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CYLOTOMIC FUNCTION FIELDS OVER FINITE FIELDS

WITH CLASS NUMBER THREE

Mehpare Bi̇lhan, Di̇lek Buyruk, and Ferruh Özbudak

Abstract. We list all subfields of cyclotomic function fields over ratio-

nal function fields with class number three. We also determine all the
imaginary abelian extensions with relative class number three, explicitly.

1. Introduction

Let k := Fq(T ) be the rational function field over the finite field Fq with
q elements and let A := Fq[T ] be the ring of polynomials. The infinite prime
divisor of k associated to (1/T ) is denoted by P∞. For N ∈ A, we construct
the Carlitz module to the N th cyclotomic function field KN and its maximal
real subfield K+

N . Cyclotomic function fields were investigated by L. Carlitz in
1935 in [4]. In [5], Hayes developed the theory of cyclotomic function fields.

Throughout the paper, we assume K is a finite abelian extension of k such
that K ⊆ KM for some M ∈ A. The conductor cond(K) of K is N ∈ A such
that KN is the smallest cyclotomic function field containing K. Let K+

N be the
maximal real subfield of KN , that is, the maximal subfield of K on which P∞
splits completely. Then K+ = K ∩K+

N be the maximal real subfield of K. We
say K is a real extension of k, if K = K+, imaginary otherwise. IfK+ = k, K is
a totally imaginary extension of k. Let the group of divisors of K and principle
divisors of K be denoted by Div0(K) and P (K), respectively. Then, the order
of the quotient group Div0(K)/P (K) is called the class number of K. Let hK
and hK+ denote the class number of K and K+, respectively. Since K/K+ is a
finite separable extension, hK is divisible by hK+ and h−K = hK/hK+ is called
the relative class number of K.

In [8], the authors determined all cyclotomic function fields, their maximal
real subfields with class number one. In [3], Bae and Kang determined all the
cyclotomic function fields with relative class number one. In [7], Ahn and Jung
determined all the abelian extensions of k which have the divisor class number
one and all the imaginary abelian extensions with relative divisor class number
one. In [6], they also determined all subfields of cyclotomic function fields with
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genus one. In [1], same authors determined all subfields of cyclotomic function
fields with divisor class number two and they also gave the generators of such
fields, explicitly.

In this paper, we determine all subfields of cyclotomic function fields with
class number three and all the imaginary abelian extensions with relative divisor
class number three. In Section 2, we recall some definitions and theorems
required for the determination of subfields of cyclotomic function fields and we
also gave some necessary conditions for a function field to have class number
three. Then we conclude that if a subfield of a cyclotomic function field has class
number three, then its genus is one or two. In Section 3, we classify subfields of
cyclotomic function fields of genus one. In Section 4, we classify the subfields of
genus two. In the last section, we determined imaginary subfields of cyclotomic
function fields with relative class number three.

Throughout the paper, we fix the following notations:

• Fq: a finite field with q elements.
• k/Fq: the rational function field Fq(T ) over Fq.
• A: the ring of polynomial Fq[T ] of k.
• KN/Fq: Nth cyclotomic function field over Fq where N ∈ A.
• K+

N : the maximal real subfield of KN .
• K/Fq: a subfield K of a cyclotomic function field KN over Fq.
• K+: the maximal real subfield of K.
• Cond(K): the conductor of K.
• gK : the genus of K.
• hK , hK+ : the class number of K and K+, respectively.
• h−K : the relative class number of K.
• h(OK), h(OK+): the ideal class number of K and K+, respectively.
• h−(OK): the relative ideal class number of K.
• D(F1/F2): the different of the function field extension of F1 over F2.
• e(P, F1/F2): the ramification index of a place P of F2 in the extension
F1/F2.

• f(P, F1/F2): the inertia degree of a place P of F2 in the extension
F1/F2.

• Gal(F1/F2): the Galois group of F1 over F2.
• XK : the character group of a function field K.
• Nj for j ∈ N+: the number of degree j places of K.

2. Preliminaries

Definition 2.1. Let F ′/K be a finite separable extension of F/K. Then the
divisor

D(F ′/F ) :=
∑
P∈PF

∑
P ′|P

d(P ′|P )P ′
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is called the different of F ′/F . If P ′|P is tamely ramified, then d(P ′|P ) =
e(P ′|P )− 1. Otherwise

d(P ′|P ) =

∞∑
n=0

(|G0(P ′, F ′/F )| − [G0(P ′, F ′/F ) : Gn(P ′, F ′/F )]),

where Gn(P ′, F ′/F ) denotes the nth upper ramification group of P ′ in F ′.

Theorem 2.2 (Hurwitz Genus formula). Let L/K be a finite abelian extension
with the same constant field. Then we have

2gL − 2 = (2gK − 2)[L : K] + deg(D(L/K)),

where D(L/K) is the different of L/K. Especially gL ≥ gK .

Definition 2.3. The ideal class number h(OS) is defined as the class number
of the Dedekind ring

OS =
⋂
P /∈S

OP ,

where OP = {z ∈ K, vP (z) ≥ 0} is the local ring associated with the valuation
vP at P .

Let h(OK+) be the ideal class number of K+. Since K/K+ is totally imag-
inary h(OK+) divides h(OK). Then h−(OK) = h(OK)/h(OK+) is called the
relative ideal class number of K.

It is known that K/K+ is a finite separable extension, so the Zeta function
of K+ divides that of K. Hence hK+ divides hK and h−K = hK/hK+ is called
the relative class number of K.

By [11, Chapter 16], the analytic class number formula is

h−K =
∏

χ non-real

(
∑

A∈MN

χ(A)),(2.1)

where MN = {A ∈ Fq[T ] : A is monic, deg(A) < deg(N) and (A,N) = 1} and
χ is a non-real character in the character group XK associated to the function
field K.

Let K be a subfield of a cyclotomic function field and XK be the character
group of K. For a fixed monic irreducible polynomial Q ∈ A, let YK = {χ ∈
XK : χ(Q) 6= 0} and ZK = {χ ∈ XK : χ(Q) = 1}. By [15, Chapter 3], we have
[YK : ZK ] = f(Q,K/k), the inertia degree of the associated place of Q in K/k
and | ZK |, the number of primes of K lying above the associated place of Q.

The following theorem was already proved in [14]. It presents only numerical
necessary and sufficient conditions for the existence of algebraic function fields
with class number three.

Theorem 2.4 ([14, Theorem 3.3.4]). Let K/Fq be a function field of genus g.
Then hK = 3 if and only if one of the following conditions holds:

(A) g = 1, 2 ≤ q ≤ 7 and N1 = 3.
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(B) g = 2, q = 2 and
(1) N1 = 0, N2 = 5 or
(2) N1 = 1, N2 = 4 or
(3) N1 = 2, N2 = 2.

(C) g = 2, q = 3 and
(1) N1 = 0, N2 = 6 or
(2) N1 = 1, N2 = 5 or
(3) N1 = 2, N2 = 3.

(D) g = 3, q = 2 and
(1) N1 = 0, N3 = 3, N2 ≤ 13 or
(2) N1 = 1, N2 +N3 = 4 or
(3) N1 = 2, N3 + 2N2 = 3.

(E) g = 4, q = 2 and
(1) N1 = 0, 2N4 +N2

2 − 3N2 = 6 and
N2 = 0, N3 ≤ 11, N4 = 3 or
N2 = 1, N3 ≤ 8, N4 = 4 or
N2 = 2, N3 ≤ 6, N4 = 4 or
N2 = 3, N3 ≤ 3, N4 = 3 or
N2 = 4, N3 = 0, N4 = 1,

or
(2) N1 = 1, 2N4 + 2N3 +N2

2 −N2 = 8 and{
N2 = 0, N3 ≤ 3, 1 ≤ N4 ≤ 4 or
N2 = 1, N3 = 0, N4 = 4.

(F) g = 5, q = 2 and N1 = 0, N5 − 2N3 +N2N3 = 3, N5 6= 0.
(G) g = 6, q = 2 and N1 = 0, N6 − 2N4 + (N3 + N2

3 )/2 = 3, N2 = 0,
N5 ≤ 6.

From now on, we assume K is a subfield of a cyclotomic function field
with class number 3. Let S∞(K) denote the set of prime divisors of K lying
above P∞. Then N1 ≥ |S∞(K)| = [K+ : k] ≥ 1. For q = 2, K = K+ and
N1 ≥ |S∞(K)| = [K : k] ≥ 2 in this case. Then by Theorem 2.4, we have the
following cases:

(I) gK = 1, (q = 2, 3, 5, 7, N1 = 3),
(II) gK = 2, (q = 2, N1 = 2, N2 = 2) or (q = 3, N1 = 1, N2 = 5 or

N1 = 2, N2 = 3),
(III) gK = 3, q = 2, N1 = 2, N3 + 2N2 = 3.
For the last case, 2 = N1 ≥ |S∞(K)| = [K : k] ≥ 2, then the extension is

quadratic and P∞ split. That implies (T ) and (T + 1) are inert, thus N2 ≥ 2
and N3 ≤ −1, which is not possible. Hence we skip this case.

Lemma 2.5 ([6, Lemma 2.4]). Let P be a monic irreducible polynomial in
Fq[T ]. Let l be a natural number such that l divides q− 1, l > 1. Let d = degP
and d0 = gcd(l, d). Let n, 1 ≤ n ≤ l/d0 be such that nd ≡ d0 (mod l).
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Then the unique cyclic subextension K of KP /k with degree l is given by K =

k( l
√

(−1)d0Pn). Furthermore, l divides d if and only if K ⊆ K+
P .

3. Genus one

In this section, we determine the subfield K with class number three when
gK = 1. By Theorem 2.4, we have 2 ≤ q ≤ 7. First, we consider the real
extensions.

Proposition 3.1. Let K/k be a real extension of genus one with class number
three, then N1 = 3 ≥ [K : k] ≥ 2 and K satisfies one of the following cases:

(i) q = 2, 4, K is a quadratic extension of k with conductor P 4, degP = 1,

(ii) q = 4, 7, K = k( 3
√
P ), degP = 3,

(iii) q = 3, 5, 7, K = k(
√
P1P2), degP1 = 1,degP2 = 3.

Proof. Proof is by [6, Theorem 3.3 and Theorem 3.4]. �

Theorem 3.2. Let K/k be a real extension of genus 1 with class number 3.
Then K is one of the following function fields up to isomorphism (T → T + a,
a ∈ F∗q):

(1) q = 2, K = k(y) such that y2 + y = 1/T 3,
(2) q = 4, K = k(y) such that y2 + wy = 1/T 3 where 〈w〉 = F∗4,
(3) q = 4, K = k(y) such that y3 = T 3 + w where 〈w〉 = F∗4,
(4) q = 7, K = k(y) such that y3 = T 3 + 3 or y3 = T 3 + 4,
(5) q = 3, K = k(y) such that y2 = T (T 3 + 2T 2 + T + 1) or y2 = T (T 3 +

T 2 + T + 2),
(6) q = 5, K = k(y) such that y2 = T (T 3 − T 2 − T − 1) or y2 = T (T 3 +

2T 2 + T + 3) or y2 = T (T 3 + 3T 2 + T + 2) or y2 = T (T 3 + T 2 − T + 1),
(7) q = 7, K = k(y) such that y2 = T (T 3 + 2) or y2 = T (T 3 + 5),

Proof. Clearly, K satisfies one of the conditions of Proposition 3.1:
(i) q = 2 or 4 and K is a quadratic extension of k with conductor P 4,

degP = 1.
• Let q = 2, then |S∞(K)| = [K : k] = 2 = N1 − 1 and one of the finite

places of k of degree one is ramified. Up to isomorphism, let (T ) be ramified.
Since K is an elliptic function field, up to isomorphism, K = F2(x, y) with
y2 + y = x3, where P∞ is ramified and (x) splits in K/F2(x). Using the
substitution, x → 1/T , we get K = k(y) with y2 + y = 1/T 3 where P∞ splits
and (T ) is ramified in K/k.

By Hurwitz Genus formula, we check our result:

0 = −2[K : k] + deg(Diff(K/k)).

That is, d((T ),K/k) = 4 and vT (u) = −3, where u = 1/T 3. Since u 6= w2 − w
for any w ∈ F2(T ), by Artin-Schreier extension, y2 +y = u where (T ) is totally
ramified in K/k.
• Let q = 4, then |S∞(K)| = [K : k] = 2 = N1 − 1 and one of the finite

places of k of degree one is ramified. Up to isomorphism, let (T ) be ramified.
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K is an elliptic function field, then up to isomorphism, K = F2(x, y) with
y2+wy+x3 = 0 where 〈w〉 = F∗4. then P∞ is ramified and (x) splits in K/F2(x).
Using the substitution, x→ 1/T , we get K = k(y) with y2 +wy = 1/T 3 where
P∞ splits and (T ) is ramified in K/k.

(ii) q = 4, 7, K = k( 3
√
P ), degP = 3.

• Assume q = 4. Let XKP
, XK be the character groups of KP and K,

respectively. XKP
∼= (A/P )∗ is a cyclic group of order 63. Let χ be a generator,

then XK = 〈χa〉 for some integer a and the order of χa is [K : k] = 3. Hence
we may assume XK = 〈χ21〉. As |S∞(K)| = [K : k] = 3, none of the finite
places of k of degree one splits in K/k, that is, [YK : ZK ] = f((Q),K/k) > 1.
Then, we have

χ21(T + a) 6= 1

for all a ∈ F4. Up to isomorphism T → T+α, α ∈ F∗4, we have 5 possibilities for
P . Among them, for P = T 3 +w where 〈w〉 = F∗4, we get the solution. That is,
let P = T 3+w, then XKP

= 〈χ〉 and T+1 is a primitive element of (F4(T )/P )∗.
We have χ21(T ) = χ(T 21) = χ(w) = exp(2πi/3), χ21(T + 1) = exp(4πi/3),
χ21(T +w) = exp(4πi/3), χ21(T +w2) = exp(4πi/3). Hence all finite places of
k of degree one are inert and

K = k(
3
√
T 3 + w) where 〈w〉 = F∗4.(3.1)

• Assume q = 7. Let XKP
, XK be the character groups of KP and K,

respectively. XKP
∼= (A/P )∗ is a cyclic group of order 73 − 1. Let χ be a

generator, then XK = 〈χa〉 for some integer a and the order of χa is [K : k] = 3.
Hence we may assume XK = 〈χ114〉. As |S∞(K)| = [K : k] = 3, none of the
finite places of k of degree one splits in K/k, that is, [YK : ZK ] = f((Q),K/k) >
1. Then, we have

χ114(T + a) 6= 1

for all a ∈ F7. Up to isomorphism T → T + α, α ∈ F∗7, we have 16 possibilities
for P . Among them, for P = T 3 + 3 and T 3 + 4, the result follows.

Let P = T 3 + 3, then XKP
= 〈χ〉 and T + 1 is a primitive element of

(F7(T )/P )∗. We have χ114(T ) = χ(T 114) = χ(T 6) = χ(2) = exp(4πi/3),
χ114(T + 1) = exp(2πi/3), χ114(T + 2) = exp(2πi/3), χ114(T + 3) = χ((T +
3)114) = χ(2) = exp(4πi/3), χ114(T + 4) = χ(4) = exp(2πi/3), χ114(T + 5) =
χ(2) = exp(4πi/3) = χ114(T + 6). Hence all finite places of k of degree one are
inert and

K = k(
3
√
T 3 + 3).(3.2)

Similarly, for P = T 3 + 4, χ(T + a) 6= 1 for all a ∈ F7 and

K = k(
3
√
T 3 + 4).(3.3)

(iii) q = 3, 5, 7, K = k(
√
P1P2), degP1 = 1,degP2 = 3.
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• Let q = 3. |S∞(K)| = [K : k] = 2 = N1 − 1 and one of the finite places
of k of degree one, say P1, is ramified and all other places of degree one are
inert, except P∞. Assume P1 = (T ) and let the associated polynomial of P2

be T 3 + aT 2 + bT + c where a, b, c ∈ F3. Using [9, Lemma 2.6 and Proposition
2.7],

K = k(y) with y2 = T (T 3 + aT 2 + bT + c).(3.4)

Let P1P2(T ) denote the product of the associated polynomials of P1 and P2,
respectively. P1P2(1) = P1P2(2) = 2 ∈ F∗3\F∗23 and P2 is irreducible. By
[9, Lemma 2.6], we have b = 1, a = 2, c = 1 or b = 1, a = 1, c = 2. That is,

y2 = T (T 3 + 2T 2 + T + 1) or y2 = T (T 3 + T 2 + T + 2).(3.5)

• Let q = 5. Similarly, K = k(y) where y2 = P1P2. Assume P1 = (T ) and
P2 = T 3 + aT 2 + bT + c where a, b, c ∈ F5. Also P1P2(α) = 2 or 3 for α ∈ F5.
Checking all possibilities we have K = k(y) satisfying one of the following
equations:

y2 = T (T 3 − T 2 − T − 1),(3.6)

y2 = T (T 3 + 2T 2 + T + 3),(3.7)

y2 = T (T 3 + 3T 2 + T + 2),(3.8)

y2 = T (T 3 + T 2 − T + 1).(3.9)

• Let q = 7. K = k(y) where y2 = P1P2. Assume P1 = (T ) and P2 =
T 3 + aT 2 + bT + c where a, b, c ∈ F7. Also P1P2(α) = 3, 5 or 6 for α ∈ F7.
Checking all possibilities for P2, we have K = k(y) where

y2 = T (T 3 + 2) or y2 = T (T 3 + 5).(3.10) �

Remark 3.3 ([6, Lemma 4.1]). Let K/k be an imaginary extension of k with
gK = 1. Then gK+ = 0.

Proposition 3.4. Let K/k be a totally imaginary extension of genus 1 with
class number 3. Then K satisfies one of the following cases:

(i) q = 4, 7, K = k( 3
√
P1P2), degPi = 1,

(ii) q = 7, K = k(
√
−P1,

3
√
−P2), degPi = 1,

(iii) q = 3, 5, 7, K = k(
√
−P ), degP = 3.

Proof. Proof follows from [6, Theorem 4.2]. �

Theorem 3.5. Let K/k be a totally imaginary extension of genus 1 with class
number 3. Then, up to isomorphism, (x → x + a, a ∈ F∗q) K is one of the
following function fields:

(1) q = 4, K = k(y) such that y3 = T (T + w) where 〈w〉 = F∗4,
(2) q = 7, K = k(y) such that y3 = T (T + 3) or y3 = T (T + 4),
(3) q = 7, K = k(y, z) such that y2 + T = 0 and z3 + T + 4 = 0,
(4) q = 3, K = k(y) such that y2 + T 3 + 2T 2 + 1 = 0,
(5) q = 5, K = k(y) such that y2 +T 3 + 4T + 2 = 0 or y2 +T 3 + 4T + 3 = 0,
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(6) q = 7, K = k(y) such that y2 + T 3 + 3 = 0.

Proof. Clearly, K satisfies one of the conditions of Proposition 3.4:
(i) q = 4 or 7, K = k( 3

√
P1P2), degPi = 1.

• Let q = 4. |S∞(K)| = 1 and P1 and P2 are totally ramified. Then all of
the other finite places of k of degree one are inert in K/k. Assume P1 = (T )
and P2 = (T + a) for a ∈ F∗4. Let XKPi

, XK be the character groups of KPi

and K, respectively. XKPi

∼= (A/Pi)∗ is a cyclic group of order 3. Let χi be

the generator of XKPi
, then XK = 〈χ1χ2〉 where χi(w) = exp(2πi/3) such that

w is a generator of F∗4.
If a = 1, then χ1χ2(T + w) = 1 and N1 ≥ 6.
If a = w, then χ1χ2(T+1) = χ2(w+1) = exp(4πi/3) and χ1χ2(T+w+1) =

exp(4πi/3), then the places of K associated to the polynomial T+1 and T+w2

are inert. That is,

K = k(y) where y3 = T (T + w).(3.11)

• Let q = 7. Assume P1 = (T ) and P2 = (T + a) for a ∈ F∗7. Let XKPi
, XK

be the character groups of KPi
and K, respectively. XKPi

∼= (A/Pi)∗ is a cyclic

group of order 6. Let χi be the generator of XKPi
, then XK = 〈χ2

1χ
2
2〉 where

χi(3) = exp(2πi/6).
If a = 1, then χ2

1χ
2
2(T + 3) = 1 and N1 ≥ 6. If a = 2, then χ2

1χ
2
2(T + 1) = 1

and N1 ≥ 6. If a = 5, then χ2
1χ

2
2(T + 6) = 1 and N1 ≥ 6. If a = 6, then

χ2
1χ

2
2(T + 2) = 1 and N1 ≥ 6.

Let a = 3, then χ2
1χ

2
2(T + 1) = exp(10πi/3), χ2

1χ
2
2(T + 2) = exp(4πi/3),

χ2
1χ

2
2(T+4) = exp(2πi/3), χ2

1χ
2
2(T+5) = exp(2πi/3), χ2

1χ
2
2(T+6) = exp(2πi/3)

and all of the places of degree one, except (T ) and (T + 3) are inert. That is,

K = k(y) where y3 = T (T + 3).(3.12)

Similarly, result follows for a = 4 and

K = k(y) where y3 = T (T + 4).(3.13)

(ii) q = 7, K = k(
√
−P1,

3
√
−P2), degPi = 1.

Let P1 = (T ) and P2 = (T + a) for a ∈ F∗7. Using the notation of part
(i), XK = 〈χ3

1, χ
2
2〉. Since N1 = 3, P1 is inert in k( 3

√
−P2)/k, P2 splits in

k(
√
−P1)/k and all the other finite places of k of degree one do not split in

K/k. Result follows only for a = 4. In this case, χ2
2(T + 1) = exp(2πi/3),

χ2
2(T + 2) = exp(10πi/3), χ3

1(T + 3) = −1, χ3
1(T + 5) = −1, χ2

2(T + 6) =
exp(4πi/3). Also χ3

1(T + 4) = 1 and χ2
2(T ) = exp(πi/3). Hence,

K = k(y, z) where y2 + T = 0 and z3 + T + 4 = 0.(3.14)

(iii) q = 3, 5, 7, K = k(
√
−P ), degP = 3.

• Let q = 3. Since extension is totally imaginary, one of the finite places
of k of degree one splits and the others are inert in K/k. Up to isomorphism
(T → T +a, a ∈ F ∗3 ) there exist four possibilities for P . These are T 3 +2T +1,
T 3 + 2T + 2, T 3 + T 2 + 2 and T 3 + 2T 2 + 1. Among them, result follows for
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P = T 3 + 2T 2 + 1. In this case, (F3(T )/P )∗ = 〈T 〉. Let XKP
= 〈χ〉, we have

XK = 〈χ13〉 and χ13(T +2) = 1 and χ13(T ) = χ13(T +1) = −1. Hence N1 = 3
and K = k(y) where

y2 + T 3 + 2T 2 + 1 = 0.(3.15)

• Let q = 5. Since |S∞(K)| = 1, one of the finite places of k of degree one
splits and others are inert in K/k. Let XKP

= 〈χ〉 where |XKP
| = 53 − 1.

XK = 〈χa〉 for some integer a and |XK | = [K : k] which is equal to 2. That
is, order of χa is 2. So we may assume XK = 〈χ62〉. Up to isomorphism,
(T → T + a, a ∈ F ∗5 ) we have 8 possibilities for P . These are T 3 + T + 1,
T 3 + T + 4, T 3 + 3T + 2, T 3 + 3T + 3, T 3 + 2T + 1, T 3 + 2T + 4, T 3 + 4T + 2
and T 3 + 4T + 3. Among them, we have solutions for P = T 3 + 4T + 2 and
P = T 3 + 4T + 3.

Let P = T 3 + 4T + 2. χ62(T ) = χ62(T + 1) = χ62(T + 3) = χ62(T + 4) = −1
and χ62(T + 2) = 1. That is, N1 = 3 and K = k(y) where

y2 + T 3 + 4T + 2 = 0.(3.16)

Let P = T 3 + 4T + 3. χ62(T ) = χ62(T + 1) = χ62(T + 2) = χ62(T + 4) = −1
and χ62(T + 3) = 1. That is, N1 = 3 and K = k(y) where

y2 + T 3 + 4T + 3 = 0.(3.17)

• Let q = 7. Since |S∞(K)| = 1, one of the finite places of k of degree one
splits and others are inert in K/k. Let XKP

= 〈χ〉 where |XKP
| = 73 − 1.

XK = 〈χa〉 for some a ∈ Z and |XK | = [K : k] which is equal to 2. That
is, order of χa is 2. Then we may assume XK = 〈χ171〉. Up to isomorphism
(T → T + a, a ∈ F ∗7 ) we have 16 possibilities for P . Among them, the result
follows for only T 3 + 3. That is, let P = T 3 + 3, then (F7[T ]/P )∗ = 〈T + 1〉
and we have χ171(T + 1) = χ171(T + 2) = χ171(T + 3) = χ171(T + 4) =
χ171(T + 5) = χ171(T + 6) = −1 and χ171(T ) = χ(T 171) = χ(1) = 1, that is
N1 = 3 and K = k(y) where

y2 + T 3 + 3 = 0.(3.18) �

Proposition 3.6. Let K/k be an imaginary (not totally imaginary) extension
of genus 1 with class number 3. Then K satisfies one of the following cases:

(i) q = 4 or 7, K = k( 3
√
−P1,

3
√
−P2), degPi = 1,

(ii) q = 7, K = k(
√
−P1

6
√
−P2), degPi = 1,

(iii) q = 4, K = k( 3
√
−P , u) where k(u) is a quadratic subfield of K+

P 2 ,
degP = 1.

Proof. We have K 6= K+ 6= k and |S∞(K)| ≥ 2. By [6, Theorem 4.4 and
Theorem 4.6], proof is clear. �

Theorem 3.7. Let K/k be an imaginary (not totally imaginary) extension of
genus one with class number three. Then, up to isomorphism, (x → x + a,
a ∈ F∗q) K is one of the following function fields:
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(1) q = 4, K = k( 3
√
−T , 3

√
−(T + w)) where 〈w〉 = F∗4,

(2) q = 7, K = k( 3
√
−T , 3

√
−(T + 3)),

(3) q = 7, K = k( 3
√
−T , 3

√
−(T + 4)),

(4) q = 7, K = k(
√
−(T + 2) 6

√
−T ),

(5) q = 7, K = k(
√
−(T + 5) 6

√
−T ),

(6) q = 4, K = k( 3
√
−T , u) where u2 + u+ w/T = 0 for 〈w〉 = F∗4.

Proof. K satisfies one of the conditions of Proposition 3.6:
(i) Let q = 4 or 7 and K = k( 3

√
−P1,

3
√
−P2) where degPi = 1.

• Let q = 4. Assume P1 = (T ) and P2 = (T + a) for some a ∈ F∗4. Since
|S∞(K)| = 3 = N1, inertia degree f(P,K/k) of a finite place P of k of degree
one is greater than 1. Let XKPi

= 〈χi〉, then o(χi) = 3 and XK = 〈χ1, χ2〉.
Define χi such that χi(w) = exp(2πi/3) for i = 1, 2 and 〈w〉 = F∗4. For a = 1,
χ1(T + 1) = 1, then f((T + 1),K/k) = 1 and e((T + 1),K/k) = 3. Hence hK =
N1 ≥ 6. For a = w, χ2(T +1) = exp(4πi/3) 6= 1, χ1(T +w2) = exp(4πi/3) 6= 1,
χ1(T + w) = exp(2πi/3) 6= 1, χ2(T ) = exp(2πi/3) 6= 1. Hence N1 = 3 and

K = k( 3
√
−T , 3

√
−(T + w)) where 〈w〉 = F∗4.(3.19)

• Let q = 7. Assume P1 = (T ) and P2 = (T + a) for some a ∈ F∗7. Let
XKPi

denote the character group of KPi
for i = 1, 2. Let XKPi

= 〈χi〉, then

o(χi) = 6 and XK = 〈χ2
1, χ

2
2〉. Since (F7(T )/Pi)

∗ ∼= F∗7, we define χi such that
χi(3) = exp(2πi/6) for i = 1, 2. As |S∞(K)| = 3 = N1, none of the places of
K of degree one splits. For a = 3 and 4, result follows.

Let a = 3. χ2
2(T + 1) = exp(10πi/3) 6= 1, χ2

1(T + 2) = exp(8πi/6) 6= 1,
χ2
1(T + 3) = exp(4πi/6) 6= 1, χ2

1(T + 4) = exp(8πi/3) 6= 1, χ2
2(T + 5) =

exp(4πi/3) 6= 1, χ2
2(T + 6) = exp(4πi/6) 6= 1. Hence N1 = 3 and

K = k( 3
√
−T , 3

√
−(T + 3)).(3.20)

Let a = 4. χ2
2(T + 1) = exp(8πi/3) 6= 1, χ2

1(T + 2) = exp(8πi/6) 6= 1,
χ2
1(T + 3) = exp(4πi/6) 6= 1, χ2

1(T + 4) = exp(8πi/3) 6= 1, χ2
1(T + 5) =

exp(10πi/3) 6= 1, χ2
2(T + 6) = exp(4πi/3) 6= 1. That is, N1 = 3 and

K = k( 3
√
−T , 3

√
−(T + 4)).(3.21)

(ii) q = 7, K = k(
√
−P1

6
√
−P2), degPi = 1.

Assume P1 = (T+a) and P2 = (T ) for some a ∈ F∗7. By the proof of Theorem
4.4 of [6], |S∞(K)| = 2. Since P2 is totally ramified, f((T + b),K/k) 6= 1 for
all b ∈ F∗7. Let XKPi

denote the character group of KPi for i = 1, 2. Let

XKPi
= 〈χi〉, then o(χi) = 6 and XK = 〈χ3

1χ2〉. Since (F7(T )/Pi)
∗ ∼= F∗7, we

define χi such that χi(3) = exp(2πi/6) for i = 1, 2. We have solutions for a = 2
and a = 5.

Let a = 2. χ3
1χ2(T + 1) = −1, χ3

1χ2(T + 3) = exp(πi/3), χ3
1χ2(T + 4) =

exp(4πi/3), χ3
1χ2(T + 5) = (−1) exp(5πi/3), χ3

1χ2(T + 6) = (−1), and χ2(T +
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2) = exp(2πi/3). Hence N1 = 3 and

K = k(
√
−(T + 2) 6

√
−T ).(3.22)

Let a = 5. χ3
1χ2(T + 1) = −1, χ3

1χ2(T + 2) = exp(2πi/3), χ3
1χ2(T + 3) =

(−1) exp(πi/3), χ3
1χ2(T + 4) = (−1) exp(4πi/3), χ3

1χ2(T + 6) = (−1), and
χ2(T + 5) = exp(5πi/3). Hence none of them splits and

K = k(
√
−(T + 5) 6

√
−T ).(3.23)

(iii) q = 4, K = k( 3
√
−P , u) where k(u) is a quadratic subfield of K+

P 2 .

K is contained in KPK
+
P 2 . Up to isomorphism, assume P = (T ). Then P is

totally ramified and N1 ≥ 3. The character group XKP2 ' (A/T 2)∗ = 〈T+w〉×
〈T +1〉 is isomorphic to Z6×Z2. Let XK denote the character group of K. It is
a subgroup of 〈χ1〉×〈χ2〉×〈χ3〉 where 〈χ1〉 = XP is of order 3 and 〈χ2〉×〈χ3〉 is
the character group associated to KP 2 where 〈χ2〉 ' 〈T+w〉 and 〈χ3〉 ' 〈T+1〉.
Then XK = 〈χ1(χ3

2)a(χ3)b〉 is of order six where 0 ≤ a, b ≤ 1. Since (T + 1) is
inert in the extension K/k, χ1(χ3

2)a(χ3)b(T +1) = −1, then b = 1. (T +w) and
(T+w2) are also inert, but χ1(χ3

2)a(χ3)(T+w) = exp(2πi/3) exp(3a(2πi/6)1 6=
1 and χ1(χ3

2)a(χ3)(T +w2) = exp(22πi/3) exp(15a(2πi/6)(−1) 6= 1 for 0 ≤ a ≤
1. We have gK+ = 0 by [6, Lemma 4.1], then K+ = k(u) is a function field
with class number one where P∞ splits and (T ) is ramified. Then

K = k( 3
√
−T , u) where u2 + u+ w/T = 0.(3.24) �

4. Genus two

In this section, we determine the subfields K of the cyclotomic function fields
with class number three when gK = 2. By Theorem 2.4, we have q = 2 or 3.

4.1. q = 2

Theorem 4.1. Let q = 2 and K be an extension of k of genus 2 with class
number 3. Then, up to isomorphism, K = k(y) where y2 + y = 1/(T 3 + T + 1)
and L(t) = 4t4 − 2t3 + t2 − t+ 1.

Proof. For q = 2, K is a real extension of k and N1 = 2 = N2 by Theorem
2.4. That implies [K : k] = 2 = |S∞(K)|. Thus extension is quadratic and
any finite place of k of degree one is inert in K/k. Since N2 = 2 and (T )
and (T + 1) are inert, (T 2 + T + 1) is also inert. Then P does not divide
N := cond(K), when degP ≤ 2. Assume N =

∏r
i=1 P

mi
i , then degPi ≥ 3.

By Hurwitz’s Genus Formula for K/k, deg(D(K/k)) = 6. Since Pi are wildly
ramified, 6 ≥ 2(

∑r
i=1 degPi). Equality holds if and only if mi = 2 for all i.

Hence N = P 2 where degP = 3.
Up to isomorphism T → T + 1, we assume P = T 3 + T + 1. Using [9,

Proposition 2.8 and Proposition 2.9], K = k(y), where y2 + (T 3 + T + 1)y =
(T 3 + T + 1)g(T ) where 0 6= g(T ) ∈ F2[T ] is of degree less than 4 and g(0) =
g(1) = 1. Also let α be a root of T 2 + T + 1. Since (T 2 + T + 1) is inert,
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by [9, Lemma 2.8], g(α)/α2 + g(α2)/α = 1. That implies g(T ) = 1. Hence
K = k(y) where y2 + y = 1/(T 3 + T + 1). �

4.2. q = 3

Theorem 4.2. Let q = 3 and K be a real extension of k of genus 2 with class
number three. Then, up to isomorphism, K = k(y) where y2 = T 6 + T 4 +
T 3 + T 2 + 2T + 2 or y2 = T 6 + T 4 + 2T 3 + T 2 + T + 2 and for each case
L(t) = 9t4 − 6t3 + t2 − 2t+ 1.

Proof. Let K/k be a real extension, then [K : K+] = [K : k] divides q− 1 = 2.
Hence, [K : k] is quadratic and |S∞(K)| = 2. Thus we are in the case N1 =
2, N2 = 3 by Theorem 2.4. Since all finite places of k of degree one are inert,
all finite places of k of degree two are also inert. That is, any place P of k of
degree less than or equal to two does not divide the conductor N of K. Since
the extension degree is prime to q, we may assume N =

∏r
i=1 Pi where Pi ∈ Pk.

By Hurwitz’s Genus formula for K/k,
∑r
i=1 degPi = 6 where degPi ≥ 3. Thus

N = P1P2 where degPi = 3 or N = P where degP = 6. Then by Lemma
2.5, K = k(

√
P1P2) ⊂ k(

√
−P1,

√
−P2) or K = k(

√
P ). By [9, Theorem 2.5

and Lemma 2.6], y2 = N such that N is not a square modulo Q for a place
Q of k of degree one or two. Considering each case, the result follows for only
N = T 6 + T 4 + T 3 + T 2 + 2T + 2 and N = T 6 + T 4 + 2T 3 + T 2 + T + 2. �

Theorem 4.3. Let q = 3 and K be an imaginary extension of k of genus two
with class number three. Then, up to isomorphism, K = k(y) where y2 + T 5 +
T 3 + T + 1 = 0 and L(t) = 9t4 − 9t3 + 5t2 − 3t+ 1.

Proof. Let K/k be an imaginary extension, then 2 ≤ [K : K+] divides q−1 = 2.
That is, [K : K+] = 2. Then by Theorem 2.4, we have

(i) N1 = 1, N2 = 5 or
(ii) N1 = 2, N2 = 3
(i) Let N1 = 1 and N2 = 5. Then |S∞(K)| = 1 and K+ = k. That is K/k

is quadratic, P∞ is ramified and all finite places of k of degree one are inert in
the extension. Then we have two possibilities: either two of the places of k of
degree two are ramified and the third one is inert or one of them splits and the
others are inert. Extension degree is prime to q and we assume N =

∏r
i=1 Pi

where Pi ∈ Pk. By Hurwitz’s Genus formula for K/k,
∑r
i=1 degPi = 5 where

degPi ≥ 2. Thus N = P where degP = 5. By Lemma 2.5, K = k(
√
−P ) and

by [9, Theorem 2.5 and Lemma 2.6], y2 = P such that P is a square modulo Q′

for only one of the places Q′ of k of degree two and it is not a square modulo
Q′′ where Q′′ is a place of k of degree two different from Q′. There exist three
distinct place in PF3(x) of degree two. Up to isomorphism (T → T +a, a ∈ F∗3),

we may assume Q′ = T 2 +T + 2. Then we have P = T 5 +T 3 +T + 1. That is,

K = k(y) where y2 + T 5 + T 3 + T + 1 = 0.(4.1)

(ii) Let N1 = 2 and N2 = 3. Then |S∞(K)| = 1 or 2.
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• Assume |S∞(K)| = 1. Then K/k is quadratic, P∞ and one of the finite
places P of k of degree one are ramified and the other places of k of degree
one are inert in the extension. Up to isomorphism, let P = (T ). Then one of
the places Q of k of degree two is ramified and the others are inert. Assume
N = P · Q

∏r
i=1 Pi where Pi ∈ Pk of degree greater than two. By Hurwitz’s

Genus formula for K/k, degP + degQ +
∑r
i=1 degPi = 5 where degPi ≥ 3.

That is,
∑r
i=1 degPi = 2 and degPi ≥ 3, which is not possible.

• Assume |S∞(K)| = 2, then K/k is quartic. It is a well-known fact that
gK+ ≤ gK . For gK+ = 2, by Hurwitz’s Genus formula, degree of the different
of K/K+ is −2. Since this is not reasonable, gK+ = 0 or 1.

Let gK+ = 0, that is hK+ = 1. Then by [7, Proposition 4.1], K+ ⊆ K+
P with

degP = 2 or K+ ⊆ K+
P1P2

with degPi = 1.
Assume the first case holds.
If P is ramified in K/K+, by Hurwitz’s Genus formula for K/K+,

2 = −4 + 2 · degP∞ + degP + 2

r∑
i=1

degQi,

where P 6= Qi are places of k which are also ramified in K/K+. Then N = PQ
where degQ = 1. If Q splits in K+/k, then N1 ≥ 4, which is a contradiction.
Let Q be inert in K+/k. Since it is ramified in K/K+ then there exists γ ∈ PK
lying over Q such that deg γ = 2. Since N2 = 3 and γ and the place lying over
P are of degree two, there exists a place Q′ of k, different from P and Q, with
degQ′ ≤ 2, which is ramified in K/k. That means Q′ divides N , which is a
contradiction.

If P is not ramified in K/K+, by Hurwitz’s Genus formula for K/K+,

2 = −4 + 2 · degP∞ + 2

r∑
i=1

degQi,

where P 6= Qi are places of k which are ramified in K/K+. Then N = PQ
where degQ = 2 or N = PQ1Q2 where degQi = 1. Since N1 = 2, N2 = 3,
using an argument similar to above, there exists another ramified place Q′ of
k with degQ′ ≤ 2. Then Q′ divides N , which is not possible.

Assume K+ ⊆ K+
P1P2

with degPi = 1. Since N1 = |S∞(K)|, Pi are inert in

K/K+. By Hurwitz’s Genus formula for K/K+,

2 = −4 + 2 · degP∞ + 2

r∑
i=1

degQi,

where Pi 6= Qj are places of k which are ramified in K/K+. We have N =
P1P2Q with degQ = 2 or N = P1P2Q1Q2 with degQi = 1. N = P1P2Q1Q2

with degQi = 1 implies N1 ≥ 4 or N2 ≥ 4, which is a contradiction. N =
P1P2Q with degQ = 2 implies N2 ≥ 4 or there exists another ramified place
of degree less than or equal to two. Since both of them are not reasonable, we
skip this case. Hence gK+ 6= 0.
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Let gK+ = 1. It is known that hK+ | hK = 3, then hK+ = 1 or 3. Since

[K+ : k] = 2 and q = 3, by [6, Theorem 3.4], K+ = k(
√
P1P2) with degP1 = 1

and degP2 = 3. Then hK+ = 3 and h−K = 1. By [7, Theorem 3.9], K =
k(
√
−P1,

√
−P2) and P2 = T 3 + 2T + 1. In this case, hK = 5 and we arrive a

contradiction. �

5. Imaginary extensions with relative class number three

Let K/k be an imaginary extension with relative class number h−K = 3. If
hK = 3, then hK+ = 1 and K is one of the function fields given in Theorems 3.5,
3.7 and 4.3. In the following theorem, we list all imaginary abelian extensions
with hK = 3hK+ > 3.

Theorem 5.1. Let K be an imaginary function field with relative class number
three such that hK > 3. Then, up to isomorphism, K satisfies one of the
following conditions:

(1) q = 3, K = k(
√
−P ,

√
−(T 3 + 2T 2 + 1)) and

K+ = k(
√
P (T 3 + 2T 2 + 1)) where degP = 1.

(2) q = 3, K = k(
√
−P ,

√
−(T 5 + T 3 + T + 1)) and

K+ = k(
√
P (T 5 + T 3 + T + 1)) where degP = 1.

(3) q = 3, K = k(
√
−P1,

√
−P2) with hK = 63 and K+ = k(

√
P1P2) with

hK+ = 21 where P1 = T 3 + 2T + 1 and P2 = T 3 + 2T 2 + 1.
(4) q = 3, K = k(

√
−P1,

√
−P2) with hK = 399 and K+ = k(

√
P1P2) with

hK+ = 133 where P1 = T 3 + 2T + 1 and P2 = T 5 + T 3 + T + 1.
(5) q = 5, K = k(

√
−P ,

√
−(T 3 + 4T + 2)) and

K+ = k(
√
P (T 3 + 4T + 2)) where degP = 1.

(6) q = 5, K = k(
√
−P ,

√
−(T 3 + 4T + 3)) and

K+ = k(
√
P (T 3 + 4T + 3)) where degP = 1.

(7) q = 7, K = k(
√
−P ,

√
−(T 3 + 3)) and K+ = k(

√
P (T 3 + 3)) where

degP = 1.

Proof. Let hK = 3hK+ > 3, then K+ 6= k and K/k is not totally imaginary.
By [12, Equation (2.a)]

h−K = (
δsK
Q

)h−(OK),

where δK denotes the order of the Galois group | Gal(K/K+) | of K over K+.
Let OK and OK+ denote the integral closure of A in K and K+ and let O∗K and
O∗K+ be the unit groups of OK and OK+ respectively. Then Q = [O∗K : O∗K+ ]
is the unit index and we know that Q divides δK . Also s = [K+ : k] − 1 and

h−(OK) is the relative ideal class number of K. Since (
δsK
Q ) and h−(OK) are

positive integers and h−K = 3, we have two possibilities:

In the first one, (
δsK
Q ) = 1 and h−(OK) = 3, so δsK = Q. Since Q is a divisor

of δK , we have s = 0 or s = 1. Assume s = 0. Then Q = 1. So K+ = k and
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hK+ = 1, which is a contradiction. So, s = 1 and δK = Q. So K+/k is a real
quadratic extension.

In the second one, (
δsK
Q ) = 3 and h−(OK) = 1. Then s = 1 or s = 2. If

s = 1, δK = 3Q and K+/k is real quadratic. If s = 2, δK = 3 = Q and K+/k
is a real cubic extension.

Hence when h−K = 3hK+ > 1, we have the following cases:

(1) [K : K+] = [O∗K : O∗K+ ] and K+/k is a real quadratic extension.
(2) [K : K+] = 3[O∗K : O∗K+ ] and K+/k is a real quadratic extension.
(3) [K : K+] = 3 = [O∗K : O∗K+ ] and K+/k is a real cubic extension.

Since hK , hK+ > 1, we have gK , gK+ ≥ 1 and by [2, Propotion 2.4]

h−K ≥ (
√
q − 1)2(δK−1)(gK+−1)+deg(D(K/K+)).(5.1)

Since infinite places are tamely ramified in K/K+, we have

2(δK − 1)(gK+ − 1) + deg(D(K/K+)) ≥ deg(Infinite part of D(K/K+))

= [K+ : k](δK − 1).(5.2)

(1) Let [K : K+] = [O∗K : O∗K+ ] and K+/k be a real quadratic extension.
Since extension is imaginary, δK ≥ 2 and q 6= 2. By inequalities (5.1) and (5.2),
we have 3 ≥ (

√
q − 1)2 and hence 3 ≤ q ≤ 7.

(i) Let q = 3. Then Q = δK = 2. Let N :=
∏s
i=1 P

ei
i be the conductor of

K and define N :=
∏s
i=1 Pi. Since Q = 2, we have s ≥ 2 by [13, Section 4].

Since [K : k] = 4, Gal(K/k) is isomorphic to Z4 or Z2 × Z2. Assume the first
one and assume XK = 〈χ〉 is Dirichlet characters group of K. By the analytic
class number formula,

h−K = (ΣA∈MN
χ(A))(ΣA∈MN

χ3(A)).(5.3)

Since |MN | is even and o(χ) = 4, h−K is divisible by 2 which is a contradiction.
Hence, Gal(K/k) ' Z2 × Z2. Let U, V and K+ be three quadratic subfields
of K associated to the three subgroups of Gal(K/k). By [16, Main Theorem],
hK = hUhV hK+ . Since hK = 3hK+ , we may assume hU = 1 and hV = 3.
By [7, Theorem 3.6 and Theorem 3.8], U is either k(

√
−P ) where degP =

1 or k(
√
−(T 3 + 2T + 1)). By Theorem 3.5 and Theorem 4.3, V is either

k(
√
−(T 3 + 2T 2 + 1)) or k(

√
T 5 + T 3 + T + 2). Then K satisfies one of the

following conditions:

(a) K = k(
√
−P ,

√
−(T 3 + 2T 2 + 1)) and K+ = k(

√
P (T 3 + 2T 2 + 1))

where degP = 1. In this case, h−K = 3.

(b) K = k(
√
−P ,

√
−(T 5 + T 3 + T + 1)) and

K+ = k(
√
P (T 5 + T 3 + T + 1)) where degP = 1.

In this case, h−K = 3.

(c) K = k(
√
−(T 3 + 2T + 1),

√
−(T 3 + 2T 2 + 1)) and hK = 63,

K+ = k(
√

(T 3 + 2T + 1)(T 3 + 2T 2 + 1)) and hK+ = 21.
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(d) K = k(
√
−(T 3 + 2T + 1),

√
−(T 5 + T 3 + T + 1)) and hK = 399,

K+ = k(
√

(T 3 + 2T + 1)(T 5 + T 3 + T + 1)) and hK+ = 133.

(ii) Let q = 4. Then Q = δK = 3. Let N :=
∏s
i=1 P

ei
i be the conductor of K

and define N ′ :=
∏s
i=1 Pi. Since Q = 3, we have s ≥ 2. Since [K : k] = 6, N is

not a square-free polynomial, then [K : K ∩KN ′ ] > 1. Since [K : K ∩KN ′ ] =
[KKN ′ : KN ′ ] is a divisor of [KN : KN ′ ] = 2l for some integer l, we have
[K : K ∩ KN ′ ] = 2 and [K ∩ KN ′ : k] = 3. By [10, Theorem 3.1], any finite
places of K+ are unramified in K, so any finite places of k is unramified in
K ∩KN ′ . Hence, K ∩KN ′ = k and we arrive a contradiction. So there exists
no solution for this case.

(iii) Let q = 5. Then Q = δK = 2 or 4.

• Let δK = 4. Then by inequalities (5.1) and (5.2), we have 3 ≥ (
√

5−1)6 ≈
3.56 which is a contradiction.
• Let Q = δK = 2 and let N :=

∏s
i=1 P

ei
i be the conductor of K and define

N :=
∏s
i=1 Pi. Since Q = 2, we have s ≥ 2. Since [K : k] = 4, Gal(K/k) is

isomorphic to Z4 or Z2 × Z2. Assume the first one and assume XK = 〈χ〉 is
Dirichlet characters group of K. By the analytic class number formula,

h−K = (ΣA∈M
N
χ(A))(ΣA∈MN

χ3(A)).(5.4)

Since |MN | is even and o(χ) = 4, h−K is divisible by 2 which is a contradiction.
Hence, Gal(K/k) ' Z2 × Z2. Let U, V and K+ be three quadratic subfields
of K associated to the three subgroups of Gal(K/k). By [16, Main Theorem],
hK = hUhV hK+ . Since hK = 3hK+ , we may assume hU = 1 and hV = 3.
By [7, Theorem 3.6], U is k(

√
−P ) where degP = 1. By Theorem 3.5, V is

either k(
√
−(T 3 + 4T + 2)) or k(

√
−(T 3 + 4T + 3)). Then K satisfies one of

the following conditions:
(a) K = k(

√
−P ,

√
−(T 3 + 4T + 2)) and K+ = k(

√
P (T 3 + 4T + 2)) where

degP = 1. In this case, h−K = 3.

(b) K = k(
√
−P ,

√
−(T 3 + 4T + 3)) and K+ = k(

√
P (T 3 + 4T + 3)) where

degP = 1. In this case, h−K = 3.
(iv) Let q = 7. Then Q = δK = 2, 3 or 6.
• Let δK = 3 or 6. Then by inequalities (5.1) and (5.2), we have 3 ≥

(
√

7− 1)4 ≈ 7.33 which is a contradiction.
• Let Q = δK = 2 and let N :=

∏s
i=1 P

ei
i be the conductor of K and define

N :=
∏s
i=1 Pi. Since Q = 2, we have s ≥ 2. Since [K : k] = 4, Gal(K/k) is

isomorphic to Z4 or Z2 × Z2. Assume the first one and assume XK = 〈χ〉 is
Dirichlet characters group of K. By the analytic class number formula,

h−K = (ΣA∈MN
χ(A))(ΣA∈MN

χ3(A)).(5.5)

Since |MN | is even and o(χ) = 4, h−K is divisible by 2 which is a contradiction.
Hence, Gal(K/k) ' Z2 × Z2. Let U, V and K+ be three quadratic subfields
of K associated to the three subgroups of Gal(K/k). By [16, Main Theorem],
hK = hUhV hK+ . Since hK = 3hK+ , we may assume hU = 1 and hV = 3.
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By [7, Theorem 3.6], U is k(
√
−P ) where degP = 1. By Theorem 3.5, V is

k(
√
−(T 3 + 3)). K = k(

√
−P ,

√
−(T 3 + 3)) and K+ = k(

√
P (T 3 + 3)) where

degP = 1. In this case, h−K = 3.
(2) Let [K : K+] = 3[O∗K : O∗K+ ] and K+/k be a real quadratic extension.

Since δK = 3Q ≥ 3, by inequalities (5.1) and (5.2), we have 3 ≥ (
√
q− 1)4 and

hence 3 ≤ q ≤ 5.
(i) Let q = 3. Then δK = 2, but δK = 3Q is divisible by 3, so we arrive a

contradiction.
(ii) Let q = 4. Then δK = 3 and Q = 1. Let N :=

∏s
i=1 P

ei
i be the conductor

of K and define N ′ :=
∏s
i=1 Pi. Since [K : k] = 6, N is not a square-free

polynomial, then [K : K ∩KN ′ ] > 1. Since [K : K ∩KN ′ ] = [KKN ′ : KN ′ ] is
a divisor of [KN : KN ′ ] = 2l for some integer l, we have [K : K ∩ KN ′ ] = 2
and [K ∩ KN ′ : k] = 3. If all finite places of K+ are unramified in K, then
all finite places of k are unramified in K ∩KN ′ . Hence, K ∩KN ′ = k which
is a contradiction. Thus, there exists a place P of K+ which is ramified in K.
Then deg(D(K/K+)) ≥ 4 + 2 deg(P ) ≥ 6.

By Hurwitz Genus formula,

2gK − 2 = (2gK+ − 2)[K : K+] + deg(D(K/K+))(5.6)

≥ 3(2gK+ − 2) + 6

≥ 6gK+ .

Then gK = 3gK+ + y where y is a positive integer. By [13, Inequality (3e)],

h−K ≥
43gK++y−1

3gK+ + y + 1

9

5

1

32gK+
(5.7)

≥ 4gK++y−1

3gK+ + y + 1

9

5

42gK+

32gK+

≥ 2
9

5
(
4

3
)4

≥ 10,

when gK+ ≥ 2. Since hK = 3hK+ > 3, gK+ ≥ 1. Hence, gK+ = 1.
We have hK+ = N1(K+) ≥ |S∞(K+)| = 2. By [13, Inequality (3b)],

hK+ ≤ 32.(5.8)

Thus 2 ≤ hK+ ≤ 9.
Then by [6, Theorem 3.3], K+ satisfies one of the following conditions:
(a1) K+ is a quadratic extension of k with N = P 4 and deg(P ) = 1.
(b1) K+ is a quadratic extension of k with N = P 2 and deg(P ) = 2.
(c1) K+ is a quadratic extension of k with N = P 2

1P
2
2 and deg(Pi) = 1,

i = 1, 2.
Assume XK = 〈χ1〉×〈χ2〉 is Dirichlet characters group of K where o(χ1) = 3

and o(χ2) = 2. Let E be the subfield of K associated to the subgroup 〈χ1〉.
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By analytic class number formula,

hE = h−E = (ΣA∈MN
χ1(A))(ΣA∈MN

χ2
1(A))(5.9)

and

h−K = (ΣA∈MN
χ1(A))(ΣA∈MN

χ2
1(A))(ΣA∈MN

χ1(A)χ2(a))(5.10)

(ΣA∈MN
χ2
1(A)χ2(a)).

Let S := {A ∈MN : χ2(A) = −1} be a subset of MN . Then

h−K = ((ΣA∈MN\Sχ1(A)) + (ΣA∈Sχ1(A)))(5.11)

((ΣA∈MN\Sχ
2
1(A)) + (ΣA∈Sχ

2
1(A)))

((ΣA∈MN\Sχ1(A))− (ΣA∈Sχ1(A)))

((ΣA∈MN\Sχ
2
1(A))− (ΣA∈Sχ

2
1(A))).

Since χ2
1(A) = χ1(A) is the complex conjugate of χ1(A) for all A ∈MN and

order of χ1 = 3, ((ΣA∈MN\Sχ1(A)) = (x+
√

3yi)/2 and ΣA∈Sχ1(A)(z+
√

3ti)/2

for x, y, z, t ∈ Z. Thus, hE = ((x+ z)2 + 3(y+ t)2)/4 is a positive integer, then
α = ((x − z)2 + 3(y − t)2)/4 is also a positive integer and h−K = hEα implies
hE = 1 or 3. By Theorem 3.5 and by [7, Theorem 3.6 and Theorem 3.8].

(a2) E = k(y) such that y3 = T (T + w) where w is a generator of F∗4 or
(b2) E is a subfield of KP with deg(P ) = 1 or

(c2) E = k( 3
√
T 2 + T + w) where w is a generator of F∗4.

K = EK+, however, we have no solution for these possible values of E and
K+.

(iii) Let q = 5. Then δK = 2 or 4, which contradicts that δK = 3Q is
divisible by 3.

(3) Let [K : K+] = 3 = [O∗K : O∗K+ ] and K+/k is a real cubic extension.
Since δK = 3, by inequalities (5.1) and (5.2), we have 3 ≥ (

√
q− 1)6 and hence

3 ≤ q ≤ 4.
(i) Let q = 3. Then δK = 2, which contradicts that δK = 3.
(ii) Let q = 4. Then Q = δK = 3. Then any finite places of K+ are

unramified in K. Let N :=
∏s
i=1 P

ei
i be the conductor of K and e(Pi,K/k) =

e(Pi,K
+/k) = 3. Thus the conductor of K+ is N and deg(D(K/K+)) = 6.

Since Q 6= 1, we have s ≥ 2.
By Hurwitz Genus formula,

2gK − 2 = (2gK+ − 2)[K : K+] + deg(D(K/K+))(5.12)

= 3(2gK+ − 2) + 6

= 6gK+ .

Then gK = 3gK+ + 1. By [13, Inequality (3e)],

h−K ≥
43gK+

3gK+ + 2

9

5

1

32gK+
(5.13)
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≥ 4gK+

3gK+ + 2

9

5

42gK+

32gK+

≥ 2
9

5
(
4

3
)4

≥ 10,

when gK+ ≥ 2. Since hK = 3hK+ > 1, gK+ ≥ 1. Hence, gK+ = 1.
We have hK+ = N1(K+) ≥| S∞(K+) |= 3. By [13, Inequality (3b)],

hK+ ≤ 32.(5.14)

Thus 3 ≤ hK+ ≤ 9.
We know the conductor of K+ is N and s ≥ 2. Then by [6, Theorem 3.4],

K+ satisfies one of the following conditions:
(a)K+ = k( 3

√
−P 2

1P
2
2 ) with deg(P1) = 1 and deg(P2) = 2, whereN = P1P2.

In this case, Gal(KN/k) ' Z3 × Z3 × Z5. Hence, Gal(K/k) ' Z3 × Z3.
(b) K+ = k( 3

√
P1P2P3) with deg(Pi) = 1 for i = 1, 2, 3 where N = P1P2P3.

In this case, Gal(KN/k) ' Z3 × Z3 × Z3. Hence, Gal(K/k) ' Z3 × Z3.
Hence, Gal(K/k) ' Z3 ×Z3. Let U1, U2, U3 and K+ be four cubic subfields

of K associated to the four subgroups of Gal(K/k) of order 3. By [16, Main
Theorem], hK = hU1hU2hU3hK+ . Since hU1hU2hU3 = 3, we may assume hU2 =
1 = hU3 and hU1 = 3. By Theorem 3.5, U1 = k(y) such that y3 = T (T + w)
where 〈w〉 = F∗4 is the cubic function field with class number three. We have
K = U1K

+, but there exists no function field K with relative class number
three satisfying these conditions. �
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