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CYCLIC CODES FROM THE FIRST CLASS TWO-PRIME

WHITEMAN’S GENERALIZED CYCLOTOMIC SEQUENCE

WITH ORDER 6

Pramod Kumar Kewat and Priti Kumari

Abstract. Let p1 and p2 be two distinct odd primes with gcd(p1 −
1, p2−1) = 6. In this paper, we compute the linear complexity of the first

class two-prime Whiteman’s generalized cyclotomic sequence (WGCS-I)
of order d = 6. Our results show that their linear complexity is quite good.

So, the sequence can be used in many domains such as cryptography and

coding theory. This article enrich a method to construct several classes
of cyclic codes over GF(q) with length n = p1p2 using the two-prime

WGCS-I of order 6. We also obtain the lower bounds on the minimum
distance of these cyclic codes.

1. Introduction

Let q be a power of a prime p. An [n, k, d] linear code C over a finite field
GF(q) is a k-dimensional subspace of the vector space GF(q)n with minimum
distance d. A linear code C is a cyclic code if the cyclic shift of a codeword in C
is again a codeword in C, i.e., if (c0, . . . , cn−1) ∈ C, then (cn−1, c0, . . . , cn−2) ∈
C. Let gcd(n, q) = 1. We denote by R the ring GF(q)[x]/〈xn − 1〉. We can
consider a cyclic code of length n over GF(q) as an ideal in R via the following
correspondence

GF(q)n → R, (c0, c1, . . . , cn−1) 7→ c0 + c1x+ · · ·+ cn−1x
n−1.

The total number of cyclic codes over GF(q) and their construction are
closely related to the cyclotomic cosets modulo n. One way to construct cyclic
codes over GF(q) with length n is to use the generator polynomial

(1.1)
xn − 1

gcd(xn − 1, S(x))
,

where S(x) =
∑n−1
i=0 six

i ∈ GF(q)[x] and s∞ = (si)
∞
i=0 is a sequence of period

n over GF(q). The cyclic code Cs generated by the polynomial in (1.1) is called

Received July 6, 2017; Revised February 13, 2018; Accepted September 10, 2018.

2010 Mathematics Subject Classification. 94A05, 94A55, 94B15.
Key words and phrases. cyclic codes, finite fields, cyclotomic sequences.

c©2019 Korean Mathematical Society

285



286 P. K. KEWAT AND P. KUMARI

the cyclic code defined by the sequence s∞, and the sequence s∞ is called the
defining sequence of the cyclic code Cs.

Cyclic codes have been studied in a series of papers due to their efficient cod-
ing and decoding properties and a lot of progress have been adapted (see, for
example [1], [6], [7], [9] and [10]). The Whiteman’s generalized cyclotomy was
introduced by Whiteman and its properties were studied in [12], is an important
technique to sequence design. Ding defined the two-prime Whiteman’s gener-
alized cyclotomic sequence (WGCS) using Whiteman cyclotomic classes in [4]
and its coding properties were studied in [5] and [11]. For keystream sequences
for additive synchronous stream ciphers there are some common cryptographic
measures of their strength such as good autocorrelation property and large
linear complexity. In this correspondence, we calculate the exact value of the
linear complexity of this sequence. This article enrich a method to construct
several classes of cyclic codes over GF(q) using the two-prime WGCS-I with
order 6. We also obtain the lower bounds on the minimum distance of these
cyclic codes.

Our technique to calculate the linear complexity is same as in [4] and con-
struction of cyclic codes over GF(q) follow from [5]. But we need to remark
that in this paper, we investigate the linear complexity of two prime WGCS-I
of order six are same as two prime sequence of order two. Therefore, we con-
struct many classes of cyclic codes over GF(q) for large length. In particular,
we give the parameters of several classes of cyclic codes for q = 2 and q = 3.

2. Preliminaries

2.1. Linear complexity and minimal polynomial

The linear span Ls and the minimal polynomial ms(x) of binary sequence
s∞ of a period n over GF (q) can be calculated by the following equations:

ms(x) =
xn − 1

gcd(xn − 1, Sn(x))
,

Ls = n− deg(gcd(xn − 1, Sn(x))).

We refer the readers to [8] for detailed informations of the linear complexity
and the minimal polynomial.

2.2. The Whiteman’s generalized cyclotomic sequences and its con-
struction

Let n be a positive integer. The multiplicative order of an integer a modulo
n is equal to φ(n), then the integer a is known as primitive root of modulo n,
where φ(n) is the Euler phi function and gcd(a, n) = 1. Define n = p1p2, d =
gcd(p1− 1, p2− 1) and e = (p1− 1)(p2− 1)/d, where p1 and p2 are two distinct
odd primes. From the Chinese Remainder theorem, there are common primitive
roots of both p1 and p2. Let g be a fixed common primitive root of both p1
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and p2. Let u be an integer satisfying

u ≡ g (mod p1), u ≡ 1 (mod p2).(2.1)

The Whiteman’s generalized cyclotomic classes Di of order d are defined by

Di = {gsui (mod n) : s = 0, 1, . . . , e− 1}, i = 0, 1, . . . , d− 1.

Let

P = {p1, 2p1, 3p1, . . . , (p2 − 1)p1}, Q = {p2, 2p2, 3p2, . . . , (p1 − 1)p2},

C0 = {0} ∪Q ∪
d
2−1⋃
i=0

D2i and C1 = P ∪
d
2−1⋃
i=0

D2i+1,

C∗0 = {0} ∪Q ∪
d
2−1⋃
i=0

Di, C
∗
1 = P ∪

d−1⋃
i= d

2

Di.

It is clear that if d > 2, then C0 6= C∗0 and C1 6= C∗1 . Now we define two
types of Whiteman’s generalized cyclotomic sequences of order d (see [2]).

Definition. The first class two-prime Whiteman’s generalized cyclotomic se-
quence (WGCS-I) λ∞ = (λi)

n−1
i=0 of order d and period n, is defined by

(2.2) λi =

{
0, if i ∈ C0,
1, if i ∈ C1.

The second class two-prime Whiteman’s generalized cyclotomic sequence
(WGCS-II) s∞ = (si)

n−1
i=0 of order d and period n, is defined by

si =

{
0, if i ∈ C∗0 ,
1, if i ∈ C∗1 .

The sets C1 and C∗1 ⊆ Zn are known as the characteristic sets of the sequence
λ∞ and s∞, respectively and the sequences λi and si are referred to as the
characteristic sequences of C1 and C∗1 , respectively.

The cyclotomic numbers corresponding to these cyclotomic classes are de-
fined as

(i, j)d = |(Di + 1) ∩Dj |, where 0 ≤ i, j ≤ d− 1.

Additionally, for any t ∈ Zn, we define

d(i, j; t) = |(Di + t) ∩Dj |,

where Di + t = {w + t |w ∈ Di}.

2.3. Properties of Whiteman’s cyclotomy of order d

Here, we review some of properties of Whiteman’s generalized cyclotomy of
order d = gcd(p1 − 1, p2 − 1). The proof of the following lemma follows from
Theorem 4.4.6 of [3].
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Lemma 1. Let the notations be defined as above and t 6= 0. We have

d(i, j; t) =


(p1−1)(p2−1)

d2 , i 6= j, t ∈ P ∪Q,
(p1−1)(p2−1−d)

d2 , i = j, t ∈ P, t /∈ Q,
(p1−1−d)(p2−1)

d2 , i = j, t ∈ Q, t /∈ P,
(i′, j′)d for some (i′, j′), otherwise.

The following two lemmas follow from [8].

Lemma 2. Let the notations be defined as before. The four statements given
below are equivalent:

(1) −1 ∈ D d
2
.

(2) (p1−1)(p2−1)
d2 is even.

(3) One of the sets of equations given below are satisfied:{
p1 ≡ 1 (mod 2d),
p2 ≡ d+ 1 (mod 2d),

{
p1 ≡ d+ 1 (mod 2d),
p2 ≡ 1 (mod 2d).

(4) p1p2 ≡ d+ 1 (mod 2d).

Lemma 3. Let the symbols be defined as before. The following four statements
are equivalent:

(1) −1 ∈ D0.

(2) (p1−1)(p2−1)
d2 is odd.

(3) The following set of equation is satisfied:{
p1 ≡ d+ 1 (mod 2d),
p2 ≡ d+ 1 (mod 2d).

(4) p1p2 ≡ (d+ 1)2 ≡ 1 (mod 2d).

Now, we employ the sequence λ∞ (defined in (2.2)) to construct cyclic codes
over GF(q).

3. A class of cyclic codes over GF(q) defined by two-prime WGCS-I

In this section, we compute the parameters of the cyclic code Cλ defined
by the sequence λ∞ over finite field GF(q), where q is a power of a prime p.
We have gcd(n, q) = 1, where n = p1p2 (product of two distinct primes) is the
length of the cyclic code. Let r be the order of q modulo n. Then, the field
GF(qr) has a primitive nth root of unity. Let α be a primitive nth root of unity
over the finite field GF(q). We define

Λ(x) =
∑
i∈C1

xi =

(∑
i∈P

+
∑
i∈D1

+
∑
i∈D3

+
∑
i∈D5

)
xi ∈ GF(q)[x].(3.1)

To find the parameters of the cyclic code, for this, first we find the generator
polynomial

gλ(x) =
xn − 1

gcd(xn − 1,Λ(x))
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of the cyclic code Cλ defined by the sequence λ∞. In the sequel, we need
following results. We have

0 = αn − 1 = (αp1)p2 − 1 = (αp1 − 1)(1 + αp1 + α2p1 + · · ·+ α(p2−1)p1).

It follows that

αp1 + α2p1 + · · ·+ α(p2−1)p1 = −1, i.e.,
∑
i∈P

αi = −1.(3.2)

By symmetry, we get

αp2 + α2p2 + · · ·+ α(p1−1)p2 = −1, i.e.,
∑
i∈Q

αi = −1.(3.3)

The following two lemmas follow from [8].

Lemma 4. Let the symbols be same as before. For 0 ≤ j ≤ 5, we have∑
i∈Dj

αit =

{
−p1−16 (mod p), if t ∈ P,
−p2−16 (mod p), if t ∈ Q.

Lemma 5. For any r ∈ Di, we have rDj = D(i+j)(mod d), where rDj =
{rt | t ∈ Dj}.

Throughout this paper, let d0 = D0 ∪D2 ∪D4 and d1 = D1 ∪D3 ∪D5.

Lemma 6. Let the symbols be same as before. For all t ∈ Zn we have

Λ(αt) =


−p1+1

2 (mod p), if t ∈ P,
p2−1

2 (mod p), if t ∈ Q,
Λ(α), if t ∈ D0,
−(Λ(α) + 1), if t ∈ D1.

Proof. Since gcd(p1, p2) = 1, we have tP = P if t ∈ P . By (3.1), (3.2) and
Lemma 4, we get

Λ(αt) =
∑
i∈C1

αti =

(∑
i∈P

+
∑
i∈D1

+
∑
i∈D3

+
∑
i∈D5

)
αti

= (−1 mod p)−
(
p1 − 1

6
mod p

)
−
(
p1 − 1

6
mod p

)
−
(
p1 − 1

6
mod p

)
= −p1 + 1

2
mod p.

If t ∈ Q, then tP = 0. By (3.1), (3.2) and Lemma 4, we get

Λ(αt) =
∑
i∈C1

αti =

(∑
i∈P

+
∑
i∈D1

+
∑
i∈D3

+
∑
i∈D5

)
αti

= (p2−1 mod p)−
(
p2−1

6
mod p

)
−
(
n2−1

6
mod p

)
−
(
p2−1

6
mod p

)
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=
p2 − 1

2
mod p.

If t ∈ D0, we have three cases:
Case I: Let t ∈ D0, then by Lemma 5, we have tDi = Di. Since gcd(t, p2) = 1,
we have tP = P if t ∈ D0. Hence,

Λ(αt) =
∑
i∈C1

αti =

(∑
i∈P

+
∑
i∈D1

+
∑
i∈D3

+
∑
i∈D5

)
αti

=

(∑
i∈P

+
∑
i∈D1

+
∑
i∈D3

+
∑
i∈D5

)
αi

= Λ(α).

Case II: Let t ∈ D2, then by similar to the proof of the Case I, we have
Λ(αt) = Λ(α) and Case III: Let t ∈ D4, then by similar to the proof of the
Case I, we have Λ(αt) = Λ(α).

Similarly, if t ∈ D1, we have three cases:
Case I: Let t ∈ D1, then by Lemma 5, we have tDi = Di+1 (mod 6). Since

gcd(t, p2) = 1, we have tP = P if t ∈ D1. We have αn−1 = (α−1)(
∑n−1
i=0 α

i) =

0 and α− 1 6= 0, this give
∑n−1
i=0 α

i = 0. Therefore,

n−1∑
i=0

αi = 1 +
∑
i∈P

αi +
∑
i∈Q

αi +
∑

i∈
⋃5

j=0Dj

αi = 0.

From (3.2) and (3.3), we get

(3.4)
∑

i∈
⋃5

j=0Dj

αi = 1.

Hence

Λ(αt) =
∑
i∈C1

αti =

(∑
i∈P

+
∑
i∈D1

+
∑
i∈D3

+
∑
i∈D5

)
αti = −(Λ(α) + 1).

Similarly, we can prove other two cases namely, Case II : t ∈ D3 and Case
III : t ∈ D5. �

Lemma 7. If q ∈ d0, we have Λ(α) ∈ GF(q) and (Λ(α))q = Λ(α). If q ∈ d1,
we have Λ(α)q = −(Λ(α) + 1).

Proof. We have gcd(n, q) = 1, i.e., q ∈ Z∗n, then q ∈
⋃5
i=0Di = d0 ∪ d1. If

q ∈ d0, by Lemma 6, we have (Λ(α))q = Λ(αq) = Λ(α). So, Λ(α) ∈ GF(q).
Similarly, if q ∈ d1, from Lemma 6, the result follows. �

Lemma 8. If p1p2 ≡ 1 (mod 12), we have

Λ(α)(Λ(α) + 1) =
n− 1

4
.
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If p1p2 ≡ 7 (mod 12), we have

Λ(α)(Λ(α) + 1) = −n+ 1

4
.

Proof. We have

Λ(α) = −1 +
∑
i∈D1

αi +
∑
i∈D3

αi +
∑
i∈D5

αi,

and

Λ(α)(Λ(α) + 1) = −

(∑
i∈D1

αi +
∑
i∈D3

αi +
∑
i∈D5

αi

)
+
∑
i∈D1

∑
j∈D1

αi+j +
∑
i∈D3

∑
j∈D3

αi+j

+
∑
i∈D5

∑
j∈D5

αi+j + 2
∑
i∈D1

∑
j∈D3

αi+j

+ 2
∑
i∈D3

∑
j∈D5

αi+j + 2
∑
i∈D5

∑
j∈D1

αi+j .(3.5)

Let p1p2 ≡ 1 (mod 12) from Lemma 3, −1 ∈ D0 and from Lemma 5, −Dj =
{−t : t ∈ Dj} = Dj .∑
i∈D1

∑
j∈D1

αi+j =
∑
i∈D1

∑
j∈D1

αi−j

= |D1|+
∑

r∈P∪Q
d(1, 1; r)αr + (1, 1)6

∑
i∈D0

αi + (0, 0)6
∑
i∈D1

αi

+ (5, 5)6
∑
i∈D2

αi + (4, 4)6
∑
i∈D3

αi

+ (3, 3)6
∑
i∈D4

αi + (2, 2)6
∑
i∈D5

αi,(3.6)

∑
i∈D3

∑
j∈D3

αi+j =
∑
i∈D3

∑
j∈D3

αi−j

= |D3|+
∑

r∈P∪Q
d(3, 3; r)αr + (3, 3)6

∑
i∈D0

αi + (2, 2)6
∑
i∈D1

αi

+ (1, 1)6
∑
i∈D2

αi + (0, 0)6
∑
i∈D3

αi

+ (5, 5)6
∑
i∈D4

αi + (4, 4)6
∑
i∈D5

αi,(3.7)

∑
i∈D5

∑
j∈D5

αi+j =
∑
i∈D5

∑
j∈D5

αi−j
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= |D5|+
∑

r∈P∪Q
d(5, 5; r)αr + (5, 5)6

∑
i∈D0

αi + (4, 4)6
∑
i∈D1

αi

+ (3, 3)6
∑
i∈D2

αi + (2, 2)6
∑
i∈D3

αi

+ (1, 1)6
∑
i∈D4

αi + (0, 0)6
∑
i∈D5

αi,(3.8)

2
∑
i∈D1

∑
j∈D3

αi+j = 2
∑
i∈D1

∑
j∈D3

αi−j

= 2

 ∑
r∈P∪Q

d(3, 1; r)αr + (3, 1)6
∑
i∈D0

αi + (2, 0)6
∑
i∈D1

αi

+ (1, 5)6
∑
i∈D2

αi + (0, 4)6
∑
i∈D3

αi

+(5, 3)6
∑
i∈D4

αi + (4, 2)6
∑
i∈D5

αi

)
,(3.9)

2
∑
i∈D3

∑
j∈D5

αi+j = 2
∑
i∈D3

∑
j∈D5

αi−j

= 2

 ∑
r∈P∪Q

d(5, 3; r)αr + (5, 3)6
∑
i∈D0

αi + (4, 2)6
∑
i∈D1

αi

+ (3, 1)6
∑
i∈D2

αi + (2, 0)6
∑
i∈D3

αi

+(1, 5)6
∑
i∈D4

αi + (0, 4)6
∑
i∈D5

αi

)
,(3.10)

2
∑
i∈D5

∑
j∈D1

αi+j = 2
∑
i∈D5

∑
j∈D1

αi−j

= 2

 ∑
r∈P∪Q

d(1, 5; r)αr + (1, 5)6
∑
i∈D0

αi + (0, 4)6
∑
i∈D1

αi

+ (5, 3)6
∑
i∈D2

αi + (4, 2)6
∑
i∈D3

αi

+(3, 1)6
∑
i∈D4

αi + (2, 0)6
∑
i∈D5

αi

)
.(3.11)
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Substituting the values of (3.6)-(3.11) into (3.5) and then from Lemma 1 and
(3.4) and [8], we get

Λ(α)(Λ(α) + 1) = −

(∑
i∈D1

αi +
∑
i∈D3

αi +
∑
i∈D5

αi

)

+

(
3M

2

) ∑
i∈D0

αi +

(
3M

2
+ 1

) ∑
i∈D1

αi

+

(
3M

2

) ∑
i∈D2

αi +

(
3M

2
+ 1

) ∑
i∈D3

αi

+

(
3M

2

) ∑
i∈D4

αi +

(
3M

2
+ 1

) ∑
i∈D5

αi

− 12
(p1 − 1)(p2 − 1)

36
− 3

(p1 − 1)(p2 − 7)

36

− 3
(p1 − 7)(p2 − 1)

36
+ 3

(p1 − 1)(p2 − 1)

6

=
n− 1

4
.

Now suppose that p1p2 ≡ 7 (mod 12). By Lemma 2, −1 ∈ D3 and from Lemma
5, −Dj = {−t : t ∈ Dj} = D(j+3)(mod 6). Similar to the above proof, in this
case

Λ(α)(Λ(α) + 1) = −n+ 1

4
.(3.12)

This completes the proof of the lemma. �

Note that

Λ(1) =
(p1 + 1)(p2 − 1)

2
(mod p).(3.13)

It is elementary to prove the following Lemma:

Lemma 9. If p is an odd prime, then(
2

p

)
=

{
1, if p ≡ 1 (mod 24) or p ≡ 7 (mod 24),
−1, if p ≡ 13 (mod 24) or p ≡ 19 (mod 24).

Lemma 10. If n ≡ 7 (mod 12) and n+1
4 ≡ 0 (mod p) or n ≡ 1 (mod 12) and

n−1
4 ≡ 0 (mod p), then q (mod n) ∈ d0.

Proof. First, we prove that when n ≡ 7 (mod 12) and n+1
4 ≡ 0 (mod p), then

q (mod n) ∈ d0. Clearly, d0 is a multiplicative subgroup of Z∗n. Since q is a
power of p, it is sufficient to prove that p ∈ d0. Let us assume that p ∈ d1.
We deal with p = 2. Let 2 ∈ d1. By the definition of Whiteman’s generalized
cyclotomic classes, 2 = usgi, 0 6 i 6 e− 1 and s is odd. From (2.1), we have

2 ≡ gs+i (mod p1) and 2 ≡ gi (mod p2).
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Therefore, 2 must be a quadratic residue (non residue, respectively) modulo p1
if it is a quadratic non residue (residue, respectively) modulo p2.

For p = 2, if n+1
4 ≡ 0 (mod p), then 8 divides p1p2 +1. Since gcd(p1−1, p2−

1) = 6 , it is clear that we get only the following four conditions for p1 and p2,{
p1 ≡ 1 (mod 24),
p2 ≡ 7 (mod 24),{
p1 ≡ 7 (mod 24),
p2 ≡ 1 (mod 24),{
p1 ≡ 13 (mod 24),
p2 ≡ 19 (mod 24),{
p1 ≡ 19 (mod 24),
p2 ≡ 13 (mod 24).

By Lemma 9, it follows that none of the above four possibilities are possible.
This gives a contradiction therefore 2 ∈ d0.

Again suppose that p ∈ d1. Since p ∈ d1, then p = usgi, 0 6 i 6 e− 1 and s
is odd. We have

p ≡ gs+i (mod p1) and p ≡ gi (mod p2).

Since s is an odd integer, then we must have(
p

p1

)(
p

p2

)
= −1,(3.14)

where (−) is the Legendre symbol. If n ≡ 7 (mod 12), by Lemma 2, (p1 +p2)/2
is even. If n+1

4 ≡ 0 (mod p), then n = p1p2 ≡ −1 (mod p). From the Law of
Quadratic Reciprocity,(

p

pi

)
= (−1)(

p−1
2 )( pi−1

2 )
(
pi
p

)
for i = 1, 2,

and (
−1

p

)
= (−1)

p−1
2 .

It follows that (
p

p1

)(
p

p2

)
= 1.

This is contrary to (3.14). Thus, p ∈ d0. Similarly, we prove that if n ≡
1 (mod 12) and n−1

4 ≡ 0 (mod p), then q (mod n) ∈ d0. �

Let the symbols be defined as in Section 2. We explain the factorization
of xn − 1 over finite field GF(q). Let µ0(x) =

∏
i∈d0(x − αi) and µ1(x) =∏

i∈d1(x− αi), where α is the p1p2-th primitive root of unity over GF(q). Let

(αp1)i; 0 ≤ i < p2 is the p2-th roots of unity of the splitting field xp2 − 1 and
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(αp2)i; 0 ≤ i < p1 is the p1-th roots of unity of the splitting field xp1 − 1. We
have,

xp2 − 1 =
∏

i∈P∪{0}

(x− αi) and xp1 − 1 =
∏

i∈Q∪{0}

(x− αi).

Then we have

(3.15) xn − 1 =

n−1∏
i=0

(x− αi) =
(xp1 − 1)(xp2 − 1)

x− 1
µ(x),

where µ(x) = µ0(x)µ1(x). It is straightforward to prove that if q ∈ d0, then
µi(x) ∈ GF(q) for i ∈ {0, 1}.

Now we are ready to compute the generator polynomial and the linear com-
plexity of the sequence λ∞ (defined in (2.2)). For this, let Ω1 = p1+1

2 (mod p),

Ω2 = p2−1
2 (mod p) and Ω = (p1+1)(p2−1)

2 (mod p). We have the following two
theorems.

Theorem 1. (1) When n≡ 7 (mod 12) and n+1
4 6≡ 0 (mod p) or n≡ 1 (mod 12)

and n−1
4 6≡ 0 (mod p), then the generator polynomial gλ(x) and the linear span

Lλ of the sequence λ∞ (defined in (2.2)) are given by

gλ(x) =



xn − 1, if Ω1 6= 0, Ω2 6= 0, Ω 6= 0,
xn−1
x−1 , if Ω1 6= 0, Ω2 6= 0, Ω = 0,
xn−1
xp2−1 , if Ω1 = 0, Ω2 6= 0,
xn−1
xp1−1 , if Ω1 6= 0, Ω2 = 0,
(xn−1)(x−1)

(xp1−1)(xp2−1) , if Ω1 = Ω2 = 0.

and

Lλ(x) =


n, if Ω1 6= 0, Ω2 6= 0, Ω 6= 0,
n− 1, if Ω1 6= 0, Ω2 6= 0, Ω = 0,
n− p2, if Ω1 = 0, Ω2 6= 0,
n− p1, if Ω1 6= 0, Ω2 = 0,
n− (p1 + p2 − 1), if Ω1 = Ω2 = 0.

Thus, Cλ is the cyclic code with generator polynomial gλ(x) as above over
GF(q) defined by the two-prime WGCS-I of order 6 has parameters [n, k, d],
where the dimension k = n− deg(gλ(x)).

(2) When n ≡ 7 (mod 12) and n+1
4 ≡ 0 (mod p) or n ≡ 1 (mod 12) and

n−1
4 ≡ 0 (mod p), then the generator polynomial gλ(x) and the linear span Lλ
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of the sequence λ∞ are given by

gλ(x) =



xn−1
µ0(x)

, if Ω1 6= 0, Ω2 6= 0, Ω 6= 0, Λ(α) = 0,
xn−1
µ1(x)

, if Ω1 6= 0, Ω2 6= 0, Ω 6= 0, Λ(α) = −1,
xn−1

(x−1)µ0(x)
, if Ω1 6= 0, Ω2 6= 0, Ω = 0, Λ(α) = 0,

xn−1
(x−1)µ1(x)

, if Ω1 6= 0, Ω2 6= 0, Ω = 0, Λ(α) = −1,
xn−1

(xp2−1)µ0(x)
, if Ω1 = 0, Ω2 6= 0, Λ(α) = 0,

xn−1
(xp2−1)µ1(x)

, if Ω1 = 0, Ω2 6= 0, Λ(α) = −1,
xn−1

(xp1−1)µ0(x)
, if Ω1 6= 0, Ω2 = 0, Λ(α) = 0,

xn−1
(xp1−1)µ1(x)

, if Ω1 6= 0, Ω2 = 0, Λ(α) = −1,
(xn−1)(x−1)

(xp1−1)(xp2−1)µ0(x)
, if Ω1 = Ω2 = 0, Λ(α) = 0,

(xn−1)(x−1)
(xp1−1)(xp2−1)µ1(x)

, if Ω1 = Ω2 = 0, Λ(α) = −1,

and

Lλ(x) =



n− (p1−1)(p2−1)
2 , if Ω1 6= 0, Ω2 6= 0, Ω 6= 0,

one of Λ(α) = {0,−1} but not both,

n− (p1−1)(p2−1)+2
2 , if Ω1 6= 0, Ω2 6= 0, Ω = 0,

one of Λ(α) = {0,−1} but not both,

n− (p1+1)(p2−1)+2
2 , if Ω1 = 0, Ω2 6= 0,

one of Λ(α) = {0,−1} but not both,

n− (p1−1)(p2+1)+2
2 , if Ω1 6= 0, Ω2 = 0,

one of Λ(α) = {0,−1} but not both,

n− (p1+1)(p2+1)−2
2 , if Ω1 = Ω2 = 0,

one of Λ(α) = {0,−1} but not both.

Thus, Cλ is the cyclic code with generator polynomial gλ(x) over GF (q) defined
by the WGCS-I of order 6 has parameters [n, k, d], where the dimension k =
n− deg(gλ(x)).

Proof. (1) When n ≡ 7 (mod 12) and n+1
4 6≡ 0 (mod p) or n ≡ 1 (mod 12)

and n−1
4 6≡ 0 (mod p), then by Lemma 8, we have Λ(α) 6= 0,−1. Therefore,

from Lemma 6, Λ(αt) = 0 only when t is in P or Q or both. By Lemma 6
and (3.13), we follow that the conclusion on the generator polynomial gλ(x) of
cyclic code Cλ over GF(q) defined by the sequence λ∞. The linear complexity
of the sequence λ∞ is equal to deg(gλ(x)).

(2) When n ≡ 7 (mod 12) and n+1
4 ≡ 0 (mod p) or n ≡ 1 (mod 12) and

n−1
4 ≡ 0 (mod p), then by Lemma 8, we have Λ(α) ∈ {0,−1} and µi(x) ∈

GF(q)[x] for each i if q ∈ d0. From (3.13), Lemmas 6, 7 and 10, we follow that
the conclusion on the generator polynomial gλ(x) of cyclic code Cλ over GF(q)
defined by the sequence λ∞. The linear complexity of the sequence λ∞ is equal
to deg(gλ(x)). �
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The following corollaries follow from Theorem 1, Lemmas 8 and 10 and give
the parameters of the cyclic codes Cλ with generator polynomial and the linear
complexity of the sequence λ∞ (defined in (2.2)).

Corollary 1. Let q = 2, the generator polynomial and the linear complexity
are gλ(x) and Lλ, respectively. We have the following conclusions:

(1) If p1 ≡ 13 (mod 24) and p2 ≡ 7 (mod 24) or p1 ≡ 1 (mod 24) and
p2 ≡ 19 (mod 24), then

gλ(x) =
xn − 1

x− 1
and Lλ = n− 1.

Therefore, the parameters of the cyclic code Cλ over GF(q) are [n, 1, n− 1].
(2) If p1 ≡ 7 (mod 24) and p2 ≡ 19 (mod 24) or p1 ≡ 19 (mod 24) and

p2 ≡ 7 (mod 24), then

gλ(x) =
xn − 1

xp2 − 1
and Lλ = n− p2.

Therefore, the parameters of the cyclic code Cλ over GF(q) are [n, p2, p1].
(3) If p1 ≡ 7 (mod 24) and p2 ≡ 13 (mod 24) or p1 ≡ 19 (mod 24) and

p2 ≡ 1 (mod 24), we have

gλ(x) =
(xn − 1)(x− 1)

(xp1 − 1)(xp2 − 1)
and Lλ = n− (p1 + p2 − 1).

Therefore, the parameters of the cyclic code Cλ over GF(q) are [n, p2, p1].
(4) If p1 ≡ 1 (mod 24) and p2 ≡ 7 (mod 24) or p1 ≡ 13 (mod 24) and

p2 ≡ 19 (mod 24), we have

gλ(x) =

{
(xn−1)

(x−1)µ0(x)
, if Λ(α) = 0

(xn−1)
(x−1)µ1(x)

, if Λ(α) = 1
and Lλ = n− (p1 − 1)(p2 − 1) + 2

2
.

Therefore, the parameters of the cyclic code Cλ over GF(q) are

[n,
(p1 − 1)(p2 − 1) + 2

2
, d].

(5) If p1 ≡ 7 (mod 24) and p2 ≡ 7 (mod 24) or p1 ≡ 19 (mod 24) and
p2 ≡ 19 (mod 24), we have

gλ(x) =

{
(xn−1)

(xp2−1)µ0(x)
, if Λ(α) = 0

(xn−1)
(xp2−1)µ1(x)

, if Λ(α) = 1
and Lλ = n− (p1 + 1)(p2 − 1) + 2

2
.

In this case, the parameters of the cyclic code Cλ over GF(q) are

[n,
(p1 + 1)(p2 − 1) + 2

2
, d].



298 P. K. KEWAT AND P. KUMARI

(6) If p1 ≡ 7 (mod 24) and p2 ≡ 1 (mod 24) or p1 ≡ 19 (mod 24) and
p2 ≡ 13 (mod 24), we have

gλ(x) =

{
(xn−1)(x−1)

(xp1−1)(xp2−1)µ0(x)
, if Λ(α) = 0

(xn−1)(x−1)
(xp1−1)(xp2−1)µ1(x)

, if Λ(α) = 1
and

Lλ = n− (p1 + 1)(p2 + 1)− 2

2
.

In this case, the parameters of the cyclic code Cλ over GF(q) are

[n,
(p1 + 1)(p2 + 1)− 2

2
, d].

If q = 3, then we have only one possibility: p1 ≡ 7 (mod 12) and p2 ≡
7 (mod 12).

Corollary 2. Let q = 3 and p1 ≡ 7 (mod 12) and p2 ≡ 7 (mod 12). Then we
have

gλ(x) =

{
(xn−1)

(xp1−1)µ0(x)
, if Λ(α) = 0

(xn−1)
(xp1−1)µ1(x)

, if Λ(α) = 1
and Lλ = n− (p1 − 1)(p2 + 1) + 2

2
.

In this case, the parameters of the cyclic code Cλ over GF(q) are

[n,
(p1 − 1)(p2 + 1) + 2

2
, d].

4. The minimum distance of the cyclic codes

Here, we determine the lower bounds on the minimum distance of some of
the cyclic codes of this paper and the symbols are the same as above.

Theorem 2 ([5]). The cyclic code Ci with the generator polynomial gi(x) =
xn−1
xpi−1 has parameters [n, pi, di] over GF(q), where di = pi−(−1)i and i = 1, 2.

Theorem 3 ([5]). The cyclic code C(p1,p2,q) with the generator polynomial

g(x) = (xn−1)(x−1)
(xp1−1)(xp2−1) has parameters [n, p1 + p2 − 1, d(p1,p2,q)] over GF(q),

where d(p1,p2,q) = min(p1, p2).

Theorem 4. Assume that q ∈ d0. Let the cyclic code C(i,j) with the generator

polynomial g(i,j)(x) = xn−1
(xpi−1)µj(x)

has parameters [n, pi + (p1−1)(p2−1)
2 , d(i,j)]

over GF(q), where i ∈ {1, 2} and j ∈ {0, 1} and d(i,j) ≥ d√pi−(−1)ie. If

−1 ∈ d1, we have (d(i,j))2 − d(i,j) + 1 ≥ pi−(−1)i .

Proof. Let the codeword c(x) ∈ GF(q)[x]/(xn − 1) with the Hamming weight
w in C(i,j). Choose any r ∈ d1. The codeword c(xr) with Hamming weight
w in C(i,(j+1) mod 2). Then, we conclude that d(i,j) = d(i,(j+1) mod 2). Thus,
c(x)c(xr) is a codeword of Ci. From Theorem 2, Ci is the cyclic code with

minimum distance di = pi−(−1)i and the generator polynomial gi(x) = xn−1
xpi−1
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over GF(q). Hence, we have (d(i,j))2 ≥ di = pi−(−1)i , and (d(i,j))2−d(i,j) +1 ≥
pi−(−1)i if −1 ∈ d1. �

Theorem 5. Assume that q ∈ d0. Let the cyclic code C
(j)
(p1,p2)

with the gener-

ator polynomial g
(j)
(p1,p2)

(x) = (xn−1)(x−1)
(xp1−1)(xp2−1)µj(x)

over GF(q), where i ∈ {1, 2}
and j ∈ {0, 1}. The cyclic code C

(j)
(p1,p2)

has parameters [n, p1 + p2 − 1 +
(p1−1)(p2−1)

2 , d
(j)
(p1,p2)

], where d
(j)
(p1,p2)

≥ d
√

min(p1, p2)e. If −1 ∈ d1, we have

(d
(j)
(p1,p2)

)2 − d(j)(p1,p2)
+ 1 ≥ min(p1, p2).

Proof. Let the codeword c(x) ∈ GF(q)[x]/(xn − 1) with Hamming weight w

in C
(j)
(p1,p2)

. Choose any r ∈ d1. The codeword c(xr) with Hamming weight

w in C
((j+1) mod 2)
(p1,p2)

. Then, we conclude that d
(j)
(p1,p2)

= d
((j+1) mod 2)
(p1,p2)

. Thus,

c(x)c(xr) is a codeword of C(p1,p2,q). From Theorem 3, C(p1,p2,q) is a cyclic

code over GF(q) with the generator polynomial g(x) = (xn−1)(x−1)
(xp1−1)(xp2−1) and min-

imum distance d(p1,p2,q) = min(p1, p2). Hence, we have (d
(j)
(p1,p2)

)2 ≥ d(p1,p2,q) =

min(p1, p2), and (d
(j)
(p1,p2)

)2 − d(j)(p1,p2)
+ 1 ≥ min(p1, p2) if −1 ∈ d1. �

Example 1. Let (p,m, p1, p2) = (2, 1, 7, 31). We have q = 2, n = 217 and
Cλ is a [217, 121] cyclic code over GF(q) with generator polynomial gλ(x) =

x217−1
(x31−1)d1(x) = x96 + x94 + x91 + x87 + x86 + x85 + x83 + x81 + x80 + x78 + x77 +

x75 + x72 + x69 + x67 + x65 + x64 + x63 + x60 + x58 + x55 + x53 + x52 + x51 +
x48 + x45 + x44 + x43 + x41 + x38 + x36 + x33 + x32 + x31 + x29 + x27 + x24 +
x21 + x19 + x18 + x16 + x15 + x13 + x11 + x10 + x9 + x5 + x2 + 1. We did some
computation with MAGMA and our computation shows that upper bound on
the minimum distance for this binary code is 31.

Example 2. Let (p,m, p1, p2) = (2, 1, 7, 31). We have q = 3, n = 217 and
Cλ is a [217, 97] cyclic code over GF(q) with generator polynomial gλ(x) =
x217−1

(x7−1)d1(x) = x120 + 2x115 +x113 + 2x109 + 2x108 +x106 +x105 +x104 + 2x102 +

2x100 + x98 + 2x96 + x95 + x92 + x90 + x88 + 2x87 + 2x85 + x83 + 2x81 + x79 +
x78 + 2x77 + x76 + 2x75 + 2x74 + 2x71 + 2x70 + x69 + x67 + 2x66 + 2x65 + x64 +
2x61 +x60 + 2x59 +x56 + 2x55 + 2x54 +x53 +x51 + 2x50 + 2x49 + 2x46 + 2x45 +
x44 + 2x43 + x42 + x41 + 2x39 + x37 + 2x35 + 2x33 + x32 + x30 + x28 + x25 +
2x24 + x22 + 2x20 + 2x18 + x16 + x15 + x14 + 2x12 + 2x11 + x7 + 2x5 + 1. We
did some computation with MAGMA and our computation shows that upper
bound on the minimum distance for this ternary code is 58. From Theorem 4,
we have the lower bound on the minimum distance for this binary code is 6.

Example 3. Let (p,m, p1, p2) = (2, 1, 7, 19). We have q = 2, n = 133 and Cλ

is a [133, 19, 7] cyclic code with generator polynomial gλ(x) = (x133−1)
(x19−1)(x13−1) =

x114 + x95 + x76 + x57 + x38 + x19 + 1 over GF(q). From the table of linear
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codes, this cyclic code has poor minimum distance. The code in this case is
bad because q /∈ D0.

5. Conclusion

In this manuscript, we have computed the linear complexities of the two-
prime WGCS-I of order 6. We have also constructed the cyclic codes of WGCS-I
of order 6 over GF(q). If Λ(α) /∈ {0, 1}, then the least value of linear complexity
is n−(p1+p2−1) and if Λ(α) ∈ {0, 1}, then the least value of linear complexity

is n− (p1+1)(p2+1)−2
2 . Therefore, we conclude that these sequence possesses high

linear complexity. The cyclic codes employed in this paper depend on p1, p2 and
q. When q ∈ D0, we get a good code. We expect that the codes in Examples
1 and 2 give good codes. When q /∈ D0, we get a bad code, for example, we
get a bad code in Example 3. Hence, we expect that cyclic codes mentioned in
this article can be employed to construct the good cyclic codes of large length.
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