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LEHMER’S GENERALIZED EULER NUMBERS IN

HYPERGEOMETRIC FUNCTIONS

Rupam Barman and Takao Komatsu

Abstract. In 1935, D. H. Lehmer introduced and investigated general-

ized Euler numbers Wn, defined by

3

et + eωt + eω2t
=

∞∑
n=0

Wn
tn

n!
,

where ω is a complex root of x2+x+1 = 0. In 1875, Glaisher gave several
interesting determinant expressions of numbers, including Bernoulli and

Euler numbers. These concepts can be generalized to the hypergeometric

Bernoulli and Euler numbers by several authors, including Ohno and the
second author. In this paper, we study more general numbers in terms

of determinants, which involve Bernoulli, Euler and Lehmer’s generalized

Euler numbers. The motivations and backgrounds of the definition are
in an operator related to Graph theory. We also give several expressions

and identities by Trudi’s and inversion formulae.

1. Introduction

In 1935, D. H. Lehmer [17] introduced and investigated generalized Euler
numbers Wn, defined by the generating function

(1)
3

et + eωt + eω2t
=

∞∑
n=0

Wn
tn

n!
,

where ω = −1+
√
−3

2 and ω2 = ω̄ = −1−
√
−3

2 are the primitive cube roots of
unity. Notice that Wn = 0 unless n ≡ 0 (mod 3). The sequence of these
numbers is given by

{W3n}n≥0 = 1,−1, 19,−1513, 315523,−136085041, 105261234643,

− 132705221399353, 254604707462013571, . . .

and the sequence of these absolute values is recorded in [19, A002115]. In [14],

the complementary numbers W
(j)
n (j = 0, 1, 2) to Lehmer’s Euler numbers are
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defined by the generating function

(2)

∞∑
n=0

W (j)
n

tn

n!
=

(
1 +

∞∑
l=1

t3l

(3l + j)!

)−1
.

Notice that W
(j)
n = 0 unless n ≡ 0 (mod 3). When j = 0, Wn = W

(0)
n are the

original Lehmer’s Euler numbers. When j = 1, we also have

(3)

∞∑
n=0

W (1)
n

tn

n!
=

3t

et + ω2eωt + ωeω2t
.

Lehmer’s Euler numbers and their complementary numbers W
(j)
n can be con-

sidered analogous of the classical Euler numbers En and their complementary

Euler numbers Ên ([11,16]). For, their generating functions are given by

(4)

∞∑
n=0

En
tn

n!
=

1

cosh t
=

2

et + e−t
=

( ∞∑
l=0

t2l

(2l)!

)−1
and

(5)

∞∑
n=0

Ên
tn

n!
=

t

sinh t
=

2t

et − e−t
=

( ∞∑
l=0

t2l

(2l + 1)!

)−1
,

respectively. For N ≥ 0 hypergeometric Euler numbers EN,n ([11, 16]) are
defined by

1

1F2(1;N + 1, (2N + 1)/2; t2/4)
=

t2N/(2N)!

cosh t−
∑N−1
n=0 t

2n/(2n)!

:=

∞∑
n=0

EN,n
tn

n!
,

where 1F2(a; b, c; z) is the hypergeometric function defined by

1F2(a; b, c; z) =

∞∑
n=0

(a)(n)

(b)(n)(c)(n)
zn

n!
.

Here (x)(n) denotes the rising factorial, defined by (x)(n) = x(x+1) · · · (x+n−1)
(n ≥ 1) with (x)(0) = 1. When N = 0, En = E0,n are the original Euler

numbers. Similarly, hypergeometric Euler numbers of the second kind ÊN,n
([11,16]) are defined by

1

1F2(1;N + 1, (2N + 3)/2; t2/4)
=

t2N+1/(2N + 1)!

sinh t−
∑N−1
n=0 t

2n+1/(2n+ 1)!

:=

∞∑
n=0

ÊN,n
tn

n!
.
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When N = 0, Ên = Ê0,n are the original complementary Euler numbers.
There are many kinds of generalizations of Euler numbers, but hypergeometric
Euler numbers have advantages as natural extensions in terms of determinant
expressions ([11,16]). For N ≥ 0 and n ≥ 1, we have

(6) EN,2n = (−1)n(2n)!

∣∣∣∣∣∣∣∣∣∣∣∣∣

(2N)!
(2N+2)! 1
(2N)!

(2N+4)!
(2N)!

(2N+2)!

...
...

. . . 1
(2N)!

(2N+2n−2)!
(2N)!

(2N+2n−4)! · · · (2N)!
(2N+2)! 1

(2N)!
(2N+2n)!

(2N)!
(2N+2n−2)! · · · (2N)!

(2N+4)!
(2N)!

(2N+2)!

∣∣∣∣∣∣∣∣∣∣∣∣∣
and

(7) ÊN,2n = (−1)n(2n)!

∣∣∣∣∣∣∣∣∣∣∣∣∣

(2N+1)!
(2N+3)! 1
(2N+1)!
(2N+5)!

(2N+1)!
(2N+3)!

...
...

. . . 1
(2N+1)!

(2N+2n−1)!
(2N+1)!

(2N+2n−3)! · · · (2N+1)!
(2N+3)! 1

(2N+1)!
(2N+2n+1)!

(2N+1)!
(2N+2n−1)! · · · (2N+1)!

(2N+5)!
(2N+1)!
(2N+3)!

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

When N = 0 in (6), we have a famous determinant expression of Euler numbers
discovered by Glaisher in 1875 ([3, p. 52]).

Similar hypergeometric numbers are hypergeometric Bernoulli numbers BN,n
([4–9]), defined by

(8)
1

1F1(1;N + 1; t)
=

tN/N !

et −
∑N−1
n=0 t

n/n!
=

∞∑
n=0

BN,n
tn

n!
,

where 1F1(a; b; z) is the confluent hypergeometric function defined by

1F1(a; b; z) =

∞∑
n=0

(a)(n)

(b)(n)
zn

n!
.

The determinant expression of hypergeometric Bernoulli numbers are given by

(9) BN,n = (−1)nn!

∣∣∣∣∣∣∣∣∣∣∣∣

N !
(N+1)! 1
N !

(N+2)!
N !

(N+1)!

...
...

. . . 1
N !

(N+n−1)!
N !

(N+n−2)! · · · N !
(N+1)! 1

N !
(N+n)!

N !
(N+n−1)! · · · N !

(N+2)!
N !

(N+1)!

∣∣∣∣∣∣∣∣∣∣∣∣
.

When N = 1, Bn = B1,n are the classical Bernoulli numbers defined by

(10)
t

et − 1
=

∞∑
n=0

Bn
tn

n!
.
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The determinant expression for the classical Bernoulli numbers was discovered
by Glaisher ([3, p. 53]).

In this paper, we introduce and study the hypergeometric Euler numbers of
higher grade are introduced as total generalizations of hypergeometric Euler
numbers, hypergeometric Euler numbers of the second kind, hypergeometric
Bernoulli numbers as well as Lehmer’s generalized Euler numbers.

2. Hypergeometric Lehmer-Euler numbers of higher grade

For N,n ≥ 0, define hypergeometric Lehmer-Euler numbers W
(j)
N,n,r (j = 0, 1)

of grade r by

∞∑
n=0

W
(j)
N,n,r

tn

n!
(11)

=

(
1Fr

(
1;
rN + j + 1

r
,
rN + j + 2

r
, · · · , rN + j + r

r
;

(
t

r

)r))−1
,

where 1Fr(a; b1, . . . , br; z) is the hypergeometric function, defined by

1Fr(a; b1, . . . , , br; z) =

∞∑
n=0

(a)(n)

(b1)(n) · · · (br)(n)
zn

n!
.

From the definition, W
(j)
N,n,r ≡ 0 (mod r) unless n ≡ 0 (mod r). When

N = 0 and r = 3 in (11), W
(j)
n = W

(j)
0,n,3 are the Lehmer’s generalized Euler

numbers (j = 0) in (1) and their complementary numbers (j = 1) in (3). These
numbers where r = 3 have been extensively studied by Ohno and the second
author ([14]), including congruence properties. When N = 0 and r = 2 in

(11), En = W
(j)
0,n,2 are the classical Euler numbers (j = 0) in (4) and their

complementary numbers (j = 1) in (5). When r = 1 and j = 0 in (11),

BN,n = W
(0)
N,n,1 are the hypergeometric Bernoulli numbers. When N = r = 1

and j = 0 in (11), Bn = W
(0)
1,n,1 are the classical Bernoulli numbers in (10).

We can write (11) as

1Fr

(
1;
rN + j + 1

r
,
rN + j + 2

r
, . . . ,

rN + j + r

r
;

(
t

r

)r)
(12)

=

∞∑
n=0

trn

(rN + j + 1)(rN + j + 2) · · · (rN + j + rn)

=

∞∑
n=0

(rN + j)!

(rN + rn+ j)!
trn = 1 +

∞∑
n=1

(rN + j)!

(rN + rn+ j)!
trn .
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When N = 0 in (11), W
(j)
n,r = W

(j)
0,n,r are the Lehmer-Euler numbers of grade

r, defined by

(13)

∞∑
n=0

W (j)
n,r

tn

n!
=

(
1Fr

(
1;
j + 1

r
,
j + 2

r
, . . . ,

j + r

r
;

(
t

r

)r))−1
.

If r = p is prime, the generating functions of Lehmer-Euler numbers of
degree p can be expressed by

∞∑
n=0

W (0)
n,p

tn

n!
=

r∑p−1
l=0 e

ζlpt

and
∞∑
n=0

W (1)
n,p

tn

n!
=

rt∑p−1
l=0 ζ

p−l
p eζ

l
pt
,

where ζp is the (primitive) p-th root of unity.
The definition (11) with (12) may be obvious or artificial for the readers with

different backgrounds. However, there are motivations from Combinatorics, in
particular, graph theory. In 1989, Cameron [2] considered the operator A
defined on the set of sequences of non-negative integers as follows: for x =
{xn}n≥1 and z = {zn}n≥1, set Ax = z, where

(14) 1 +

∞∑
n=1

znt
n =

(
1−

∞∑
n=1

xnt
n

)−1
.

Suppose that x enumerates a class C. Then Ax enumerates the class of disjoint
unions of members of C, where the order of the component members of C is
significant. The operator A also plays an important role for free associative
(non-commutative) algebras. More motivations and background together with
many concrete examples (in particular, in the aspects of Graph theory) by this
operator can be seen in [2]. In the sense of Cameron’s operator A, we have the
following relations:

A

{
− N !

(N + n)!

}
=

{
BN,n
n!

}
,

A

{
− (2N)!

(2N + 2n)!

}
=

{
EN,2n
(2n)!

}
,

A

{
− (2N + 1)!

(2N + 2n+ 1)!

}
=

{
ÊN,2n
(2n)!

}
,

A

{
− (3N + j)!

(3N + 3n+ j)!

}
=

{
W

(j)
N,3n,3

(3n)!

}
.

These relations are interchangeable in the sense of determinants too. See
the Section 5 about Trudi’s formula.

We have the following recurrence relation.
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Proposition 2.1. For N ≥ 0 and j = 0, 1, we have

W
(j)
N,rn,r = −

n−1∑
k=0

(rn)!(rN + j)!

(rN + rn− rk + j)!(rk)!
W

(j)
N,rk,r (n ≥ 1)

with W
(j)
N,0,r = 1.

Proof. By (11), we get

1 =

(
1 +

∞∑
l=1

(rN + j)!

(rN + rl + j)!
trl

)( ∞∑
n=0

W
(j)
N,rn,r

trn

(rn)!

)

=

∞∑
n=0

W
(j)
N,rn,r

trn

(rn)!
+

∞∑
n=1

n−1∑
k=0

(rN + j)!W
(j)
N,rk,r

(rN + rn− rk + j)!(rk)!
trn .

Comparing the coefficient on both sides, we obtain

W
(j)
N,rn,r

(rn)!
+

n−1∑
k=0

(rN + j)!W
(j)
N,rk,r

(rN + rn− rk + j)!(rk)!
= 0 (n ≥ 1) .

�

We have an explicit expression of W
(j)
N,n,r.

Theorem 2.2. Let j = 0, 1. For n ≥ 1,

W
(j)
N,rn,r = (rn)!

n∑
k=1

(−1)k
∑

i1+···+ik=n

i1,...,ik≥1

(
(rN + j)!

)k
(rN + ri1 + j)! · · · (rN + rik + j)!

.

Proof. The proof is done by induction for n. From Proposition 2.1 with n = 1,

W
(j)
N,r,r = − r!(rN + j)!

(rN + j + r)!
W

(j)
N,0,r = − r!(rN + j)!

(rN + j + r)!
.

This matches the result when n = 1. Assume that the result is valid up to
n− 1. Then by Proposition 2.1

W
(j)
N,rn,r

(rn)!
= −

n−1∑
l=0

(rN + j)!

(rN + rn− rl + j)!

W
(j)
N,rl,r

(rl)!

= −
n−1∑
l=1

(rN + j)!

(rN + rn− rl + j)!

l∑
k=1

(−1)k

×
∑

i1+···+ik=l

i1,...,ik≥1

(
(rN + j)!

)k
(rN + ri1 + j)! · · · (rN + rik + j)!

− (rN + j)!

(rN + rn+ j)!
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= −
n−1∑
k=1

(−1)k
n−1∑
l=k

(rN + j)!

(rN + rn− rl + j)!

×
∑

i1+···+ik=l

i1,...,ik≥1

(
(rN + j)!

)k
(rN + ri1 + j)! · · · (rN + rik + j)!

− (rN + j)!

(rN + rn+ j)!

= −
n∑
k=2

(−1)k−1
n−1∑
l=k−1

(rN + j)!

(rN + rn− rl + j)!

×
∑

i1+···+ik−1=l

i1,...,ik−1≥1

(
(rN + j)!

)k−1
(rN + ri1 + j)! · · · (rN + rik−1 + j)!

− (rN + j)!

(rN + rn+ j)!

=

n∑
k=2

(−1)k
∑

i1+···+ik=n

i1,...,ik≥1

(
(rN + j)!

)k
(rN + ri1 + j)! · · · (rN + rik + j)!

− (rN + j)!

(rN + rn+ j)!
(n− l = ik)

=

n∑
k=1

(−1)k
∑

i1+···+ik=n

i1,...,ik≥1

(
(rN + j)!

)k
(rN + ri1 + j)! · · · (rN + rik + j)!

.

�

There is an alternative form of W
(j)
N,n,r by using binomial coefficients. The

proof is similar to that of Theorem 2.2 and is omitted.

Theorem 2.3. For n ≥ 1,

W
(j)
N,rn,r

= (rn)!

n∑
k=1

(−1)k
(
n+ 1

k + 1

) ∑
i1+···+ik=n

i1,...,ik≥0

(
(rN + j)!

)k
(rN + ri1 + j)! · · · (rN + rik + j)!

.

3. Determinant expressions

In this section, we shall show an expression in terms of determinants. This
result is a generalization of those of Bernoulli, Euler numbers and Lehmer’s
Euler numbers of grade 3.

Theorem 3.1. For n ≥ 1,

W
(j)
N,rn,r = (−1)n(rn)!
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×

∣∣∣∣∣∣∣∣∣∣∣∣∣

(rN+j)!
(rN+j+r)! 1
(rN+j)!

(rN+j+2r)!
(rN+j)!

(rN+j+r)!

...
...

. . . 1
(rN+j)!

(rN+rn+j−r)!
(rN+j)!

(rN+rn+j−2r)! · · · (rN+j)!
(rN+j+r)! 1

(rN+j)!
(rN+rn+j)!

(rN+j)!
(rN+rn+j−r)! · · · (rN+j)!

(rN+j+2r)!
(rN+j)!

(rN+j+r)!

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Proof. For simplicity, put W̃N,n = (−1)n/rW
(j)
N,n,r/n!. Then, we shall prove

that for any n ≥ 1

(15) W̃N,rn =

∣∣∣∣∣∣∣∣∣∣∣∣∣

(rN+j)!
(rN+j+r)! 1
(rN+j)!

(rN+j+2r)!
(rN+j)!

(rN+j+r)!

...
...

. . . 1
(rN+j)!

(rN+rn+j−r)!
(rN+j)!

(rN+rn+j−2r)! · · · (rN+j)!
(rN+j+r)! 1

(rN+j)!
(rN+rn+j)!

(rN+j)!
(rN+rn+j−r)! · · · (rN+j)!

(rN+j+2r)!
(rN+j)!

(rN+j+r)!

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

When n = 1, (15) is valid because by Theorem 2.2

W̃N,r =
(rN + j)!

(rN + j + r)!
.

Assume that (15) is valid up to n− 1. Notice that by Proposition 2.1, we have

W̃N,rn =

n−1∑
k=0

(−1)n−k−1(rN + j)!

(rN + rn− rk + j)!
W̃N,rk .

Thus, by expanding the first row of the right-hand side (15), it is equal to

(rN + j)!

(rN + j + r)!
W̃N,rn−r

−

∣∣∣∣∣∣∣∣∣∣∣∣∣

(rN+j)!
(rN+j+2r)! 1

(rN+j)!
(rN+j+3r)!

(rN+j)!
(rN+j+r)!

...
...

. . . 1
(rN+j)!

(rN+rn+j−r)!
(rN+j)!

(rN+rn+j−3r)! · · · (rN+j)!
(rN+j+r)! 1

(rN+j)!
(rN+rn+j)!

(rN+j)!
(rN+rn+j−2r)! · · · (rN+j)!

(rN+j+2r)!
(rN+j)!

(rN+j+r)!

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

(rN + j)!

(rN + j + r)!
W̃N,rn−r −

(rN + j)!

(rN + j + 2r)!
W̃N,rn−2r

+ · · ·+ (−1)n

∣∣∣∣∣
(rN+j)!

(rN+rn+j−r)! 1
(rN+j)!

(rN+rn+j)!
(rN+j)!

(rN+j+r)!

∣∣∣∣∣
=

n−1∑
k=0

(−1)n−k−1(rN + j)!

(rN + rn− rk + j)!
W̃N,rk = W̃N,rn .
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Note that W̃N,r = (rN+j)!
(rN+j+r)! and W̃N,0 = 1. �

Remark 3.2. When N = 0, r = 3 and j = 0, 1, we have an determinant
expression of the Lehmer’s Euler numbers and their complementary numbers

W
(j)
3n = W

(j)
0,3n,3 ([14]):

W
(j)
3n = (−1)n(3n)!

∣∣∣∣∣∣∣∣∣∣∣∣

1
(j+3)! 1

1
(j+6)!

1
(j+3)!

...
...

. . . 1
1

(3n+j−3)!
1

(3n+j−6)! · · · 1
(j+3)! 1

1
(3n+j)!

1
(3n+j−3)! · · · 1

(j+6)!
1

(j+3)!

∣∣∣∣∣∣∣∣∣∣∣∣
.

However, W
(2)
0,3n,3 6= W

(2)
3n because these generating functions are given by

∞∑
n=0

W
(2)
0,3n,3

t3n

(3n)!
=

(
1 +

∞∑
l=1

2t3l

(3l + 2)!

)−1
and

∞∑
n=0

W
(2)
3n

t3n

(3n)!
=

(
1 +

∞∑
l=1

t3l

(3l + 2)!

)−1
,

respectively.

4. Incomplete Lehmer-Euler numbers

In order to generalize the hypergeometric numbers W
(j)
N,n,r, we shall intro-

duce two kinds of incomplete Lehmer-Euler numbers. Similar but slightly dif-
ferent kinds of incomplete numbers are considered in [10,12,13,15]. For j = 0, 1
and n ≥ m ≥ 1, define the restricted hypergeometric Lehmer-Euler numbers

W
(j)
N,n,r,≤m of grade r by

(16)

∞∑
n=0

W
(j)
N,n,r,≤m

tn

n!
=

(
1 +

m∑
l=1

(rN + j)!

(rN + rl + j)!
trl

)−1
and the associated hypergeometric Lehmer-Euler numbers W

(j)
N,n,r,≥m of grade

r by

(17)

∞∑
n=0

W
(j)
N,n,r,≥m

tn

n!
=

(
1 +

∞∑
l=m

(rN + j)!

(rN + rl + j)!
trl

)−1
.

When m→∞ in (16) and m = 1 in (17), W
(j)
N,n,r = W

(j)
N,n,r,≤∞ = W

(j)
N,n,r,≥1 are

the original hypergeometric Lehmer-Euler numbers of grade r, defined in (11)
with (12). Hence, both incomplete numbers are reduced to the hypergeometric
Lehmer-Euler numbers too.

Notice that W
(j)
N,n,r,≤m = W

(j)
N,n,r,≥m = 0 unless n ≡ 0 (mod r).
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The restricted hypergeometric Lehmer-Euler numbers satisfy the following
recurrence relation.

Proposition 4.1. For j = 0, 1, we have

W
(j)
N,rn,r,≤m = −

n−1∑
k=max{n−m,0}

(rn)!(rN + j)!

(rN + rn− rk + j)!(rk)!
W

(j)
N,rk,r,≤m (n ≥ 1)

with W
(j)
N,0,r,≤m = 1.

The associated hypergeometric Lehmer-Euler numbers satisfy the following
recurrence relation.

Proposition 4.2.

W
(j)
N,rn,r,≥m = −

n−m∑
k=0

(rn)!(rN + j)!

(rN + rn− rk + j)!(rk)!
W

(j)
N,rk,r,≥m (n ≥ m)

with W
(j)
N,0,r,≥m = 1 and W

(j)
N,r,r,≥m = · · · = W

(j)
N,r(m−1),r,≥m = 0.

Proof of Proposition 4.1. By the definition (16), we get

1 =

(
1 +

m∑
l=1

(rN + j)!trl

(rN + rl + j)!

)( ∞∑
n=0

W
(j)
N,rn,r,≤m

trn

(rn)!

)

=

∞∑
n=0

W
(j)
N,rn,r,≤m

trn

(rn)!
+

∞∑
n=1

n−1∑
k=max{n−m,0}

(rN + j)!W
(j)
N,rk,r,≤m

(rN + rn− rk + j)!(rk)!
trn .

Comparing the coefficient on both sides, we obtain the first identity. �

Proof of Proposition 4.2. By the definition (17), we get

1 =

(
1 +

∞∑
l=m

(rN + j)!trl

(rl + j)!

)( ∞∑
n=0

W
(j)
N,rn,r,≥m

trn

(rn)!

)

=

∞∑
n=0

W
(j)
N,rn,r,≥m

trn

(rn)!
+

∞∑
n=m

n−m∑
k=0

(rN + j)!W
(j)
N,rk,r,≥m

(rN + rn− rk + j)!(rk)!
trn .

Comparing the coefficient on both sides, we obtain the desired result. �

The restricted and associated hypergeometric Lehmer-Euler numbers have
the following expressions in terms of determinants. All elements in some more
bands become 0, in the expression in Theorem 3.1.

Theorem 4.3. For integers n and m with n ≥ m ≥ 1, we have

W
(j)
N,rn,r,≤m = (−1)n(rn)!
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×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(rN+j)!
(rN+j+r)! 1 0

...
. . .

(rN+j)!
(rN+rm+j)!

0
. . .

. . .

0︸ ︷︷ ︸
n−m

. . .

. . .

. . . 0
1

(rN+j)!
(rN+rm+j)! · · · (rN+j)!

(rN+j+r)!︸ ︷︷ ︸
m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Theorem 4.4. For integers n and m with n ≥ m ≥ 1, we have

W
(j)
N,rn,r,≥m = (−1)n(rn)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0
...

. . .

0

(rN+j)!
(rN+rm+j)!

. . .

...
. . .

(rN+j)!
(rN+rn+j)! · · · (rN+j)!

(rN+rm+j)!︸ ︷︷ ︸
n−m+1

. . .

. . .

. . . 0
1

0 · · · 0︸ ︷︷ ︸
m−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Proof of Theorem 4.3. For simplicity, put W̃N,rn,≤m = (−1)nW
(j)
N,rn,r,≤m/(rn)!

and prove that for n ≥ m ≥ 1
(18)

W̃N,rn,≤m =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(rN+j)!
(rN+j+r)! 1 0

...
. . .

(rN+j)!
(rN+rm+j)!

0
. . .

. . .

0︸ ︷︷ ︸
n−m

. . .

. . .

. . . 0
1

(rN+j)!
(rN+rm+j)! · · · (rN+j)!

(rN+j+r)!︸ ︷︷ ︸
m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

When n = m, we have W̃N,rm,≤m = W̃N,rm, which is reduced to Theorem 3.1.
Assume that (18) is valid up to n − 1. If n ≥ 2m, then the determinant on
right-hand side of (18) is equal to

W̃N,rn−r,≤m

(rN + j + r)!
− W̃N,rn−2r,≤m

(rN + j + 2r)!
+ · · ·
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+ (−1)m−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(rN+j)!
(rN+rm+j)! 1 0

0 (rN+j)!
(rN+r+j)! 1

...
(rN+j)!

(rN+rm+j)!

. . . 1
(rN+j)!

(rN+rm+j)! · · · (rN+j)!
(rN+r+j)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

W̃N,rn−r,≤m

(rN + r + j)!
− W̃N,rn−2r,≤m

(rN + 2r + j)!
+ · · ·+ (−1)m−1

W̃N,rn−rm,≤m

(rN + rm+ j)!

= W̃N,rn,≤m .

If m < n < 2m, then the determinant on right-hand side of (18) is equal to

W̃
(j)
N,rn−r,≤m

(rN + r + j)!
−

W̃
(j)
N,rn−2r,≤m

(rN + 2r + j)!
+ · · ·

+ (−1)m−n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(rN+j)!
(rN+rn−rm+j)! 1 0

...
...

(rN+j)!
(rN+rm+j)!

(rN+j)!
(rN+2rm−rn+j)!

0
...

... 1

0 (rN+j)!
(rN+rm+j)! · · · · · · (rN+j)!

(rN+r+j)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

W̃N,rn−r,≤m

(rN + r + j)!
− W̃N,rn−2r,≤m

(rN + 2r + j)!
+ · · ·+ (−1)n−m−1

W̃N,rm,≤m

(rN + rn− rm+ j)!

=
W̃N,rn−r,≤m

(rN + r + j)!
− W̃N,rn−2r,≤m

(rN + 2r + j)!
+ · · ·+ (−1)m−1

W̃N,rn−rm,≤m

(rN + rm+ j)!

= W̃N,rn,≤m . �

Proof of Theorem 4.4. For simplicity, put W̃N,rn,≥m = (−1)nWN,rn,r,≥m/(rn)!
and prove that

(19) W̃N,rn,≥m =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0
...

. . .

0

(rN+j)!
(rN+rm+j)!

. . .

...
. . .

(rN+j)!
(rN+rn+j)! · · · (rN+j)!

(rN+rm+j)!︸ ︷︷ ︸
n−m+1

. . .

. . .

. . . 0
1

0 · · · 0︸ ︷︷ ︸
m−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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If m ≤ n < 2m, the determinant on the right-hand side of (19) is equal to∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
...
0

(rN+j)!
(rN+rm+j)!

...
(rN+j)!

(rN+rn+j)!

1 0

0
. . .

...
. . . 0

... 1
0 · · · · · · 0︸ ︷︷ ︸

m−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)m(−1)m+1 (rN + j)!

(rN + rn+ j)!

∣∣∣∣∣∣∣∣∣∣
1 0

0
. . .

. . .

0 0 1

∣∣∣∣∣∣∣∣∣∣
= − (rN + j)!

(rN + rn+ j)!
.

Since only the term for k = 0 does not vanish in Proposition 4.2, we have

WN,rn,≥m = − (rN + j)!

(rN + rn+ j)!
.

If n ≥ 2m, the determinant on the right-hand side of (19) is equal to

(−1)m−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(rN+j)!
(rN+rm+j)!

...

...
(rN+j)!

(rN+rn+j)!

1 0

0
. . .

...
. . .

0
(rN+j)!

(rN+rm+j)!

...
. . .

(rN+j)!
(r(N+n−m)+j)! · · · (rN+j)!

(r(N+m)+j)!︸ ︷︷ ︸
n−2m+1

. . . 0

. . . 1
0 · · · 0︸ ︷︷ ︸

m−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)m−1

W̃
(j)
N,rn−rm,≥m

(rN + rm+ j)!

+ (−1)m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(rN+j)!
(rN+rm+r+j)!

...

...
(rN+j)!

(rN+rn+j)!

1 0

0
. . .

...
. . .

0
(rN+j)!

(rN+rm+j)!

...
. . .

(rN+j)!
(r(N+n−m−1)+j)! · · · (rN+j)!

(r(N+m)+j)!︸ ︷︷ ︸
n−2m

. . . 0

. . . 1
0 · · · 0︸ ︷︷ ︸

m−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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= · · ·

= −
n−m∑
k=m

(−1)n−kW̃N,rk,≥m

(r(N + n− k) + j)!
= W̃N,rn,≥m .

Here, we used Proposition 4.2 again. �

There exist explicit expressions for both incomplete Lehmer-Euler numbers.

Theorem 4.5. For n,m ≥ 1,

W
(j)
N,rn,r,≤m = (rn)!

n∑
k=1

(−1)k
∑

i1+···+ik=n

1≤i1,...,ik≤m

(
(rN + j)!

)k
(rN + ri1 + j)! · · · (rN + rik + j)!

.

Theorem 4.6. For n,m ≥ 1,

W
(j)
N,rn,r,≥m = (rn)!

n∑
k=1

(−1)k
∑

i1+···+ik=n

i1,...,ik≥m

(
(rN + j)!

)k
(rN + ri1 + j)! · · · (rN + rik + j)!

.

Proof of Theorem 4.5. When n ≤ m, the proof is similar to that of Proposition
2.1. Note that in the proof of Proposition 2.1,

1 ≤ n− l = ik ≤ n− k + 1 ≤ n .

Let n ≥ m+ 1. By Proposition 4.1

W
(j)
N,rn,r,≤m

(rn)!

= −
n−1∑

l=n−m

(rN + j)!W
(j)
N,rn,r,≤m

(rN + rn− rl + j)!(rl)!

= −
n−1∑

l=n−m

(rN + j)!

(rN + rn− rl + j)!

l∑
k=1

(−1)k

×
∑

i1+···+ik=l

1≤i1,...,ik≤m

(
(rN + j)!

)k
(rN + ri1 + j)! · · · (rN + rik + j)!

= −
n−1∑
l=1

(rN + j)!

(rN + rn− rl + j)!

l∑
k=1

(−1)k

×
∑

i1+···+ik=l

1≤i1,...,ik≤m

(
(rN + j)!

)k
(rN + ri1 + j)! · · · (rN + rik + j)!
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+

n−m−1∑
l=1

(rN + j)!

(rN + rn− rl + j)!

l∑
k=1

(−1)k

×
∑

i1+···+ik=l

1≤i1,...,ik≤m

(
(rN + j)!

)k
(rN + ri1 + j)! · · · (rN + rik + j)!

= −
n−1∑
k=1

(−1)k
n−1∑
l=k

(rN + j)!

(rN + rn− rl + j)!

×
∑

i1+···+ik=l

1≤i1,...,ik≤m

(
(rN + j)!

)k
(rN + ri1 + j)! · · · (rN + rik + j)!

+

n−m−1∑
k=1

(−1)k
n−m−1∑
l=k

(rN + j)!

(rN + rn− rl + j)!

×
∑

i1+···+ik=l

1≤i1,...,ik≤m

(
(rN + j)!

)k
(rN + ri1 + j)! · · · (rN + rik + j)!

=

n∑
k=2

(−1)k
n−1∑
l=k−1

(rN + j)!

(rN + rn− rl + j)!

×
∑

i1+···+ik−1=l

1≤i1,...,ik−1≤m

(
(rN + j)!

)k−1
(rN + ri1 + j)! · · · (rN + rik−1 + j)!

−
n−m∑
k=2

(−1)k
n−m−1∑
l=k−1

(rN + j)!

(rN + rn− rl + j)!

×
∑

i1+···+ik−1=l

1≤i1,...,ik−1≤m

(
(rN + j)!

)k−1
(rN + ri1 + j)! · · · (rN + rik−1 + j)!

=

n∑
k=n−m+1

(−1)k
n−1∑
l=k−1

(rN + j)!

(rn− rl + j)!

×
∑

i1+···+ik−1=l

1≤i1,...,ik−1≤m

(
(rN + j)!

)k−1
(rN + ri1 + j)! · · · (rN + rik−1 + j)!

+

n−m∑
k=2

(−1)k
n−1∑

l=n−m

(rN + j)!

(rN + rn− rl + j)!
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×
∑

i1+···+ik−1=l

1≤i1,...,ik−1≤m

(
(rN + j)!

)k−1
(rN + ri1 + j)! · · · (rN + rik−1 + j)!

.

By putting ik = n − l, in the first term by n − 1 ≥ l ≥ k − 1 ≥ n −m, in the
second term by n− 1 ≥ l ≥ n−m, we have

1 ≤ n− l = ik ≤ m.

Therefore,

W
(j)
N,rn,r,≤m

(rn)!
=

n∑
k=n−m+1

(−1)k
∑

i1+···+ik=n

1≤i1,...,ik≤m

(
(rN + j)!

)k
(rN + ri1 + j)! · · · (rN + rik + j)!

+

n−m∑
k=2

(−1)k
∑

i1+···+ik=n

1≤i1,...,ik≤m

(
(rN + j)!

)k
(rN + ri1 + j)! · · · (rN + rik + j)!

=

n∑
k=1

(−1)k
∑

i1+···+ik=n

1≤i1,...,ik≤m

(
(rN + j)!

)k
(rN + ri1 + j)! · · · (rN + rik + j)!

.

Note that the term is vanished for k = 1 as n > m. �

Proof of Theorem 4.6. Since the set

{(i1, . . . , ik)|i1 + · · ·+ ik = n, i1, . . . , ik ≥ m}

is empty for n = 1, . . . ,m − 1, we have W
(j)
N,r,r,≥m = · · · = W

(j)
N,rm−r,r,≥m = 0.

For n = m, by Theorem 4.4

W
(j)
N,rm,r,≥m = (−1)m(rm)!

∣∣∣∣∣∣∣∣∣
0 1
...
0 1

(rN+j)!
(rN+rm+j)! 0 · · · 0

∣∣∣∣∣∣∣∣∣
= (−1)m(rm)!(−1)m−1

(rN + j)!

(rN + rm+ j)!
= − (rN + j)!

(rN + rm+ j)!
,

which matches the result for n = m. Assume that the result is valid up to
n− 1(≥ m). Then by Proposition 4.2

WN,rn,r,≥m

(rn)!
= −

n−m∑
l=0

(rN + j)!

(rN + rn− rl + j)!(rl)!
W

(j)
N,rl,r,≥m

= − (rN + j)!

(rN + rn+ j)!

−
n−m∑
l=1

(rN + j)!

(rN + rn− rl + j)!

l∑
k=1

(−1)k
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×
∑

i1+···+ik=l

i1,...,ik≥m

(
(rN + j)!

)k
(rN + ri1 + j)! · · · (rN + rik + j)!

= − (rN + j)!

(rN + rn+ j)!

−
n−m∑
k=1

(−1)k
n−m∑
l=k

(rN + j)!

(rN + rn− rl + j)!

×
∑

i1+···+ik=l

i1,...,ik≥m

(
(rN + j)!

)k
(rN + ri1 + j)! · · · (rN + rik + j)!

= − (rN + j)!

(rN + rn+ j)!

+

n−m+1∑
k=2

(−1)k
n−m∑
l=k−1

(rN + j)!

(rN + rn− rl + j)!

×
∑

i1+···+ik−1=l

i1,...,ik−1≥m

(
(rN + j)!

)k−1
(rN + ri1 + j)! · · · (rN + rik−1 + j)!

= − (rN + j)!

(rN + rn+ j)!

+

n−m+1∑
k=2

(−1)k
∑

i1+···+ik=n

i1,...,ik≥m

(
(rN + j)!

)k
(rN + ri1 + j)! · · · (rN + rik + j)!

(ik = n− l)

=

n−m+1∑
k=1

(−1)k
∑

i1+···+ik=n

i1,...,ik≥m

(
(rN + j)!

)k
(rN + ri1 + j)! · · · (rN + rik + j)!

=

n∑
k=1

(−1)k
∑

i1+···+ik=n

i1,...,ik≥m

(
(rN + j)!

)k
(rN + ri1 + j)! · · · (rN + rik + j)!

.

Note that ik = n− l ≥ m as l ≤ n−m. As 1 ≤ m ≤ n− 1, we have

n < (n−m+ 2)m ≤ km ≤ n = i1 + · · ·+ ik ,

so the set

{(i1, . . . , ik) | i1 + · · ·+ ik = n, i1, . . . , ik ≥ m}

is empty for n−m+ 2 ≤ k ≤ n. �
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5. Applications by the Trudi’s formula

We shall use the Trudi’s formula to obtain different explicit expressions and

inversion relations for the numbers W
(j)
N,n,r.

Lemma 5.1. For a positive integer n, we have∣∣∣∣∣∣∣∣∣∣∣∣

a1 a0 0 · · ·

a2 a1
. . .

...
...

...
. . .

. . . 0
an−1 · · · a1 a0
an an−1 · · · a2 a1

∣∣∣∣∣∣∣∣∣∣∣∣
=

∑
t1+2t2+···+ntn=n

(
t1 + · · ·+ tn
t1, . . . , tn

)
(−a0)n−t1−···−tnat11 a

t2
2 · · · atnn ,

where
(
t1+···+tn
t1,...,tn

)
= (t1+···+tn)!

t1!···tn! are the multinomial coefficients.

This relation is known as Trudi’s formula [18, Vol. 3, p. 214], [20] and the
case a0 = 1 of this formula is known as Brioschi’s formula [1], [18, Vol. 3,
pp. 208–209].

In addition, there exists the following inversion formula (see, e.g. [15]), which
is based upon the relation

n∑
k=0

(−1)n−kαkD(n− k) = 0 (n ≥ 1)

or Cameron’s operator in (14).

Lemma 5.2. If {αn}n≥0 is a sequence defined by α0 = 1 and

αn =

∣∣∣∣∣∣∣∣∣∣
D(1) 1

D(2)
. . .

. . .
...

. . .
. . . 1

D(n) · · · D(2) D(1)

∣∣∣∣∣∣∣∣∣∣
, then D(n) =

∣∣∣∣∣∣∣∣∣∣
α1 1

α2
. . .

. . .
...

. . .
. . . 1

αn · · · α2 α1

∣∣∣∣∣∣∣∣∣∣
.

From Trudi’s formula, it is possible to give the combinatorial expression

αn =
∑

t1+2t2+···+ntn=n

(
t1 + · · ·+ tn
t1, . . . , tn

)
(−1)n−t1−···−tnD(1)t1D(2)t2 · · ·D(n)tn .

By applying these lemmata to Theorem 4.3 and Theorem 4.4, we obtain an
explicit expression for the hypergeometric Lehmer-Euler numbers.

Theorem 5.3. For n ≥ m ≥ 1, we have

W
(j)
N,rn,r,≤m = (rn)!

∑
t1+2t2+···+mtm=n

(
t1 + · · ·+ tm
t1, . . . , tm

)
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× (−1)t1+···+tm
(

(rN + j)!

(rN + j + r)!

)t1
· · ·
(

(rN + j)!

(rN + rm+ j)!

)tm
and

W
(j)
N,rn,r,≥m

= (rn)!
∑

mtm+(m+1)tm+1+···+ntn=n

(
tm + tm+1 + · · ·+ tn
tm, tm+1, . . . , tn

)

× (−1)tm+tm+1+···+tn
(

(rN + j)!

(rN + rm+ j)!

)tm ( (rN + j)!

(rN + rm+ j + r)!

)tm+1

· · ·
(

(rN + j)!

(rN + rn+ j)!

)tn
.

As a special case of Theorem 5.3, we can obtain the expressions for the
original hypergeometric Lehmer-Euler numbers.

Corollary 5.4. For n ≥ 1, we have

W
(j)
N,rn,r = (rn)!

∑
t1+2t2+···+ntn=n

(
t1 + · · ·+ tn
t1, . . . , tn

)

× (−1)t1+···+tn
(

(rN + j)!

(rN + j + r)!

)t1
· · ·
(

(rN + j)!

(rN + rn+ j)!

)tn
.

By applying the inversion relation in Lemma 5.2 to Theorem 3.1, we have
the following.

Theorem 5.5. Let j = 0, 1. For n ≥ 1, we have

(−1)n(rN + j)!

(rN + rn+ j)!
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

W
(j)
N,r,r

r! 1
W

(j)
N,2r,r

(2r)!

W
(j)
N,r,r

r!

...
...

. . . 1
W

(j)
N,rn−r,r

(rn−r)!
W

(j)
N,rn−2r,r

(rn−2r)! · · · W
(j)
N,r,r

r! 1

W
(j)
N,rn,r

(rn)!

W
(j)
N,rn−r,r

(rn−r)! · · · W
(j)
N,2r,r

(2r)!

W
(j)
N,r,r

r!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

In this sense, we have the inversion relation of Corollary 5.4 too.

Corollary 5.6. For n ≥ 1, we have

(rN + j)!

(rN + rn+ j)!
=

∑
t1+2t2+···+ntn=n

(
t1 + · · ·+ tn
t1, . . . , tn

)
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× (−1)t1+···+tn

(
W

(j)
N,r,r

r!

)t1
· · ·

(
W

(j)
N,rn,r

(rn)!

)tn
.

6. Additional comments

The hypergeometric Lehmer-Euler numbers of higher order W
(j)
N,n,r includes

hypergeometric Bernoulli and Euler numbers, and the classical Bernoulli, Euler

and Lehmer’s Euler numbers as special cases. However, the numbers W
(j)
N,n,r do

not include some famous generalized numbers, for example, poly-Bernoulli and
Euler numbers, Apostol-Bernoulli and Euler numbers and some p-adic numbers
and q-numbers, because they do not satisfy the relation (14) as definitions.

Acknowledgments. The authors thank the anonymous referee for careful
reading of the manuscript and useful suggestions.

References

[1] F. Brioschi, Sulle funzioni Bernoulliane ed Euleriane, Annali de Mat., i. (1858), 260–
263; Opere Mat., i. pp. 343–347.

[2] P. J. Cameron, Some sequences of integers, Discrete Math. 75 (1989), no. 1-3, 89–102.
[3] J. W. L. Glaisher, Expressions for Laplace’s coefficients, Bernoullian and Eulerian

numbers etc. as determinants, Messenger (2) 6 (1875), 49–63.

[4] A. Hassen and H. D. Nguyen, Hypergeometric Bernoulli polynomials and Appell se-
quences, Int. J. Number Theory 4 (2008), no. 5, 767–774.

[5] , Hypergeometric zeta functions, Int. J. Number Theory 6 (2010), no. 1, 99–126.

[6] F. T. Howard, A sequence of numbers related to the exponential function, Duke Math.
J. 34 (1967), 599–615.

[7] , Some sequences of rational numbers related to the exponential function, Duke

Math. J. 34 (1967), 701–716.
[8] S. Hu and M.-S. Kim, On hypergeometric Bernoulli numbers and polynomials, Acta

Math. Hungar. 154 (2018), no. 1, 134–146.

[9] K. Kamano, Sums of products of hypergeometric Bernoulli numbers, J. Number Theory
130 (2010), no. 10, 2259–2271.

[10] T. Komatsu, Incomplete poly-Cauchy numbers, Monatsh. Math. 180 (2016), no. 2, 271–
288.

[11] , Complementary Euler numbers, Period. Math. Hungar. 75 (2017), no. 2, 302–

314.
[12] , Incomplete multi-poly-Bernoulli numbers and multiple zeta values, Bull.

Malays. Math. Sci. Soc. 41 (2018), 2029–2040.
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