpha^{r}+(5,3)_{6} \sum_{i \in D_{0}} \alpha^{i}+(4,2)_{6} \sum_{i \in D_{1}} \alpha^{i}\right. \\
& \quad+(3,1)_{6} \sum_{i \in D_{2}} \alpha^{i}+(2,0)_{6} \sum_{i \in D_{3}} \alpha^{i}
\end{aligned}
$$

$$
\left.+(1,5)_{6} \sum_{i \in D_{4}} \alpha^{i}+(0,4)_{6} \sum_{i \in D_{5}} \alpha^{i}\right),
$$

$$
2 \sum_{i \in D_{5}} \sum_{j \in D_{1}} \alpha^{i+j}=2 \sum_{i \in D_{5}} \sum_{j \in D_{1}} \alpha^{i-j}
$$

$$
=2\left(\sum_{r \in P \cup Q} d(1,5 ; r) \alpha^{r}+(1,5)_{6} \sum_{i \in D_{0}} \alpha^{i}+(0,4)_{6} \sum_{i \in D_{1}} \alpha^{i}\right.
$$

$$
+(5,3)_{6} \sum_{i \in D_{2}} \alpha^{i}+(4,2)_{6} \sum_{i \in D_{3}} \alpha^{i}
$$

$$
\left.+(3,1)_{6} \sum_{i \in D_{4}} \alpha^{i}+(2,0)_{6} \sum_{i \in D_{5}} \alpha^{i}\right) .
$$

Substituting the values of (3.6)-(3.11) into (3.5) and then from Lemma 1 and (3.4) and [8], we get

$$
\begin{aligned}
\Lambda(\alpha)(\Lambda(\alpha)+1)= & -\left(\sum_{i \in D_{1}} \alpha^{i}+\sum_{i \in D_{3}} \alpha^{i}+\sum_{i \in D_{5}} \alpha^{i}\right) \\
& +\left(\frac{3 M}{2}\right) \sum_{i \in D_{0}} \alpha^{i}+\left(\frac{3 M}{2}+1\right) \sum_{i \in D_{1}} \alpha^{i} \\
& +\left(\frac{3 M}{2}\right) \sum_{i \in D_{2}} \alpha^{i}+\left(\frac{3 M}{2}+1\right) \sum_{i \in D_{3}} \alpha^{i} \\
& +\left(\frac{3 M}{2}\right) \sum_{i \in D_{4}} \alpha^{i}+\left(\frac{3 M}{2}+1\right) \sum_{i \in D_{5}} \alpha^{i} \\
& -12 \frac{\left(p_{1}-1\right)\left(p_{2}-1\right)}{36}-3 \frac{\left(p_{1}-1\right)\left(p_{2}-7\right)}{36} \\
& -3 \frac{\left(p_{1}-7\right)\left(p_{2}-1\right)}{36}+3 \frac{\left(p_{1}-1\right)\left(p_{2}-1\right)}{6} \\
= & \frac{n-1}{4} .
\end{aligned}
$$

Now suppose that $p_{1} p_{2} \equiv 7(\bmod 12)$. By Lemma $2,-1 \in D_{3}$ and from Lemma $5,-D_{j}=\left\{-t: t \in D_{j}\right\}=D_{(j+3)(\bmod 6)}$. Similar to the above proof, in this case

$$
\begin{equation*}
\Lambda(\alpha)(\Lambda(\alpha)+1)=-\frac{n+1}{4} \tag{3.12}
\end{equation*}
$$

This completes the proof of the lemma.
Note that

$$
\begin{equation*}
\Lambda(1)=\frac{\left(p_{1}+1\right)\left(p_{2}-1\right)}{2}(\bmod p) \tag{3.13}
\end{equation*}
$$

It is elementary to prove the following Lemma:
Lemma 9. If p is an odd prime, then

$$
\left(\frac{2}{p}\right)=\left\{\begin{array}{l}
1, \quad \text { if } p \equiv 1(\bmod 24) \text { or } p \equiv 7(\bmod 24), \\
-1, \quad \text { if } p \equiv 13(\bmod 24) \text { or } p \equiv 19(\bmod 24) .
\end{array}\right.
$$

Lemma 10. If $n \equiv 7(\bmod 12)$ and $\frac{n+1}{4} \equiv 0(\bmod p)$ or $n \equiv 1(\bmod 12)$ and $\frac{n-1}{4} \equiv 0(\bmod p)$, then $q(\bmod n) \in d_{0}$.
Proof. First, we prove that when $n \equiv 7(\bmod 12)$ and $\frac{n+1}{4} \equiv 0(\bmod p)$, then $q(\bmod n) \in d_{0}$. Clearly, d_{0} is a multiplicative subgroup of \mathbb{Z}_{n}^{*}. Since q is a power of p, it is sufficient to prove that $p \in d_{0}$. Let us assume that $p \in d_{1}$. We deal with $p=2$. Let $2 \in d_{1}$. By the definition of Whiteman's generalized cyclotomic classes, $2=u^{s} g^{i}, 0 \leqslant i \leqslant e-1$ and s is odd. From (2.1), we have

$$
2 \equiv g^{s+i}\left(\bmod p_{1}\right) \quad \text { and } \quad 2 \equiv g^{i}\left(\bmod p_{2}\right)
$$

Therefore, 2 must be a quadratic residue (non residue, respectively) modulo p_{1} if it is a quadratic non residue (residue, respectively) modulo p_{2}.

For $p=2$, if $\frac{n+1}{4} \equiv 0(\bmod p)$, then 8 divides $p_{1} p_{2}+1$. Since $\operatorname{gcd}\left(p_{1}-1, p_{2}-\right.$ $1)=6$, it is clear that we get only the following four conditions for p_{1} and p_{2},

$$
\begin{aligned}
& \left\{\begin{array}{l}
p_{1} \equiv 1(\bmod 24), \\
p_{2} \equiv 7(\bmod 24),
\end{array}\right. \\
& \left\{\begin{array}{l}
p_{1} \equiv 7(\bmod 24), \\
p_{2} \equiv 1(\bmod 24),
\end{array}\right. \\
& \left\{\begin{array}{l}
p_{1} \equiv 13(\bmod 24), \\
p_{2} \equiv 19(\bmod 24),
\end{array}\right. \\
& \left\{\begin{array}{l}
p_{1} \equiv 19(\bmod 24), \\
p_{2} \equiv 13(\bmod 24)
\end{array}\right.
\end{aligned}
$$

By Lemma 9, it follows that none of the above four possibilities are possible. This gives a contradiction therefore $2 \in d_{0}$.

Again suppose that $p \in d_{1}$. Since $p \in d_{1}$, then $p=u^{s} g^{i}, 0 \leqslant i \leqslant e-1$ and s is odd. We have

$$
p \equiv g^{s+i}\left(\bmod p_{1}\right) \quad \text { and } \quad p \equiv g^{i}\left(\bmod p_{2}\right)
$$

Since s is an odd integer, then we must have

$$
\begin{equation*}
\left(\frac{p}{p_{1}}\right)\left(\frac{p}{p_{2}}\right)=-1, \tag{3.14}
\end{equation*}
$$

where $(-)$ is the Legendre symbol. If $n \equiv 7(\bmod 12)$, by Lemma $2,\left(p_{1}+p_{2}\right) / 2$ is even. If $\frac{n+1}{4} \equiv 0(\bmod p)$, then $n=p_{1} p_{2} \equiv-1(\bmod p)$. From the Law of Quadratic Reciprocity,

$$
\left(\frac{p}{p_{i}}\right)=(-1)^{\left(\frac{p-1}{2}\right)\left(\frac{p_{i}-1}{2}\right)}\left(\frac{p_{i}}{p}\right) \quad \text { for } \quad i=1,2
$$

and

$$
\left(\frac{-1}{p}\right)=(-1)^{\frac{p-1}{2}} .
$$

It follows that

$$
\left(\frac{p}{p_{1}}\right)\left(\frac{p}{p_{2}}\right)=1 .
$$

This is contrary to (3.14). Thus, $p \in d_{0}$. Similarly, we prove that if $n \equiv$ $1(\bmod 12)$ and $\frac{n-1}{4} \equiv 0(\bmod p)$, then $q(\bmod n) \in d_{0}$.

Let the symbols be defined as in Section 2. We explain the factorization of $x^{n}-1$ over finite field $\mathrm{GF}(q)$. Let $\mu_{0}(x)=\prod_{i \in d_{0}}\left(x-\alpha^{i}\right)$ and $\mu_{1}(x)=$ $\prod_{i \in d_{1}}\left(x-\alpha^{i}\right)$, where α is the $p_{1} p_{2}$-th primitive root of unity over $\operatorname{GF}(q)$. Let $\left(\alpha^{p_{1}}\right)^{i} ; 0 \leq i<p_{2}$ is the p_{2}-th roots of unity of the splitting field $x^{p_{2}}-1$ and
$\left(\alpha^{p_{2}}\right)^{i} ; 0 \leq i<p_{1}$ is the p_{1}-th roots of unity of the splitting field $x^{p_{1}}-1$. We have,

$$
x^{p_{2}}-1=\prod_{i \in P \cup\{0\}}\left(x-\alpha^{i}\right) \text { and } x^{p_{1}}-1=\prod_{i \in Q \cup\{0\}}\left(x-\alpha^{i}\right) .
$$

Then we have

$$
\begin{equation*}
x^{n}-1=\prod_{i=0}^{n-1}\left(x-\alpha^{i}\right)=\frac{\left(x^{p_{1}}-1\right)\left(x^{p_{2}}-1\right)}{x-1} \mu(x) \tag{3.15}
\end{equation*}
$$

where $\mu(x)=\mu_{0}(x) \mu_{1}(x)$. It is straightforward to prove that if $q \in d_{0}$, then $\mu_{i}(x) \in \mathrm{GF}(q)$ for $i \in\{0,1\}$.

Now we are ready to compute the generator polynomial and the linear complexity of the sequence λ^{∞} (defined in (2.2)). For this, let $\Omega_{1}=\frac{p_{1}+1}{2}(\bmod p)$, $\Omega_{2}=\frac{p_{2}-1}{2}(\bmod p)$ and $\Omega=\frac{\left(p_{1}+1\right)\left(p_{2}-1\right)}{2}(\bmod p)$. We have the following two theorems.

Theorem 1. (1) When $n \equiv 7(\bmod 12)$ and $\frac{n+1}{4} \not \equiv 0(\bmod p)$ or $n \equiv 1(\bmod 12)$ and $\frac{n-1}{4} \not \equiv 0(\bmod p)$, then the generator polynomial $g_{\lambda}(x)$ and the linear span L_{λ} of the sequence λ^{∞} (defined in (2.2)) are given by

$$
g_{\lambda}(x)= \begin{cases}x^{n}-1, & \text { if } \Omega_{1} \neq 0, \Omega_{2} \neq 0, \Omega \neq 0 \\ \frac{x^{n}-1}{x^{n}}, & \text { if } \Omega_{1} \neq 0, \Omega_{2} \neq 0, \Omega=0, \\ \frac{x^{n}-1}{x^{p_{2}}-1}, & \text { if } \Omega_{1}=0, \Omega_{2} \neq 0, \\ \frac{x^{n}-1}{x^{p_{1}}-1}, & \text { if } \Omega_{1} \neq 0, \Omega_{2}=0, \\ \frac{\left(x^{n}-1\right)(x-1)}{\left(x^{p_{1}}-1\right)\left(x^{p_{2}}-1\right)}, & \text { if } \Omega_{1}=\Omega_{2}=0\end{cases}
$$

and

$$
L_{\lambda}(x)= \begin{cases}n, & \text { if } \Omega_{1} \neq 0, \Omega_{2} \neq 0, \Omega \neq 0 \\ n-1, & \text { if } \Omega_{1} \neq 0, \Omega_{2} \neq 0, \Omega=0, \\ n-p_{2}, & \text { if } \Omega_{1}=0, \Omega_{2} \neq 0, \\ n-p_{1}, & \text { if } \Omega_{1} \neq 0, \Omega_{2}=0, \\ n-\left(p_{1}+p_{2}-1\right), & \text { if } \Omega_{1}=\Omega_{2}=0\end{cases}
$$

Thus, C_{λ} is the cyclic code with generator polynomial $g_{\lambda}(x)$ as above over $\mathrm{GF}(q)$ defined by the two-prime WGCS-I of order 6 has parameters $[n, k, d]$, where the dimension $k=n-\operatorname{deg}\left(g_{\lambda}(x)\right)$.
(2) When $n \equiv 7(\bmod 12)$ and $\frac{n+1}{4} \equiv 0(\bmod p)$ or $n \equiv 1(\bmod 12)$ and $\frac{n-1}{4} \equiv 0(\bmod p)$, then the generator polynomial $g_{\lambda}(x)$ and the linear span L_{λ}
of the sequence λ^{∞} are given by

$$
g_{\lambda}(x)= \begin{cases}\frac{x^{n}-1}{\mu_{0}(x)}, & \text { if } \Omega_{1} \neq 0, \Omega_{2} \neq 0, \Omega \neq 0, \Lambda(\alpha)=0, \\ \frac{x^{n}-1}{\mu_{1}(x)}, & \text { if } \Omega_{1} \neq 0, \Omega_{2} \neq 0, \Omega \neq 0, \Lambda(\alpha)=-1, \\ \frac{x^{n}-1}{(x-1) \mu_{0}(x)}, & \text { if } \Omega_{1} \neq 0, \Omega_{2} \neq 0, \Omega=0, \Lambda(\alpha)=0, \\ \frac{x^{n}-1}{(x-1) \mu_{1}(x)}, & \text { if } \Omega_{1} \neq 0, \Omega_{2} \neq 0, \Omega=0, \Lambda(\alpha)=-1, \\ \frac{x^{x^{-}}-1}{\left(x^{p_{2}}-1\right) \mu_{0}(x)}, & \text { if } \Omega_{1}=0, \Omega_{2} \neq 0, \Lambda(\alpha)=0, \\ \frac{x^{n}-1}{\left(x^{p_{2}}-1\right)_{1}(x)}, & \text { if } \Omega_{1}=0, \Omega_{2} \neq 0, \Lambda(\alpha)=-1, \\ \frac{1}{\left(x^{p_{1}}-1-1\right.}, \mu_{0}(x), & \text { if } \Omega_{1} \neq 0, \Omega_{2}=0, \Lambda(\alpha)=0, \\ \frac{1}{\left.\left(x^{p_{1}}-1\right)-1\right) \mu_{1}(x)}, & \text { if } \Omega_{1} \neq 0, \Omega_{2}=0, \Lambda(\alpha)=-1, \\ \frac{\left.1 x^{n}-1\right)(x-1)}{\left(x^{p_{1}}-1\right)\left(x^{p_{2}}-1\right) \mu_{0}(x)}, & \text { if } \Omega_{1}=\Omega_{2}=0, \Lambda(\alpha)=0, \\ \frac{\left(x^{n}-1\right)(x-1)}{\left(x^{p_{1}}-1\right)\left(x^{p_{2}}-1\right) \mu_{1}(x)}, & \text { if } \Omega_{1}=\Omega_{2}=0, \Lambda(\alpha)=-1,\end{cases}
$$

and

$$
L_{\lambda}(x)= \begin{cases}n-\frac{\left(p_{1}-1\right)\left(p_{2}-1\right)}{2}, & \text { if } \Omega_{1} \neq 0, \Omega_{2} \neq 0, \Omega \neq 0 \\ n-\frac{\left(p_{1}-1\right)\left(p_{2}-1\right)+2}{2}, & \text { one of } \Lambda(\alpha)=\{0,-1\} \text { but not both } \\ & \text { one of } \Lambda(\alpha)=\{0,-1\} \text { but not both } \\ n-\frac{\left(p_{1}+1\right)\left(p_{2}-1\right)+2}{2}, & \text { if } \Omega_{1}=0, \Omega_{2} \neq 0, \\ & \text { one of } \Lambda(\alpha)=\{0,-1\} \text { but not both, } \\ n-\frac{\left(p_{1}-1\right)\left(p_{2}+1\right)+2}{2}, & \text { if } \Omega_{1} \neq 0, \Omega_{2}=0, \\ n-\frac{\left(p_{1}+1\right)\left(p_{2}+1\right)-2}{2}, & \text { one of } \Lambda(\alpha)=\{0,-1\} \text { but not both } \\ & \text { one of } \Lambda(\alpha)=\{0,-1\} \text { but not both. }\end{cases}
$$

Thus, C_{λ} is the cyclic code with generator polynomial $g_{\lambda}(x)$ over $G F(q)$ defined by the WGCS-I of order 6 has parameters $[n, k, d]$, where the dimension $k=$ $n-\operatorname{deg}\left(g_{\lambda}(x)\right)$.

Proof. (1) When $n \equiv 7(\bmod 12)$ and $\frac{n+1}{4} \not \equiv 0(\bmod p)$ or $n \equiv 1(\bmod 12)$ and $\frac{n-1}{4} \not \equiv 0(\bmod p)$, then by Lemma 8 , we have $\Lambda(\alpha) \neq 0,-1$. Therefore, from Lemma $6, \Lambda\left(\alpha^{t}\right)=0$ only when t is in P or Q or both. By Lemma 6 and (3.13), we follow that the conclusion on the generator polynomial $g_{\lambda}(x)$ of cyclic code C_{λ} over $\operatorname{GF}(q)$ defined by the sequence λ^{∞}. The linear complexity of the sequence λ^{∞} is equal to $\operatorname{deg}\left(g_{\lambda}(x)\right)$.
(2) When $n \equiv 7(\bmod 12)$ and $\frac{n+1}{4} \equiv 0(\bmod p)$ or $n \equiv 1(\bmod 12)$ and $\frac{n-1}{4} \equiv 0(\bmod p)$, then by Lemma 8, we have $\Lambda(\alpha) \in\{0,-1\}$ and $\mu_{i}(x) \in$ $\mathrm{GF}(q)[x]$ for each i if $q \in d_{0}$. From (3.13), Lemmas 6, 7 and 10, we follow that the conclusion on the generator polynomial $g_{\lambda}(x)$ of cyclic code C_{λ} over $\operatorname{GF}(q)$ defined by the sequence λ^{∞}. The linear complexity of the sequence λ^{∞} is equal to $\operatorname{deg}\left(g_{\lambda}(x)\right)$.

The following corollaries follow from Theorem 1, Lemmas 8 and 10 and give the parameters of the cyclic codes C_{λ} with generator polynomial and the linear complexity of the sequence λ^{∞} (defined in (2.2)).

Corollary 1. Let $q=2$, the generator polynomial and the linear complexity are $g_{\lambda}(x)$ and L_{λ}, respectively. We have the following conclusions:
(1) If $p_{1} \equiv 13(\bmod 24)$ and $p_{2} \equiv 7(\bmod 24)$ or $p_{1} \equiv 1(\bmod 24)$ and $p_{2} \equiv 19(\bmod 24)$, then

$$
g_{\lambda}(x)=\frac{x^{n}-1}{x-1} \quad \text { and } \quad L_{\lambda}=n-1 .
$$

Therefore, the parameters of the cyclic code C_{λ} over $\operatorname{GF}(q)$ are $[n, 1, n-1]$.
(2) If $p_{1} \equiv 7(\bmod 24)$ and $p_{2} \equiv 19(\bmod 24)$ or $p_{1} \equiv 19(\bmod 24)$ and $p_{2} \equiv 7(\bmod 24)$, then

$$
g_{\lambda}(x)=\frac{x^{n}-1}{x^{p_{2}}-1} \quad \text { and } \quad L_{\lambda}=n-p_{2} .
$$

Therefore, the parameters of the cyclic code C_{λ} over $\operatorname{GF}(q)$ are $\left[n, p_{2}, p_{1}\right]$.
(3) If $p_{1} \equiv 7(\bmod 24)$ and $p_{2} \equiv 13(\bmod 24)$ or $p_{1} \equiv 19(\bmod 24)$ and $p_{2} \equiv 1(\bmod 24)$, we have

$$
g_{\lambda}(x)=\frac{\left(x^{n}-1\right)(x-1)}{\left(x^{p_{1}}-1\right)\left(x^{p_{2}}-1\right)} \quad \text { and } \quad L_{\lambda}=n-\left(p_{1}+p_{2}-1\right)
$$

Therefore, the parameters of the cyclic code C_{λ} over $\operatorname{GF}(q)$ are $\left[n, p_{2}, p_{1}\right]$.
(4) If $p_{1} \equiv 1(\bmod 24)$ and $p_{2} \equiv 7(\bmod 24)$ or $p_{1} \equiv 13(\bmod 24)$ and $p_{2} \equiv 19(\bmod 24)$, we have

$$
g_{\lambda}(x)=\left\{\begin{array}{ll}
\frac{\left(x^{n}-1\right)}{(x-1) \mu_{0}(x)}, & \text { if } \Lambda(\alpha)=0 \\
\frac{\left(x^{n}-1\right)}{(x-1) \mu_{1}(x)}, & \text { if } \Lambda(\alpha)=1
\end{array} \text { and } L_{\lambda}=n-\frac{\left(p_{1}-1\right)\left(p_{2}-1\right)+2}{2} .\right.
$$

Therefore, the parameters of the cyclic code C_{λ} over $\mathrm{GF}(q)$ are

$$
\left[n, \frac{\left(p_{1}-1\right)\left(p_{2}-1\right)+2}{2}, d\right] .
$$

(5) If $p_{1} \equiv 7(\bmod 24)$ and $p_{2} \equiv 7(\bmod 24)$ or $p_{1} \equiv 19(\bmod 24)$ and $p_{2} \equiv 19(\bmod 24)$, we have
$g_{\lambda}(x)=\left\{\begin{array}{ll}\frac{\left(x^{n}-1\right)}{\left(x^{p}-1\right) \mu_{0}(x)}, & \text { if } \Lambda(\alpha)=0 \\ \frac{\left(x^{n}-1\right)}{\left(x^{p_{2}}-1\right) \mu_{1}(x)}, & \text { if } \Lambda(\alpha)=1\end{array} \quad\right.$ and $\quad L_{\lambda}=n-\frac{\left(p_{1}+1\right)\left(p_{2}-1\right)+2}{2}$.
In this case, the parameters of the cyclic code C_{λ} over $\operatorname{GF}(q)$ are

$$
\left[n, \frac{\left(p_{1}+1\right)\left(p_{2}-1\right)+2}{2}, d\right] .
$$

(6) If $p_{1} \equiv 7(\bmod 24)$ and $p_{2} \equiv 1(\bmod 24)$ or $p_{1} \equiv 19(\bmod 24)$ and $p_{2} \equiv 13(\bmod 24)$, we have

$$
\begin{aligned}
g_{\lambda}(x) & =\left\{\begin{array}{ll}
\frac{\left(x^{n}-1\right)(x-1)}{\left(x^{p_{1}}-1\right)\left(x^{\left.p_{2}-1\right) \mu_{0}(x)},\right.}, & \text { if } \Lambda(\alpha)=0 \\
\frac{\left(x^{n}-1\right)(x-1)}{\left(x^{p_{1}}-1\right)\left(x^{p_{2}}-1\right) \mu_{1}(x)}, & \text { if } \Lambda(\alpha)=1
\end{array}\right. \text { and } \\
L_{\lambda} & =n-\frac{\left(p_{1}+1\right)\left(p_{2}+1\right)-2}{2} .
\end{aligned}
$$

In this case, the parameters of the cyclic code C_{λ} over $\operatorname{GF}(q)$ are

$$
\left[n, \frac{\left(p_{1}+1\right)\left(p_{2}+1\right)-2}{2}, d\right] .
$$

If $q=3$, then we have only one possibility: $p_{1} \equiv 7(\bmod 12)$ and $p_{2} \equiv$ $7(\bmod 12)$.

Corollary 2. Let $q=3$ and $p_{1} \equiv 7(\bmod 12)$ and $p_{2} \equiv 7(\bmod 12)$. Then we have

$$
g_{\lambda}(x)=\left\{\begin{array}{ll}
\frac{\left(x^{n}-1\right)}{\left(x^{p_{1}}-1\right) \mu_{0}(x)}, & \text { if } \Lambda(\alpha)=0 \\
\frac{\left(x^{n}-1\right)}{\left(x^{p_{1}}-1\right) \mu_{1}(x)}, & \text { if } \Lambda(\alpha)=1
\end{array} \text { and } L_{\lambda}=n-\frac{\left(p_{1}-1\right)\left(p_{2}+1\right)+2}{2} .\right.
$$

In this case, the parameters of the cyclic code C_{λ} over $\operatorname{GF}(q)$ are

$$
\left[n, \frac{\left(p_{1}-1\right)\left(p_{2}+1\right)+2}{2}, d\right] .
$$

4. The minimum distance of the cyclic codes

Here, we determine the lower bounds on the minimum distance of some of the cyclic codes of this paper and the symbols are the same as above.

Theorem 2 ([5]). The cyclic code C_{i} with the generator polynomial $g_{i}(x)=$ $\frac{x^{n}-1}{x^{p_{i}-1}}$ has parameters $\left[n, p_{i}, d_{i}\right]$ over $\mathrm{GF}(q)$, where $d_{i}=p_{i-(-1)^{i}}$ and $i=1,2$.

Theorem 3 ([5]). The cyclic code $C_{\left(p_{1}, p_{2}, q\right)}$ with the generator polynomial $g(x)=\frac{\left(x^{n}-1\right)(x-1)}{\left(x^{p_{1}}-1\right)\left(x^{\left.p_{2}-1\right)}\right.}$ has parameters $\left[n, p_{1}+p_{2}-1, d_{\left(p_{1}, p_{2}, q\right)}\right]$ over $\operatorname{GF}(q)$, where $d_{\left(p_{1}, p_{2}, q\right)}=\min \left(p_{1}, p_{2}\right)$.

Theorem 4. Assume that $q \in d_{0}$. Let the cyclic code $C^{(i, j)}$ with the generator polynomial $g^{(i, j)}(x)=\frac{x^{n}-1}{\left(x^{p_{i}}-1\right) \mu_{j}(x)}$ has parameters $\left[n, p_{i}+\frac{\left(p_{1}-1\right)\left(p_{2}-1\right)}{2}, d^{(i, j)}\right]$ over $\operatorname{GF}(q)$, where $i \in\{1,2\}$ and $j \in\{0,1\}$ and $d^{(i, j)} \geq\left\lceil\sqrt{p_{i-(-1)^{i}}}\right\rceil$. If $-1 \in d_{1}$, we have $\left(d^{(i, j)}\right)^{2}-d^{(i, j)}+1 \geq p_{i-(-1)^{i}}$.

Proof. Let the codeword $c(x) \in \operatorname{GF}(q)[x] /\left(x^{n}-1\right)$ with the Hamming weight w in $C^{(i, j)}$. Choose any $r \in d_{1}$. The codeword $c\left(x^{r}\right)$ with Hamming weight w in $C^{(i,(j+1) \bmod 2)}$. Then, we conclude that $d^{(i, j)}=d^{(i,(j+1) \bmod 2)}$. Thus, $c(x) c\left(x^{r}\right)$ is a codeword of C_{i}. From Theorem $2, C_{i}$ is the cyclic code with minimum distance $d_{i}=p_{i-(-1)^{i}}$ and the generator polynomial $g_{i}(x)=\frac{x^{n}-1}{x^{p_{i}-1}}$
over $\operatorname{GF}(q)$. Hence, we have $\left(d^{(i, j)}\right)^{2} \geq d_{i}=p_{i-(-1)^{i}}$, and $\left(d^{(i, j)}\right)^{2}-d^{(i, j)}+1 \geq$ $p_{i-(-1)^{i}}$ if $-1 \in d_{1}$.

Theorem 5. Assume that $q \in d_{0}$. Let the cyclic code $C_{\left(p_{1}, p_{2}\right)}^{(j)}$ with the generator polynomial $g_{\left(p_{1}, p_{2}\right)}^{(j)}(x)=\frac{\left(x^{n}-1\right)(x-1)}{\left(x^{p_{1}}-1\right)\left(x^{p_{2}}-1\right) \mu_{j}(x)}$ over $\operatorname{GF}(q)$, where $i \in\{1,2\}$ and $j \in\{0,1\}$. The cyclic code $C_{\left(p_{1}, p_{2}\right)}^{(j)}$ has parameters $\left[n, p_{1}+p_{2}-1+\right.$ $\left.\frac{\left(p_{1}-1\right)\left(p_{2}-1\right)}{2}, d_{\left(p_{1}, p_{2}\right)}^{(j)}\right]$, where $d_{\left(p_{1}, p_{2}\right)}^{(j)} \geq\left\lceil\sqrt{\min \left(p_{1}, p_{2}\right)}\right\rceil$. If $-1 \in d_{1}$, we have $\left(d_{\left(p_{1}, p_{2}\right)}^{(j)}\right)^{2}-d_{\left(p_{1}, p_{2}\right)}^{(j)}+1 \geq \min \left(p_{1}, p_{2}\right)$.
Proof. Let the codeword $c(x) \in \operatorname{GF}(q)[x] /\left(x^{n}-1\right)$ with Hamming weight w in $C_{\left(p_{1}, p_{2}\right)}^{(j)}$. Choose any $r \in d_{1}$. The codeword $c\left(x^{r}\right)$ with Hamming weight w in $C_{\left(p_{1}, p_{2}\right)}^{((j+1) \bmod 2)}$. Then, we conclude that $d_{\left(p_{1}, p_{2}\right)}^{(j)}=d_{\left(p_{1}, p_{2}\right)}^{((j+1) \bmod 2)}$. Thus, $c(x) c\left(x^{r}\right)$ is a codeword of $C_{\left(p_{1}, p_{2}, q\right)}$. From Theorem 3, $C_{\left(p_{1}, p_{2}, q\right)}$ is a cyclic code over $\operatorname{GF}(q)$ with the generator polynomial $g(x)=\frac{\left(x^{n}-1\right)(x-1)}{\left(x^{p_{1}}-1\right)\left(x^{p_{2}}-1\right)}$ and minimum distance $d_{\left(p_{1}, p_{2}, q\right)}=\min \left(p_{1}, p_{2}\right)$. Hence, we have $\left(d_{\left(p_{1}, p_{2}\right)}^{(j)}\right)^{2} \geq d_{\left(p_{1}, p_{2}, q\right)}=$ $\min \left(p_{1}, p_{2}\right)$, and $\left(d_{\left(p_{1}, p_{2}\right)}^{(j)}\right)^{2}-d_{\left(p_{1}, p_{2}\right)}^{(j)}+1 \geq \min \left(p_{1}, p_{2}\right)$ if $-1 \in d_{1}$.

Example 1. Let $\left(p, m, p_{1}, p_{2}\right)=(2,1,7,31)$. We have $q=2, n=217$ and C_{λ} is a $[217,121]$ cyclic code over $\mathrm{GF}(q)$ with generator polynomial $g_{\lambda}(x)=$ $\frac{x^{217}-1}{\left(x^{31}-1\right) d_{1}(x)}=x^{96}+x^{94}+x^{91}+x^{87}+x^{86}+x^{85}+x^{83}+x^{81}+x^{80}+x^{78}+x^{77}+$ $x^{75}+x^{72}+x^{69}+x^{67}+x^{65}+x^{64}+x^{63}+x^{60}+x^{58}+x^{55}+x^{53}+x^{52}+x^{51}+$ $x^{48}+x^{45}+x^{44}+x^{43}+x^{41}+x^{38}+x^{36}+x^{33}+x^{32}+x^{31}+x^{29}+x^{27}+x^{24}+$ $x^{21}+x^{19}+x^{18}+x^{16}+x^{15}+x^{13}+x^{11}+x^{10}+x^{9}+x^{5}+x^{2}+1$. We did some computation with MAGMA and our computation shows that upper bound on the minimum distance for this binary code is 31 .

Example 2. Let $\left(p, m, p_{1}, p_{2}\right)=(2,1,7,31)$. We have $q=3, n=217$ and C_{λ} is a $[217,97]$ cyclic code over $\mathrm{GF}(q)$ with generator polynomial $g_{\lambda}(x)=$ $\frac{x^{217}-1}{\left(x^{7}-1\right) d_{1}(x)}=x^{120}+2 x^{115}+x^{113}+2 x^{109}+2 x^{108}+x^{106}+x^{105}+x^{104}+2 x^{102}+$ $2 x^{100}+x^{98}+2 x^{96}+x^{95}+x^{92}+x^{90}+x^{88}+2 x^{87}+2 x^{85}+x^{83}+2 x^{81}+x^{79}+$ $x^{78}+2 x^{77}+x^{76}+2 x^{75}+2 x^{74}+2 x^{71}+2 x^{70}+x^{69}+x^{67}+2 x^{66}+2 x^{65}+x^{64}+$ $2 x^{61}+x^{60}+2 x^{59}+x^{56}+2 x^{55}+2 x^{54}+x^{53}+x^{51}+2 x^{50}+2 x^{49}+2 x^{46}+2 x^{45}+$ $x^{44}+2 x^{43}+x^{42}+x^{41}+2 x^{39}+x^{37}+2 x^{35}+2 x^{33}+x^{32}+x^{30}+x^{28}+x^{25}+$ $2 x^{24}+x^{22}+2 x^{20}+2 x^{18}+x^{16}+x^{15}+x^{14}+2 x^{12}+2 x^{11}+x^{7}+2 x^{5}+1$. We did some computation with MAGMA and our computation shows that upper bound on the minimum distance for this ternary code is 58 . From Theorem 4, we have the lower bound on the minimum distance for this binary code is 6 .

Example 3. Let $\left(p, m, p_{1}, p_{2}\right)=(2,1,7,19)$. We have $q=2, n=133$ and C_{λ} is a $[133,19,7]$ cyclic code with generator polynomial $g_{\lambda}(x)=\frac{\left(x^{133}-1\right)}{\left(x^{19}-1\right)\left(x^{13}-1\right)}=$ $x^{114}+x^{95}+x^{76}+x^{57}+x^{38}+x^{19}+1$ over $\operatorname{GF}(q)$. From the table of linear
codes, this cyclic code has poor minimum distance. The code in this case is bad because $q \notin D_{0}$.

5. Conclusion

In this manuscript, we have computed the linear complexities of the twoprime WGCS-I of order 6 . We have also constructed the cyclic codes of WGCS-I of order 6 over $\operatorname{GF}(q)$. If $\Lambda(\alpha) \notin\{0,1\}$, then the least value of linear complexity is $n-\left(p_{1}+p_{2}-1\right)$ and if $\Lambda(\alpha) \in\{0,1\}$, then the least value of linear complexity is $n-\frac{\left(p_{1}+1\right)\left(p_{2}+1\right)-2}{2}$. Therefore, we conclude that these sequence possesses high linear complexity. The cyclic codes employed in this paper depend on p_{1}, p_{2} and q. When $q \in D_{0}$, we get a good code. We expect that the codes in Examples 1 and 2 give good codes. When $q \notin D_{0}$, we get a bad code, for example, we get a bad code in Example 3. Hence, we expect that cyclic codes mentioned in this article can be employed to construct the good cyclic codes of large length.

References

[1] E. Betti and M. Sala, A new bound for the minimum distance of a cyclic code from its defining set, IEEE Trans. Inform. Theory 52 (2006), no. 8, 3700-3706.
[2] Z.-X. Chen and S.-Q. Li, Some notes on generalized cyclotomic sequences of length pq, J. Comput. Sci. Tech. 23 (2008), no. 5, 843-850.
[3] T. W. Cusick, C. Ding, and A. Renvall, Stream Ciphers and Number Theory, NorthHolland Mathematical Library, 55, North-Holland Publishing Co., Amsterdam, 1998.
[4] C. Ding, Linear complexity of generalized cyclotomic binary sequences of order 2, Finite Fields Appl. 3 (1997), no. 2, 159-174.
[5] , Cyclic codes from the two-prime sequences, IEEE Trans. Inform. Theory 58 (2012), no. 6, 3881-3891.
[6] C. Ding, X. Du, and Z. Zhou, The Bose and minimum distance of a class of BCH codes, IEEE Trans. Inform. Theory 61 (2015), no. 5, 2351-2356.
[7] M. van Eupen and J. H. van Lint, On the minimum distance of ternary cyclic codes, IEEE Trans. Inform. Theory 39 (1993), no. 2, 409-422.
[8] P. K. Kewat and P. Kumari, Cyclic codes from the second class two-prime Whiteman's generalized cyclotomic sequence with order 6, Cryptogr. Commun. 9 (2017), no. 4, 475499.
[9] J. H. van Lint and R. M. Wilson, On the minimum distance of cyclic codes, IEEE Trans. Inform. Theory 32 (1986), no. 1, 23-40.
[10] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. II, North-Holland Publishing Co., Amsterdam, 1977.
[11] Y. Sun, T. Yan, and H. Li, Cyclic code from the first class whiteman's generalized cyclotomic sequence with order $4, \mathrm{CoRR}$, abs/1303.6378, 2013.
[12] A. L. Whiteman, A family of difference sets, Illinois J. Math. 6 (1962), 107-121.
Pramod Kumar Kewat
Department of Applied Mathematics
Indian Institute of Technology (Indian School of Mines)
Dhanbad 826 004, India
Email address: pramodk@iitism.ac.in

Priti Kumari
Department of Applied Mathematics
Indian Institute of Technology (Indian School of Mines)
Dhanbad 826 004, India
Email address: priti.jsr13@gmail.com

