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CYLOTOMIC FUNCTION FIELDS OVER FINITE FIELDS
WITH CLASS NUMBER THREE

MEHPARE BiLHAN, DIiLEK BUYRUK, AND FERRUH OzBUDAK

ABSTRACT. We list all subfields of cyclotomic function fields over ratio-
nal function fields with class number three. We also determine all the
imaginary abelian extensions with relative class number three, explicitly.

1. Introduction

Let k := Fy(T) be the rational function field over the finite field F, with
q elements and let A := F,[T] be the ring of polynomials. The infinite prime
divisor of k associated to (1/T') is denoted by Ps. For N € A, we construct
the Carlitz module to the N** cyclotomic function field Ky and its maximal
real subfield K. Cyclotomic function fields were investigated by L. Carlitz in
1935 in [4]. In [5], Hayes developed the theory of cyclotomic function fields.

Throughout the paper, we assume K is a finite abelian extension of k£ such
that K C Kjs for some M € A. The conductor cond(K) of K is N € A such
that K is the smallest cyclotomic function field containing K. Let K}; be the
maximal real subfield of K, that is, the maximal subfield of K on which P
splits completely. Then K™ = KN K ]\L, be the maximal real subfield of K. We
say K is a real extension of k, if K = K7, imaginary otherwise. If K+ =k, K is
a totally imaginary extension of k. Let the group of divisors of K and principle
divisors of K be denoted by Div’(K) and P(K), respectively. Then, the order
of the quotient group Div°(K)/P(K) is called the class number of K. Let hg
and hg+ denote the class number of K and K, respectively. Since K/K™ is a
finite separable extension, hy is divisible by hx+ and hj = hg /hg+ is called
the relative class number of K.

In [8], the authors determined all cyclotomic function fields, their maximal
real subfields with class number one. In [3], Bae and Kang determined all the
cyclotomic function fields with relative class number one. In [7], Ahn and Jung
determined all the abelian extensions of k which have the divisor class number
one and all the imaginary abelian extensions with relative divisor class number
one. In [6], they also determined all subfields of cyclotomic function fields with

Received April 27, 2018; Accepted December 6, 2018.
2010 Mathematics Subject Classification. 11R29, 11R60, 12E20.

Key words and phrases. class number, cyclotomic function field, L-polynomial.

©2019 Korean Mathematical Society

(o)
[$28
©



560 M. BILHAN, D. BUYRUK, AND F. OZBUDAK

genus one. In [1], same authors determined all subfields of cyclotomic function
fields with divisor class number two and they also gave the generators of such
fields, explicitly.

In this paper, we determine all subfields of cyclotomic function fields with
class number three and all the imaginary abelian extensions with relative divisor
class number three. In Section 2, we recall some definitions and theorems
required for the determination of subfields of cyclotomic function fields and we
also gave some necessary conditions for a function field to have class number
three. Then we conclude that if a subfield of a cyclotomic function field has class
number three, then its genus is one or two. In Section 3, we classify subfields of
cyclotomic function fields of genus one. In Section 4, we classify the subfields of
genus two. In the last section, we determined imaginary subfields of cyclotomic
function fields with relative class number three.

Throughout the paper, we fix the following notations:

e [F,: a finite field with ¢ elements.

o k/F4: the rational function field Fq(T) over F,.

o A: the ring of polynomial F,[T] of k.

o Ky /F,: Nth cyclotomic function field over F, where N € A.

° KX}: the maximal real subfield of K.

o K/F,: asubfield K of a cyclotomic function field K over F,.

e K™: the maximal real subfield of K.

e Cond(K): the conductor of K.

e gx: the genus of K.

e hi, hg+: the class number of K and KT, respectively.

e hy: the relative class number of K.

e 1(Ok), h(Og+): the ideal class number of K and K™, respectively.

e h7(Ok): the relative ideal class number of K.

e D(Fy/F,): the different of the function field extension of F} over Fy.

e ¢(P, Fy/Fy): the ramification index of a place P of F» in the extension
Fy/Fy.

e f(P,Fy/F5): the inertia degree of a place P of Fy in the extension
Fy/Fs.

e Gal(Fy/F,): the Galois group of F} over Fj.
e X the character group of a function field K.
e N; for j € NT: the number of degree j places of K.

2. Preliminaries

Definition 2.1. Let F’/K be a finite separable extension of F/K. Then the
divisor

D(F'/F):= > > d(P'|P)P'

PEPp P'|P
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is called the different of F’/F. If P’|P is tamely ramified, then d(P’|P) =
e(P’'|P) — 1. Otherwise
d(P'|P) =Y (IG°(P",F'/F)| = [G"(P',F'|F) : G"(P', F'|F))),
n=0

where G™(P’, F'/F) denotes the nth upper ramification group of P’ in F”.

Theorem 2.2 (Hurwitz Genus formula). Let L/K be a finite abelian extension
with the same constant field. Then we have

291 — 2= (2g9x —2)[L : K] +deg(D(L/K)),
where D(L/K) is the different of L/ K. Especially g1, > gk -

Definition 2.3. The ideal class number h(Og) is defined as the class number
of the Dedekind ring
Os= () Op,
P¢s
where Op = {z € K,vp(z) > 0} is the local ring associated with the valuation
vp at P.

Let h(Og+) be the ideal class number of KT. Since K/K™ is totally imag-
inary h(Og+) divides h(Og). Then h™(Ok) = h(Ok)/h(Og+) is called the
relative ideal class number of K.

It is known that K/K™ is a finite separable extension, so the Zeta function
of K divides that of K. Hence hy+ divides hx and hy = hi/hg+ is called
the relative class number of K.

By [11, Chapter 16], the analytic class number formula is

(2.1) he= I (> x4,

x non-real A€My
where My = {A € F,[T] : A is monic, deg(A4) < deg(N) and (A, N) =1} and
X 18 a non-real character in the character group Xy associated to the function
field K.

Let K be a subfield of a cyclotomic function field and Xg be the character
group of K. For a fixed monic irreducible polynomial Q € A, let Yx = {x €
Xk :x(Q) #0} and Zx = {x € Xk : x(Q) = 1}. By [15, Chapter 3], we have
Yk : Zk| = f(Q, K/k), the inertia degree of the associated place of @ in K/k
and | Zk |, the number of primes of K lying above the associated place of Q.

The following theorem was already proved in [14]. It presents only numerical
necessary and sufficient conditions for the existence of algebraic function fields
with class number three.

Theorem 2.4 ([14, Theorem 3.3.4]). Let K/F, be a function field of genus g.
Then hx = 3 if and only if one of the following conditions holds:
(A) g=1,2<¢<T7and N, =3.
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(B) g=2,¢=2 and
(1) Ny =0, Ny =5 or
(2) lel, N2:4 or
(3) Ny =2, Ny =2
(C) g=2,q9q=3 and
(1) Ny =0, Ny =6 or
(2) Ny =1, Ny =5 or
(3) Ny =2, Ny =3
(D) g=3,9=2 and
(1) N1:0, N3:3,N2§13 or
(2) Ny =1, Ny 4+ N3 =4 or
(3) Ny =2, Ns+ 2N, = 3.
(E) g=4,9=2 and
(1) N1:0, 2N4+N2273N2:6 and
NQZO, Nggll, N4:3 or
NQZL N3§8, N4:4 or
N2:2, NSSG, N4:4 or
N2:37 N3§3, N4:3 or
No=4, N3y=0, N,=1,
or

(2) le]., 2N4+2N3+N22—N2:8 and

NQZO, N3S3, 1SN4§4 or
No=1, N3=0, Ny=4.

(F)g=5,q:2andN1:0,N5—2N3+N2N3:3,N57é0.
(G)g=6,q=2andN1=O,N6—2N4+(N3—|—N32)/2:3, NQZO,
N5 < 6.

From now on, we assume K is a subfield of a cyclotomic function field
with class number 3. Let S (K) denote the set of prime divisors of K lying
above Ps. Then Ny > |Soo(K)| = [Kt : k] > 1. For ¢ =2, K = K+ and
Ni > |Seo(K)| = [K : k] > 2 in this case. Then by Theorem 2.4, we have the
following cases:

(I) 9K = 1, (q = 2,3,5, 7, N1 = 3),

(I1) gk = 2, (¢ = 2, Ny = 2Ny = 2)or (¢ =3, Ny = 1,N; =5 or
Ny =2,Ny =3),

(III) gk =3,q=2, Ny =2, N3+ 2N, = 3.

For the last case, 2 = Ny > |Soo(K)| = [K : k] > 2, then the extension is
quadratic and P, split. That implies (T') and (T' + 1) are inert, thus Ny > 2
and N3 < —1, which is not possible. Hence we skip this case.

Lemma 2.5 ([6, Lemma 2.4]). Let P be a monic irreducible polynomial in
F,[T]. Let ! be a natural number such that ! divides g—1,1> 1. Let d = deg P
and dy = ged(l,d). Let n, 1 < n < l/dy be such that nd = dy (mod ).
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Then the unique cyclic subextension K of Kp/k with degree l is given by K =
k(y/(=1)d0 P™). Purthermore, | divides d if and only if K C K.

3. Genus one

In this section, we determine the subfield K with class number three when
gk = 1. By Theorem 2.4, we have 2 < ¢ < 7. First, we consider the real
extensions.

Proposition 3.1. Let K/k be a real extension of genus one with class number
three, then Ny =3 > [K : k] > 2 and K satisfies one of the following cases:
(i) ¢ = 2,4, K is a quadratic extension of k with conductor P*, deg P =1,
(ii) ¢ = 4,7, K = k(V/P), deg P = 3,
(111) q = 3,5, 7, K = k(\/P1P2), degP1 = 1,degP2 =3.

Proof. Proof is by [6, Theorem 3.3 and Theorem 3.4]. O

Theorem 3.2. Let K/k be a real extension of genus 1 with class number 3.
Then K is one of the following function fields up to isomorphism (T' — T + a,
a€Ty):

(1) g=2, K =k(y

(y) such that y?> +y = 1/T3,
(2) g=4, K = k(

(

(

) such that y* + wy = 1/T3 where (w) = F},

(3) ¢ =4, K = k(y) such that y> = T? + w where (w) = F},

(4) q =17, K = k(y) such that y> = T3 +3 or y®> = T3 + 4,

(5) ¢ = 3, K = k(y) such that y*> = T(T® +2T? + T + 1) or y?> = T(T? +
T?+T+2),

(6) ¢ =5, K = k(y) such that y> = T(T® —T?> —T — 1) or y?> = T(T® +
2124+ T+3) ory? =T(T3 +3T*+T+2) ory? =T(T3+T? - T +1),

(7) ¢ =17, K = k(y) such that y* = T(T3 +2) or y* = T(T3 +5),

—_— — —

)
Y
)

Proof. Clearly, K satisfies one of the conditions of Proposition 3.1:

(i) ¢ = 2 or 4 and K is a quadratic extension of k with conductor P,
deg P = 1.

e Let ¢ = 2, then |Soo(K)| = [K : k] =2 = N1 — 1 and one of the finite
places of k of degree one is ramified. Up to isomorphism, let (T') be ramified.
Since K is an elliptic function field, up to isomorphism, K = Fa(x,y) with
y? +y = 23, where P, is ramified and (x) splits in K/Fa(x). Using the
substitution, x — 1/T, we get K = k(y) with y? +y = 1/T? where P, splits
and (T) is ramified in K/k.

By Hurwitz Genus formula, we check our result:

0= —2[K : k| + deg(Dif f(K/k)).

That is, d((T), K/k) = 4 and vp(u) = —3, where u = 1/T3. Since u # w? — w
for any w € Fo(T), by Artin-Schreier extension, y% +y = u where (T') is totally
ramified in K/k.

e Let ¢ = 4, then |Soo(K)| = [K : k] =2 = N1 — 1 and one of the finite
places of k of degree one is ramified. Up to isomorphism, let (T") be ramified.



564 M. BILHAN, D. BUYRUK, AND F. OZBUDAK

K is an elliptic function field, then up to isomorphism, K = Fa(z,y) with
y?+wy+a® = 0 where (w) = Fj. then P, is ramified and (x) splits in K/Fa(x).
Using the substitution, z — 1/T, we get K = k(y) with y? +wy = 1/T3 where
P, splits and (T) is ramified in K/k.

(ii) ¢ = 4,7, K = k(¥/P), deg P = 3.

o Assume ¢ = 4. Let Xg,, Xk be the character groups of Kp and K,
respectively. Xg, = (A/P)* is a cyclic group of order 63. Let x be a generator,
then X = (x®) for some integer a and the order of x* is [K : k] = 3. Hence
we may assume X = (x?1). As |Sw(K)| = [K : k] = 3, none of the finite
places of k of degree one splits in K/k, that is, [Yx : Zx| = f((Q), K/k) > 1.
Then, we have

XTI +a)#1

for all @ € Fy. Up to isomorphism T — T+, o € F}, we have 5 possibilities for
P. Among them, for P = T3 +w where (w) = F}, we get the solution. That is,
let P =T3+w, then Xk, = (x) and T+1 is a primitive element of (F4(T)/P)*.
We have x21(T) = x(T?') = x(w) = exp(27i/3), x*'(T + 1) = exp(4ni/3),
2T +w) = exp(4mi/3), x*} (T + w?) = exp(4mi/3). Hence all finite places of
k of degree one are inert and

(3.1) K = k(V/T3 + w) where (w) = Fj.
e Assume ¢ = 7. Let Xg,, Xk be the character groups of Kp and K,

>~

respectively. Xp, = (A/P)* is a cyclic group of order 73 — 1. Let x be a
generator, then Xy = (x®) for some integer a and the order of x® is [K : k] = 3.
Hence we may assume Xy = (x!'%). As [S(K)| = [K : k] = 3, none of the
finite places of k of degree one splits in K/k, that is, [V : Zx] = f((Q), K/k) >
1. Then, we have

AT +a) #1

for all a € F7. Up to isomorphism T" — T + o, « € F%, we have 16 possibilities
for P. Among them, for P = T3 + 3 and T® + 4, the result follows.

Let P = T3 + 3, then Xk, = (x) and T + 1 is a primitive element of
(F,(T)/P)". We have x'A(T) = x(T'4) = x(T%) = x(2) = exp(di/3).
T4 1) = exp(ari/3), XIM(T +2) = exp(@mi/3), x' (T + 8) = (T +
3)1) = x(2) = exp(4mi/3), x"'"(T +4) = x(4) = exp(27i/3), X" (T +5) =
X(2) = exp(4mi/3) = x''4(T + 6). Hence all finite places of k of degree one are
inert and

(3.2) K = k(YT3 +3).
Similarly, for P = T2 + 4, x(T +a) # 1 for all a € F; and
(3.3) K =k(VT?+4).

(iii) ¢ = 3,5,7, K = k(P ), deg P, = 1,deg P, = 3.
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o Let ¢ =3. |Soo(K)| =[K : k] =2 = N; — 1 and one of the finite places
of k of degree one, say Pp, is ramified and all other places of degree one are
inert, except Pn,. Assume P; = (T') and let the associated polynomial of Py
be T2 + aT? + bT + ¢ where a,b, ¢ € F3. Using [9, Lemma 2.6 and Proposition
2.7],

(3.4) K = k(y) with y* = T(T? + aT? + bT + ¢).

Let Py P,(T) denote the product of the associated polynomials of P; and Ps,
respectively. Py Py(1) = PiP2(2) = 2 € F;\F32 and P, is irreducible. By
[9, Lemma 2.6], we have b=1,a=2,c=1orb=1,a=1, ¢ =2. That is,
(3.5) vV =T(T*+2T° + T+ 1) or > = T(T* + T* + T + 2).

e Let ¢ = 5. Similarly, K = k(y) where y?> = P, P,. Assume P; = (T) and
Py = T2 +aT? + bT + c where a,b,c € F5. Also P, Py(a) = 2 or 3 for o € Fs.
Checking all possibilities we have K = k(y) satisfying one of the following
equations:

(3.6) =T(T*~T%-T-1),

=T7(T3 +2T2+T+3)
=T(T* +3T* + T +2),
P=T(T*+T*-T+1).

o Let ¢ = 7. K = k(y) where y> = P P,. Assume P, = (T) and P, =
T3 + aT? + bT + ¢ where a,b,c € F7. Also PiPy(a) = 3,5 or 6 for a € Fy.
Checking all possibilities for Py, we have K = k(y) where

(3.10) y* =T(T? +2) or y*> = T(T? +5). 0

y?
(3.7) y?
(3.8) y?
(3.9) y

Remark 3.3 ([6, Lemma 4.1]). Let K/k be an imaginary extension of k with
gk = 1. Then g+ = 0.

Proposition 3.4. Let K/k be a totally imaginary extension of genus 1 with
class number 3. Then K satisfies one of the following cases:

(i) q=4,7, K = k(P P), deg P, =1,

(i) =7, K = k(v/—P1,/—PFP2), deg P, = 1,

(ii) ¢ = 3,5,7, K = k(v/—P), deg P = 3.
Proof. Proof follows from [6, Theorem 4.2]. O
Theorem 3.5. Let K/k be a totally imaginary extension of genus 1 with class
number 3. Then, up to isomorphism, (x — = +a, a € Fy) K is one of the

following function fields:
(1) q =4, K= k( ) such that y* = T(T + w) where (w) = F},
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(6) =7, K = k(y) such that y> + T® +3 = 0.

Proof. Clearly, K satisfies one of the conditions of Proposition 3.4:

() g=4or7, K = k(YPiP), deg P; = 1.

o Let ¢ =4. |Swo(K)| =1 and P, and P; are totally ramified. Then all of
the other finite places of k of degree one are inert in K/k. Assume P; = (7))
and P, = (T'+ a) for a € Fj. Let Xf, , Xk be the character groups of Kp,
and K, respectively. Xk, = (A/F;)* is a cyclic group of order 3. Let x; be
the generator of Xrp, s then X = (x1X2) where x;(w) = exp(27i/3) such that
w is a generator of .

If a =1, then x1x2(T + w) =1 and Ny > 6.

If a = w, then x1x2(T+1) = x2(w+1) = exp(4mi/3) and x1x2(T+w+1) =
exp(4mi/3), then the places of K associated to the polynomial T'+1 and T +w?
are inert. That is,

(3.11) K = k(y) where y* = T(T + w).

e Let ¢ =7. Assume P; = (T) and P, = (T +a) for a € F7. Let Xp, , Xk
be the character groups of Kp, and K, respectively. Xk, = (A /P;)* is a cyclic
group of order 6. Let x; be the generator of Xk, , then Xx = (x3x3) where
Xi(3) = exp(27i/6).

If a=1, then x3x3(T' +3)=1and N; > 6. If a =2, then \3x3(T + 1) =1
and Ny > 6. If a = 5, then x2x3(T'+6) = 1 and N; > 6. If a = 6, then
X3x3(T +2) =1 and Ny > 6.

Let a = 3, then \Ix3(T + 1) = exp(10mi/3), X3x3(T + 2) = exp(4mi/3),
XIX3(T+4) = exp(2mi/3), xIx3(T+5) = exp(2mi/3), xTx3(T+6) = exp(27i/3)
and all of the places of degree one, except (1) and (T + 3) are inert. That is,

(3.12) K = k(y) where y* = T(T + 3).
Similarly, result follows for a = 4 and
(3.13) K = k(y) where y> = T(T + 4).

(11) q = 7, K= k(\/ —Pl, \3/—P2), degP,- =1.

Let P, = (T) and P, = (T + a) for a € F%. Using the notation of part
(i), Xk = (x3,x3). Since Ny = 3, Py is inert in k(/—Ps)/k, P> splits in
k(v/—P1)/k and all the other finite places of k of degree one do not split in
K/k. Result follows only for a = 4. In this case, x3(T + 1) = exp(2mi/3),
X3(T + 2) = exp(107i/3), X3(T +3) = =1, \3(T +5) = -1, x3(T +6) =
exp(4mi/3). Also x3(T +4) = 1 and x4(T) = exp(7i/3). Hence,

(3.14) K =k(y,z) where y> + T =0 and 2° + T +4 = 0.

(iii) ¢ = 3,5,7, K = k(v/—P), deg P = 3.

e Let ¢ = 3. Since extension is totally imaginary, one of the finite places
of k of degree one splits and the others are inert in K/k. Up to isomorphism
(T — T+a, a € F}) there exist four possibilities for P. These are T° +2T +1,
T3 4+2T 42, T3+ T?+2 and T° + 272 + 1. Among them, result follows for
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P =T3%+2T?% + 1. In this case, (F3(T)/P)* = (T). Let Xk, = (x), we have
X = (x¥) and x'3(T+2) =1 and x'3(T) = x**(T+1) = —1. Hence N; =3
and K = k(y) where

(3.15) V4T3 4272 +1=0.

o Let ¢ = 5. Since |Sx(K)| = 1, one of the finite places of k of degree one
splits and others are inert in K/k. Let Xg, = (x) where |Xf,| = 5% — 1.
Xk = (x*) for some integer a and |Xg| = [K : k] which is equal to 2. That
is, order of x? is 2. So we may assume Xx = (x°2). Up to isomorphism,
(I -+ T+ a, a € FY) we have 8 possibilities for P. These are T% + T + 1,
T34+T+4,T>+30+2, T3 +3T+3, T3+2T + 1, T3+ 2T + 4, T> + 4T + 2
and T2 4+ 4T + 3. Among them, we have solutions for P = T3 + 4T + 2 and
P =T3+4T +3.

Let P=T3+4T+2. x°3(T) = x**(T +1) = x**(T+3) = x*3(T +4) = -1
and x%2(T 4 2) = 1. That is, N; = 3 and K = k(y) where

(3.16) Y+ T3 4+4T+2=0.

Let P =T°+4T +3. x**(T) = (T +1) = x"*(T +2) = x**(T +4) = -1
and x%(T 4 3) = 1. That is, N; = 3 and K = k(y) where

(3.17) y? + T3+ 4T +3=0.

e Let ¢ = 7. Since |Sx(K)| = 1, one of the finite places of k of degree one
splits and others are inert in K/k. Let Xk, = (x) where |Xg,| = 73 — 1.
Xk = (x*) for some a € Z and |Xg| = [K : k] which is equal to 2. That
is, order of x* is 2. Then we may assume X = (x'!7'). Up to isomorphism
(T = T + a, a € F}) we have 16 possibilities for P. Among them, the result
follows for only 72 + 3. That is, let P = T3 + 3, then (F;[T]/P)* = (T + 1)
and we have '™ (T 4+ 1) = X! (T +2) = X' (T +3) = X} (T +4) =
XTUT +5) = X' (T + 6) = —1 and x'™H(T) = x(T'™) = x(1) = 1, that is
Ny =3 and K = k(y) where

(3.18) P+ T3 +3=0. 0

Proposition 3.6. Let K/k be an imaginary (not totally imaginary) extension
of genus 1 with class number 3. Then K satisfies one of the following cases:

() g=4 or 7, K = k(Y/—P;, /—P,), deg P; = 1,

(11) q = 7, K = k(\/ 7P1\6/ 7P2), deng = ].,

(ii) ¢ = 4, K = k(¥/=P,u) where k(u) is a quadratic subfield of K},
deg P = 1.

Proof. We have K # KT # k and |Se(K)| > 2. By [6, Theorem 4.4 and
Theorem 4.6], proof is clear. ([

Theorem 3.7. Let K/k be an imaginary (not totally imaginary) extension of
genus one with class number three. Then, up to isomorphism, (x — x + a,
a € F;) K is one of the following function fields:



568 M. BILHAN, D. BUYRUK, AND F. OZBUDAK

(1) g=4, K =k(v/-T, ¥/—(T + w)) where (w) =TF},

(2) q=7, K = k(V-T,/—(T +3)),

B)a=7 K=k(V-T,{=(T+4),

(4) ¢q=17, K =k(/—(T +2)vV-T),

(5)g=7 K=k(/—(T+5)v-T),

(6) =4, K = k(v/=T,u) where u* + u+w/T =0 for (w) =F}

Proof. K satisfies one of the conditions of Proposition 3.6:

(i) Let ¢ =4 or 7 and K = k(3/—P1, /—P») where deg P; = 1.

e Let ¢ =4. Assume P, = (T) and P, = (T + a) for some a € Fj. Since
|Soo (K)| = 3 = Ny, inertia degree f(P, K/k) of a finite place P of k of degree
one is greater than 1. Let X, = (xi), then o(x;) = 3 and Xx = (x1,X2)-
Define x; such that yx;(w) = exp(2wi/3) for i = 1,2 and (w) = F;. For a =1,
x1(T+1) =1, then f((T+1),K/k) =1and e((T'+1), K/k) = 3. Hence hx =
Ny > 6. For a = w, x2(T+1) = exp(47i/3) # 1, x1(T+w?) = exp(4mi/3) # 1,
X1(T + w) = exp(2mi/3) # 1, x2(T) = exp(2mi/3) # 1. Hence N; = 3 and

(3.19) K = k(V/~=T,{/—(T + w)) where (w) = F}.

o Let ¢ = 7. Assume P, = (T) and P, = (T + a) for some a € F%. Let
Xkp, denote the character group of Kp, for i = 1,2. Let Xk, = (x;), then
o(xi) =6 and X = (x3,x3). Since (F7(T)/P;)* = F%, we define y; such that
Xi(3) = exp(27i/6) for i = 1,2. As |So(K)| = 3 = Ny, none of the places of
K of degree one splits. For a = 3 and 4, result follows.

Let a = 3. Xx3(T + 1) = exp(10mi/3) # 1, X3 (T + 2) = exp(87i/6) # 1,
X3T + 3) = exp(4mi/6) # 1, X3(T +4) = exp(8mi/3) # 1, x3(T +5) =
exp(4mi/3) # 1, X3(T + 6) = exp(47i/6) # 1. Hence Ny = 3 and

(3.20) K = k(¥/=T,3/—(T +3)).

Let a = 4. x3(T + 1) = exp(87i/3) # 1, X3(T + 2) = exp(8mi/6) # 1,
Xi(T +3) = exp(dmi/6) # 1, X}(T +4) = exp(87i/3) # 1, xI(T +5) =
exp(107i/3) # 1, x3(T + 6) = exp(4mi/3) # 1. That is, N; = 3 and

(3.21) K =k(V-T,3/—(T +4)).

(i) g=7, K =k(yV—P1y/—P), deg P, = 1.

Assume P, = (T+a) and P, = (T) for some a € F%. By the proof of Theorem
4.4 of [6], |Seo(K)| = 2. Since P is totally ramified, f((T +b), K/k) # 1 for
all b € F7. Let Xk, denote the character group of Kp, for i = 1,2. Let
Xkp, = (xi), then o(x;) = 6 and X = (x3x2). Since (F7(T)/P;)* = F3, we
define y; such that x;(3) = exp(27i/6) for i = 1,2. We have solutions for a = 2
and a = 5.

Let a = 2. x3x2(T + 1) = =1, \3x2(T + 3) = exp(ni/3), x3x2(T + 4) =
exp(4mi/3), xix2(T +5) = (=1) exp(5mi/3), xix2(T +6) = (=1), and x2(T +
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2) = exp(2mi/3). Hence N; = 3 and

(3.22) K = k(/—(T +2)v/-T1).

Let a = 5. x9x2(T + 1) = —1, xix2(T +2) = exp(27i/3), xix2(T + 3) =
(—1) exp(mi/3), xix2(T +4) = (—1)exp(dmi/3), xix2(T + 6) = (—1), and
X2(T + 5) = exp(57i/3). Hence none of them splits and

(3.23) K = k(\/—(T +5)V-T).

(iii) ¢ = 4, K = k(¥/— P, u) where k(u) is a quadratic subfield of K},.

K is contained in KPK;. Up to isomorphism, assume P = (T). Then P is
totally ramified and Ny > 3. The character group Xg , ~ (A/T?)* = (T4w) x
(T'41) is isomorphic to Zg X Zs. Let X denote the character group of K. It is
a subgroup of (x1) X (x2) x (x3) where (x1) = Xp is of order 3 and (x2) x (x3) is
the character group associated to K pz where (x2) ~ (T'+w) and (x3) ~ (T'+1).
Then X = (x1(x3)*(x3)?) is of order six where 0 < a,b < 1. Since (T + 1) is
inert in the extension K /k, x1(x3)%(x3)?(T+1) = —1, then b = 1. (T +w) and
(T +w?) are also inert, but x1(x3)*(x3)(T+w) = exp(27i/3) exp(3a(2mi/6)1 #
Land x1(x3)*(x3)(T +w?) = exp(227i/3) exp(15a(27i/6)(—1) # 1 for 0 < a <
1. We have gx+ = 0 by [6, Lemma 4.1], then K = k(u) is a function field
with class number one where P, splits and (T) is ramified. Then

(3.24) K = k(V/=T,u) where u* + u 4+ w/T = 0. O

4. Genus two

In this section, we determine the subfields K of the cyclotomic function fields
with class number three when gx = 2. By Theorem 2.4, we have ¢ = 2 or 3.

4.1. g =2

Theorem 4.1. Let ¢ = 2 and K be an extension of k of genus 2 with class
number 3. Then, up to isomorphism, K = k(y) where y*> +y =1/(T3+T +1)
and L(t) = 4t* — 283 + 2 —t + 1.

Proof. For ¢ = 2, K is a real extension of k and N; = 2 = Ny by Theorem
2.4. That implies [K : k] = 2 = |So(K)|. Thus extension is quadratic and
any finite place of k of degree one is inert in K/k. Since No = 2 and (7))
and (T + 1) are inert, (T2 + T + 1) is also inert. Then P does not divide
N := cond(K), when deg P < 2. Assume N = [[/_, P, then deg P, > 3.
By Hurwitz’s Genus Formula for K/k, deg(D(K/k)) = 6. Since P; are wildly
ramified, 6 > 2(3°)_, deg P;). Equality holds if and only if m; = 2 for all .
Hence N = P? where deg P = 3.

Up to isomorphism T — T + 1, we assume P = T2 + T + 1. Using [9,
Proposition 2.8 and Proposition 2.9], K = k(y), where y? + (T3 + T + 1)y =
(T3 +T + 1)g(T) where 0 # g(T) € F5[T] is of degree less than 4 and g(0) =
g(1) = 1. Also let @ be a root of T2 + T + 1. Since (T? + T + 1) is inert,
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by [9, Lemma 2.8], g(a)/a? + g(a?)/a = 1. That implies g(T) = 1. Hence
K = k(y) where y?> +y = 1/(T% + T + 1). O

4.2. ¢g=3

Theorem 4.2. Let g =3 and K be a real extension of k of genus 2 with class
number three. Then, up to isomorphism, K = k(y) where y*> = T® + T* +
T3 4+T?2 42T 4+2 ory? =T6 +T*+ 273 + T2 + T + 2 and for each case
L(t) = 9t* — 6t3 + 2 — 2t + 1.

Proof. Let K/k be a real extension, then [K : K| = [K : k] divides ¢ — 1 = 2.
Hence, [K : k| is quadratic and [Soo(K)| = 2. Thus we are in the case Ny =
2, Ny = 3 by Theorem 2.4. Since all finite places of k of degree one are inert,
all finite places of k of degree two are also inert. That is, any place P of k of
degree less than or equal to two does not divide the conductor N of K. Since
the extension degree is prime to q, we may assume N = [[/_, P; where P; € Py.
By Hurwitz’s Genus formula for K/k, >_._, deg P, = 6 where deg P; > 3. Thus
N = P, P, where deg P, = 3 or N = P where deg P = 6. Then by Lemma
2.5, K = k(vVPiP) C k(y=Pi,v/—P;) or K = k(v/P). By [9, Theorem 2.5
and Lemma 2.6], y?> = N such that N is not a square modulo @ for a place
Q of k of degree one or two. Considering each case, the result follows for only
N=TC+T*+T3+T?+2T+2and N =T +T*+ 273+ T? + T +2. O

Theorem 4.3. Let ¢ = 3 and K be an imaginary extension of k of genus two
with class number three. Then, up to isomorphism, K = k(y) where y? +T° +
T3 +T+1=0 and L(t) = 9t* — 9t3 + 52 — 3t + 1.

Proof. Let K/k be an imaginary extension, then 2 < [K : K] divides ¢—1 = 2.
That is, [K : K*] = 2. Then by Theorem 2.4, we have

(1) lel, N2:501’

(i) Ny =2, N, = 3

(i) Let Ny =1 and Ny = 5. Then |Soo(K)| =1 and K™ = k. That is K/k
is quadratic, P, is ramified and all finite places of k£ of degree one are inert in
the extension. Then we have two possibilities: either two of the places of k of
degree two are ramified and the third one is inert or one of them splits and the
others are inert. Extension degree is prime to q and we assume N = [[/_, P;
where P; € Pj,. By Hurwitz’s Genus formula for K/k, >, deg P; = 5 where
deg P; > 2. Thus N = P where deg P = 5. By Lemma 2.5, K = k(+/—P) and
by [9, Theorem 2.5 and Lemma 2.6], y*> = P such that P is a square modulo Q’
for only one of the places Q' of k of degree two and it is not a square modulo
Q" where Q" is a place of k of degree two different from @Q’. There exist three
distinct place in Pg, ;) of degree two. Up to isomorphism (T" — T'+a, a € F3),
we may assume Q' = T2 +T +2. Then we have P = T° + T34+ T + 1. That is,

(4.1) K =k(y) where y* + T°> + 1% + T+ 1 = 0.
(ii) Let Ny =2 and N3 = 3. Then |So(K)| =1 or 2.
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o Assume |So(K)| = 1. Then K/k is quadratic, P, and one of the finite
places P of k of degree one are ramified and the other places of k of degree
one are inert in the extension. Up to isomorphism, let P = (T"). Then one of
the places @ of k of degree two is ramified and the others are inert. Assume
N = P-QII[;_, Pi where P; € P, of degree greater than two. By Hurwitz’s
Genus formula for K/k, deg P + deg@ + >_._, deg P, = 5 where deg P; > 3.
That is, Y., deg P, = 2 and deg P; > 3, which is not possible.

o Assume |Soo(K)| = 2, then K/k is quartic. It is a well-known fact that
g+ < gi. For g+ = 2, by Hurwitz’s Genus formula, degree of the different
of K/K¥ is —2. Since this is not reasonable, g+ = 0 or 1.

Let gg+ = 0, that is hg+ = 1. Then by [7, Proposition 4.1, K™ C K}, with
degP=2o0r KT C K;FIPZ with deg P; = 1.

Assume the first case holds.

If P is ramified in K/K™*, by Hurwitz’s Genus formula for K/K™,

2=—4+2-degPs +degP+2) degQ;,
i=1
where P # Q; are places of k which are also ramified in K/K™. Then N = PQ
where deg @ = 1. If Q splits in KT /k, then N7 > 4, which is a contradiction.
Let @ be inert in Kt /k. Since it is ramified in K/K™ then there exists v € Pg
lying over @ such that deg~y = 2. Since Ny = 3 and ~ and the place lying over
P are of degree two, there exists a place Q' of k, different from P and @Q, with
deg Q" < 2, which is ramified in K/k. That means @’ divides N, which is a
contradiction.
If P is not ramified in /K™, by Hurwitz’s Genus formula for K/K™,

2=—-4+42-deg P —&-QZdegQi,
i=1
where P # Q; are places of k which are ramified in K/K*. Then N = PQ
where deg@ = 2 or N = PQ1Q2 where deg@; = 1. Since N; = 2, Ny = 3,
using an argument similar to above, there exists another ramified place Q' of
k with deg Q' < 2. Then Q' divides IV, which is not possible.
Assume K+ C K;IPQ with deg P, = 1. Since Ny = |Soo(K)|, P; are inert in
K/K*. By Hurwitz’s Genus formula for K/K™*,

2=—-442-deg Py +2ZdegQi,
i=1

where P; # @, are places of k which are ramified in K/K*. We have N =
P1P2Q with degQ =2or N = P1P2Q1Q2 with deng =1. N = P1P2Q1Q2
with deg @; = 1 implies Ny > 4 or Ny > 4, which is a contradiction. N =
P P,Q with deg@Q = 2 implies Ny > 4 or there exists another ramified place
of degree less than or equal to two. Since both of them are not reasonable, we
skip this case. Hence gg+ # 0.
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Let g+ = 1. It is known that hg+ | hx = 3, then hg+ = 1 or 3. Since
[KT : k] =2 and ¢ = 3, by [6, Theorem 3.4], K+ = k(/P, P,) with deg P, =1
and degP» = 3. Then hx+ = 3 and hyy = 1. By [7, Theorem 3.9], K =
k(v/=Pi,v/—P,) and P, = T3 + 2T + 1. In this case, hx = 5 and we arrive a
contradiction. O

5. Imaginary extensions with relative class number three

Let K/k be an imaginary extension with relative class number hy = 3. If
hx = 3, then hi+ = 1 and K is one of the function fields given in Theorems 3.5,
3.7 and 4.3. In the following theorem, we list all imaginary abelian extensions
with hxg = 3hg+ > 3.

Theorem 5.1. Let K be an imaginary function field with relative class number
three such that hx > 3. Then, up to isomorphism, K satisfies one of the
following conditions:
(1) ¢=3, K =k(vV/—P,/—(T?+2T2 + 1)) and
K+ =Fk(\/P(T? +2T? + 1)) where deg P = 1.
(2) ¢=3, K=k(vV/-P,/—(T°+T3*+T +1)) and
K* =k(\/P(T> +T3+T +1)) where deg P = 1.
(3) ¢ =3, K = k(v/—P1,vV/—P2) with hiy = 63 and K+ = k(v/P, Py) with
hp+ =21 where P, =T34+ 2T +1 and P, = T3 + 272 + 1.
(4) ¢=3, K = k(v/—P1,V/—P2) with hx = 399 and K+ = k(/P, Py) with
h+ =133 where P, =T3+2T+1 and P, =T° + T3 +T + 1.
(5) ¢q=5, K = k(v—=P,\/—(T3 + 4T + 2)) and
K+ =k(\/P(T? + 4T + 2)) where deg P = 1.
6) q=5, K =k(vV/—P,\/—(T3+4T +3)) and
Kt =k(\/P(T? +4T + 3)) where deg P = 1.
(7) ¢ =17, K = k(vV—P,\/—(T3+3)) and KT = k(\/P(T3 + 3)) where
deg P =1.

Proof. Let hg = 3hg+ > 3, then KT # k and K/k is not totally imaginary.
By [12, Equation (2.a)]

55
where ¢ denotes the order of the Galois group | Gal(K/K™) | of K over K.
Let Ok and O+ denote the integral closure of A in K and K and let O} and
Oj¢+ be the unit groups of O and O+ respectively. Then Q = [OF : O]
is the unit index and we know that @ divides dx. Also s = [KT : k] — 1 and

h~(Ok) is the relative ideal class number of K. Since (%) and h~(Og) are
positive integers and hj = 3, we have two possibilities:

In the first one, (%() =1and h~(Og) = 3, so 6% = Q. Since Q is a divisor
of 0k, we have s = 0 or s = 1. Assume s = 0. Then Q = 1. So K+ = k and
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hy+ = 1, which is a contradiction. So, s =1 and dx = Q. So K /k is a real
quadratic extension.
In the second one, (%() =3 and h (Og) = 1. Then s =1 or s = 2. If
s =1, 0 = 3Q and K /k is real quadratic. If s =2, 6 =3 =Q and Kt /k
is a real cubic extension.
Hence when hj = 3hg+ > 1, we have the following cases:
(1) [K: KT] =[0% : O5.] and KT /k is a real quadratic extension.
(2) [K: KT] =3[0 : O%.] and K /k is a real quadratic extension.
(3) [K: K] =3=[0f : 03] and K /k is a real cubic extension.
Since hg, hg+ > 1, we have gx, g+ > 1 and by [2, Propotion 2.4]

(5.1) h[} > (\/a _ 1)2(5K—1)(9K+—1)+deg(D(K/K+))_

Since infinite places are tamely ramified in K /K™, we have
2(0x — 1)(gr+ — 1) + deg(D(K/K ™)) > deg(Infinite part of D(K/K™))
(5.2) =Kt : k(6 — 1).

(1) Let [K : K*] = [O3% : O3] and K /k be a real quadratic extension.
Since extension is imaginary, i > 2 and ¢ # 2. By inequalities (5.1) and (5.2),
we have 3 > (/g —1)? and hence 3 < ¢ < 7.

(i) Let ¢ = 3. Then Q = dx = 2. Let N := [[}_, P be the conductor of
K and define N := []°_, P,. Since Q = 2, we have s > 2 by [13, Section 4].
Since [K : k] = 4, Gal(K/k) is isomorphic to Z4 or Zg X Zg. Assume the first
one and assume X = () is Dirichlet characters group of K. By the analytic
class number formula,

(5-3) hi = (Bacny x(4))(Baeny x°(4)).

Since |My| is even and o(x) = 4, hj is divisible by 2 which is a contradiction.
Hence, Gal(K/k) ~ Zs x Zs. Let U,V and KT be three quadratic subfields
of K associated to the three subgroups of Gal(K/k). By [16, Main Theorem)],
hx = hyhyhg+. Since hg = 3hg+, we may assume hy = 1 and hy = 3.
By [7, Theorem 3.6 and Theorem 3.8], U is either k(y/—P) where deg P =
1 or k(/—(T3+2T +1)). By Theorem 3.5 and Theorem 4.3, V is either
k(\/—(T3 +2T2 +1)) or k(VT5+T3+T +2). Then K satisfies one of the
following conditions:

(a) K = k(vV=P,/—(T3+2T2 +1)) and KT = k(\/P(T?+2T2 + 1))
where deg P = 1. In this case, hy; = 3.
(b) K =k(vV=P,\/—(T5+T3+T +1)) and
K* =Fk(\/P(T>+T3+T +1)) where deg P = 1.
In this case, hj = 3.
(¢) K=Fk(\/—(T3+2T +1),/—(T3 + 272 + 1)) and hx = 63,
K+ =k(/(T? +2T +1)(T3 +2T% + 1)) and hy+ = 21.
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(d) K=k(\/—(T3+2T +1),\/—(T5 + T3 +T + 1)) and hx = 399,
Kt =k(\/(T?+2T +1)(T> + T3+ T + 1)) and hg+ = 133.

(ii) Let ¢ = 4. Then Q = 0k = 3. Let N :=[[’_; P/ be the conductor of K
and define N’ := [[;_, P;. Since Q = 3, we have s > 2. Since [K : k| =6, N is
not a square-free polynomial, then [K : K N Ky/] > 1. Since [K : KN Kn/] =
[KKn: : Ky is a divisor of [Ky : Kn/] = 2! for some integer I, we have
[K : KN Ky =2and [KN Ky : k] =3. By [10, Theorem 3.1], any finite
places of KT are unramified in K, so any finite places of k is unramified in
KN Kpys. Hence, K N Ky = k and we arrive a contradiction. So there exists
no solution for this case.

(iii) Let ¢ = 5. Then Q = éx = 2 or 4.

e Let 65 = 4. Then by inequalities (5.1) and (5.2), we have 3 > (v/5—1)6 ~
3.56 which is a contradiction.

o Let Q@ =6k =2 and let N :=[]_, P{" be the conductor of K and define
N :=[[;_, P.. Since @ = 2, we have s > 2. Since [K : k] = 4, Gal(K/k) is
isomorphic to Z4 or Zs X Zo. Assume the first one and assume Xx = () is
Dirichlet characters group of K. By the analytic class number formula,

(5-4) hi = (Baear, X(A)(Eaeary x*(4)).

Since |My| is even and o(x) = 4, hj is divisible by 2 which is a contradiction.
Hence, Gal(K/k) ~ Zs x Zs. Let U,V and KT be three quadratic subfields
of K associated to the three subgroups of Gal(K/k). By [16, Main Theorem],
hx = huyhvhg+. Since hg = 3hg+, we may assume hy = 1 and hy = 3.
By [7, Theorem 3.6], U is k(v/—P) where deg P = 1. By Theorem 3.5, V is
either k(y/—(T% +4T +2)) or k(y/—(T% 4+ 4T + 3)). Then K satisfies one of
the following conditions:

(a) K = k(v/—P,\/—(T3 + 4T + 2)) and K+ = k(,/P(T3 + 4T + 2)) where
deg P = 1. In this case, h = 3.

(b) K = k(v/=P,\/—(T?+ 4T + 3)) and K+ = k(\/P(T3 + 4T + 3)) where
deg P = 1. In this case, h = 3.

(iv) Let ¢ = 7. Then Q = 0 = 2,3 or 6.

e Let g = 3 or 6. Then by inequalities (5.1) and (5.2), we have 3 >
(V7 —1)*  7.33 which is a contradiction.

o Let Q =0k =2 and let N :=[[_; P7" be the conductor of K and define
N :=T[;_, P;. Since Q = 2, we have s > 2. Since [K : k] = 4, Gal(K/k) is
isomorphic to Zy or Zs X Zy. Assume the first one and assume X = (x) is
Dirichlet characters group of K. By the analytic class number formula,

(5.5) hi = (Saenry X(A))(Bacay X*(4)).

Since |My| is even and o() = 4, hy is divisible by 2 which is a contradiction.
Hence, Gal(K/k) ~ Zs x Zs. Let U,V and KT be three quadratic subfields
of K associated to the three subgroups of Gal(K/k). By [16, Main Theorem],
hx = hyhyhg+. Since hg = 3hg+, we may assume hy = 1 and hy = 3.
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By [7, Theorem 3.6], U is k(v/—P) where deg P = 1. By Theorem 3.5, V is
k(\/—(T3+3)). K =k(vV/—P,\/—(T3+3)) and K+ = k(/P(T3 + 3)) where
deg P = 1. In this case, hy = 3.

(2) Let [K : K] =3[0} : O}] and KT /k be a real quadratic extension.
Since 0k = 3Q > 3, by inequalities (5.1) and (5.2), we have 3 > (,/g — 1)* and
hence 3 < ¢ < 5.

(i) Let ¢ = 3. Then dx = 2, but dx = 3Q is divisible by 3, so we arrive a
contradiction.

(ii) Let ¢ = 4. Then §x = 3and @ = 1. Let N := [[;_, P{ be the conductor
of K and define N’ := [[;_, P,. Since [K : k] = 6, N is not a square-free
polynomial, then [K : KN Ky/] > 1. Since [K : KN Ky/] = [KKy: : Kn/] is
a divisor of [Ky : Kn/] = 2! for some integer I, we have [K : K N Ky/] = 2
and [K N Ky : k] = 3. If all finite places of Kt are unramified in K, then
all finite places of k are unramified in K N Ky+. Hence, K N K/ = k which
is a contradiction. Thus, there exists a place P of K+ which is ramified in K.
Then deg(D(K/K*)) > 4 + 2deg(P) > 6.

By Hurwitz Genus formula,

(5.6) 29k — 2= 295+ — 2)[K : KT] + deg(D(K/K™))
> 3(2gx+ — 2) +6
> 69K+

Then gx = 3gx+ + y where y is a positive integer. By [13, Inequality (3e)],

439x++y=1 9 1
(5.7) Iy > -
39+ +y+153%9x+
49x+1TY=1 9 429k+
> —
= 3gx+ +y+153%9k+
9.4 4
3)

> 2-
- 5
> 10,
when gg+ > 2. Since hg = 3hg+ > 3, g+ > 1. Hence, g+ = 1.
We have hy+ = N1 (KT) > |Se(K™)| = 2. By [13, Inequality (3b)],

(5.8) hg+ < 32

Thus 2 < hg+ < 9.

Then by [6, Theorem 3.3], K™ satisfies one of the following conditions:

(al) K* is a quadratic extension of k with N = P* and deg(P) = 1.

(bl) Kt is a quadratic extension of k with N = P? and deg(P) = 2.

(cl) KT is a quadratic extension of k with N = P2PZ and deg(P;) = 1,
i=1,2.

Assume X = (x1) X (x2) is Dirichlet characters group of K where o(x1) = 3
and o(x2) = 2. Let E be the subfield of K associated to the subgroup (x1).



576 M. BILHAN, D. BUYRUK, AND F. OZBUDAK

By analytic class number formula,

(5.9) hi = hg = (Sacmyx1(A)(Zacmy xi(4))

and

(5.10) hi = (Saemy x1(A4) (Baemy x1(4)) (Eaery x1(A)xz(a))

(SacmnxT(A)xz2(a)).
Let S:={A € My : x2(A) = —1} be a subset of My. Then

(5.11) b = ((Bacmn\sx1(A)) + (Zaesxi(4)))
((EAeMN\SM(A)) + (Zaesxi(A)))
(Baemp\sxi(A)) — (Baesxa(4)))
(Baema\sXi(A4) = (Saesxi(A4))).

Since x?(A) = x1(A) is the complex conjugate of y1(A) for all A € My and
order of x1 = 3, (Saemy\sx1(4)) = (z++3yi)/2 and Sacsx1(A)(z+V/3ti) /2
for z,y,2z,t € Z. Thus, hg = ((z+2)* +3(y +t)?)/4 is a positive integer, then
a = ((x —2)? +3(y — t)?)/4 is also a positive integer and hy; = hga implies
hg =1 or 3. By Theorem 3. 5 and by [7, Theorem 3.6 and Theorem 3.8].

(a2) E = k(y) such that y* = T(T + w) where w is a generator of F; or

(b2) E is a subfield of Kp with deg(P) =1 or

(c2) E = k(v/T?2 4+ T + w) where w is a generator of F}.

K = EK™, however, we have no solution for these possible values of E and
K.

(iii) Let ¢ = 5. Then 0x = 2 or 4, which contradicts that dx = 3Q is
divisible by 3.

(3) Let [K : KT] =3 =[Ok : O}+] and K /k is a real cubic extension.
Since §x = 3, by inequalities (5.1) and (5.2), we have 3 > (/g —1)® and hence
3<qg<4

(i) Let ¢ = 3. Then éx = 2, which contradicts that dx = 3.

(ii) Let ¢ = 4. Then Q = 6 = 3. Then any finite places of KT are
unramified in K. Let N :=[];_; P{ be the conductor of K and e(P;, K/k) =
e(P;, K*/k) = 3. Thus the conductor of K+ is N and deg(D(K/K™)) = 6.
Since @ # 1, we have s > 2.

By Hurwitz Genus formula,

(5.12) 295 — 2= 295+ — 2)[K : K1] + deg(D(K/K™))
=3(29x+ —2)+6
= 6gr+.

Then gx = 3gx+ + 1. By [13, Inequality (3e)],

P9+ 9 1
5.13 hpe > =
(5.13) K= 3gx+ +25 3%+
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N 49+ 9 429k+

= 39+ + 25 3%x+
9 4.,

3)

> 2-
- 5
> 10,
when g+ > 2. Since hg = 3hg+ > 1, g+ > 1. Hence, g+ = 1.
We have hg+ = Ni (K1) >| Soo (K1) |= 3. By [13, Inequality (3b)],

(5.14) hy+ < 32.

Thus 3 < hg+ < 9.

We know the conductor of Kt is N and s > 2. Then by [6, Theorem 3.4],
K satisfies one of the following conditions:

(a) K+ = k({/—P2P%) with deg(Py) = 1 and deg(P,) = 2, where N = P, P,.
In this case, Gal(Kn/k) =~ Z3 x Z3 X Z5. Hence, Gal(K/k) ~ Z3 X Zs.

(b) Kt = k(5/P, P2 Ps) with deg(P;) =1 for i = 1,2,3 where N = P, P, Ps.
In this case, Gal(Kn/k) ~ Z3 x Zs X Zs. Hence, Gal(K/k) ~ Z3 X Zs.

Hence, Gal(K/k) ~ Z3 X Z3. Let Uy,Us,Us and KT be four cubic subfields
of K associated to the four subgroups of Gal(K/k) of order 3. By [16, Main
Theorem], hK = hU1 hU2 hUg hK+. Since hU1 hU2 hU3 = 3, we may assume hU2 =
1 = hy, and hy, = 3. By Theorem 3.5, U; = k(y) such that y3 = T(T + w)
where (w) = F} is the cubic function field with class number three. We have
K = U KT, but there exists no function field K with relative class number
three satisfying these conditions. (I
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