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WEAK LAWS OF LARGE NUMBERS FOR WEIGHTED

COORDINATEWISE PAIRWISE NQD RANDOM VECTORS

IN HILBERT SPACES

Dung Van Le, Son Cong Ta, and Cuong Manh Tran

Abstract. In this paper, we investigate weak laws of large numbers for
weighted coordinatewise pairwise negative quadrant dependence random

vectors in Hilbert spaces in the case that the decay order of tail probability

is r for some 0 < r < 2. Moreover, we extend results concerning Pareto-
Zipf distributions and St. Petersburg game.

1. Introduction

Let {Xn;n ≥ 1} be the player’s gains in a sequence of independent repeti-
tions of the St. Petersburg game, i.e., a sequence of iid random variables with
the common distribution

P (X = 2k) = 2−k for k = 1, 2, . . . .

For the total gain, Sn := X1 + · · ·+Xn in n games, Feller [4] proved that

Sn/(n log n)→ 1 in probability as n→∞.

A. Gut [6] gave weak laws of large numbers for a generalized St. Petersburg
game. Note that these games are formulated by nonnegative random variables
with infinite means. On the other hand, Adler [1] got rid of the identically
distributed condition with respect to independent Pareto-Zipf distributions. He
studied weighted laws of large numbers for each model, respectively. Recently,
Nakata [16] obtained some weak laws of large numbers for weighted sums of
independent random variables in the case that the decay order of tail probability
is r (0 < r ≤ 1). Dung et al. [3] gave weak laws of large numbers for sequences
of independent random variables with infinite rth moments (0 < r < 2).
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Lehmann [12] introduced the notion of negative quadrant dependence (NQD):
Two random variables X1 and X2 is called NQD if

P (X1 > x1, X2 > x2) ≤ P (X1 > x1)P (X2 > x2)

for all real numbers x1, x2. A sequence of random variables {Xn, n ≥ 1} is said
to be pairwise NQD if every pair of random variables in the sequence is NQD. It
is easy to see that a pairwise NQD sequence of random variables is much weaker
than the NA one [9]. In many statistics and mechanic models, a pairwise NQD
assumption among the random variables in the models is more reasonable than
an independence assumption, so many statisticians have investigated this topic
with interest (see [13–15,17]).

Let H be a real separable Hilbert space with the norm ‖ · ‖ generated by an
inner product 〈·, ·〉 and let {ej , j ∈ B} be an orthonormal basis in H. In this
paper, we investigate weak laws of large numbers for the weighted sum

(1) Sn =

mn∑
j=1

anjXj ,

where (anj ; 1 ≤ j ≤ mn, n ≥ 1) is an array of real numbers, {Xn; n ≥ 1} is
a sequence of coordinatewise pairwise NQD random vectors in Hilbert spaces
which satisfies that

(2)
∑
j∈B

P (|〈Xn, ej〉| > x) � x−r for a fixed 0 < r < 2.

It is easy to see that if the cardinality |B| of B is finite, random vectors Xn

that fulfill (2), then E‖Xn‖r =∞. Moreover, (2) is equivalent to

P (‖Xn‖ > x) � x−r for a fixed 0 < r < 2.

Many random evolutions and also statistical procedures such as parametric
or nonparametric estimation of regression with fixed design, produce statistics
of type (1). One example is the nonlinear regression model

y(x) = f(x) + ξ(x),

where f(x) is an unknown function and ξ(x) is the noise. Now, we fix the
design points xn1, . . . , xnn and we get

yni = f(xni) + ξi,

where ξi is a centered sequence of random variables. The nonparametric es-

timator of f(x) is defined to be f̂n(x) =
∑n
i=1 wni(x)yni, where the weight

functions wni(x) = wni(x,xn) depend both on x and the design points xn =

{xn1, . . . , xnn}. It is obvious that f̂n(x)− Ef̂n(x) is of the type (1).
We shall also see that the asymptotic behavior of the sum of variables of the

form

Xk =

∞∑
i=−∞

ak+iξi
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can be obtained by studying the sum of the type (1).
Methods for Hilbert space valued random vectors might also help to analyze

nonlinear statistics of real valued data.
For example, we will consider general bivariate and degenerate von Mises-

statistics (V-statistics). Let h : R2 → R be a symmetric, measurable function.
We call

Vn :=
1

b2n

n∑
i,j=1

h(Xi, Xj)

be V-statistic with kernel h. The kernel and related V-statistic are called
degenerate, if E(h(x,Xi)) = 0 for all x ∈ R. Furthermore, we assume that
h is Lipschitz-continuous and positive definite. By Sun’s version of Mercers
theorem, we have under these conditions a representation

h(x, y) =

∞∑
l=1

λφl(x)φl(y)

for orthonormal eigenfuctions (φl)l∈N with the following properties: Eφl(Xn) =
0, Eφ2l (Xn) = 1 for all l ∈ N, and λl ≥ 0 for all l ∈ N,

∑∞
l=1 λl <∞ (see [2]).

Let H be Hibert space of real-valued sequences y = (yl)l∈N equipped with
the inner product

〈y, z〉 :=

∞∑
l=1

λlylzl.

We consider the H-valued random vectors Yn := (φl(Xn))l∈N. Then {Yn, n ≥
1} is a sequence of H-valued random vectors and

(3) Vn=
1

b2n

n∑
ij=1

∞∑
l=1

λlφl(Xi)φl(Xj)=

∞∑
l=1

λl

( 1

bn

n∑
k=1

φl(Xk)
)2

=
∥∥∥ 1

bn

n∑
k=1

Yn

∥∥∥2.
Now, let {Xn, n ≥ 1} be a sequence of real-valued pairwise independent random
variables. Then {Yn, n ≥ 1} is a sequence of H-valued coordinatewise pairwise
NQD random vectors. Thus, since the limit result of H-valued coordinatewise
pairwise NQD random vectors {Yn, n ≥ 1}, we obtain the convergence of Vn.

The organization of the paper is as follows. The concept of coordinatewise
pairwise NQD random vectors in Hilbert spaces is defined in Section 2, where
we also prove some useful lemmas. The results for weak laws of large numbers
for weighted coordinatewise pairwise NQD random vectors in Hilbert spaces
in the case that the decay order of tail probability is r for some 0 < r < 2
are contained in Section 3. As applications, in Section 4, we give the extended
Pareto-Zipf distribution, the generalized St. Petersburg game and present some
results about weak laws of large numbers for each model, respectively.

2. Preliminaries

Let {an;n ≥ 1} and {bn;n ≥ 1} be sequences of positive real numbers.
We use notation an � bn instead of 0 < lim inf an/bn ≤ lim sup an/bn < ∞;
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an = o(bn) means that limn→∞ an/bn = 0; notation an ∼ bn is used for
limn→∞ an/bn = 1. These notations are also used for positive real functions
f(x) and g(x). The indicator function of A is denoted by I(A). Throughout
this paper, the symbol C will denote a generic constant (0 < C <∞) which is
not necessarily the same one in each appearance.

Let H be a real separable Hilbert space with the norm ‖ · ‖ generated by
an inner product 〈·, ·〉 and let {ej , j ∈ B} be an orthonormal basis in H.
Huan et al. [8] introduced the concept of coordinatewise negatively association
(CNA) random vectors in H and Mi-Hwa Ko [10] introduced the concept of
coordinatewise asymptotical negatively association (CANA) random vectors
in H. In this paper, we present the concept of coordinatewise pairwise NQD
random vectors in H.

Definition. A sequence {Xn, n ≥ 1} of H-valued random vectors is said to
be coordinatewise pairwise NQD if for any j ∈ B, the sequence of random
variables {< Xn, ej >,n ≥ 1} is pairwise NQD.

Remark 2.1. If a sequence of H-valued random vectors is NA [11] (or CNA, or
pairwise independent), then it is coordinatewise pairwise NQD.

Example 2.2. Let {Yn;n ≥ 1} be a sequence of pairwise NQD random vari-
ables. For each n ≥ 1, j ∈ B, put Xj

n = |cj |Yn where
∑
j∈B c

2
j < ∞. We

consider Xn =
∑
j∈B X

j
nej , n ≥ 1, then {Xn, n ≥ 1} is a sequence of H-valued

coordinatewise pairwise NQD random vectors.

The following example shows a sequence ofH-valued coordinatewise pairwise
NQD random vectors which is not pairwise independent.

Example 2.3. Let {Zn, n ≥ 1} be i.i.d. N(0, 1) random variables. Then {Zn−
Zn+1, n ≥ 1} are identically distributed N(0, 2) random variables. Let F be
the N(0, 2) distribution function and {Fn, n ≥ 1} be a sequence of continuous
distribution functions. For n ≥ 1, put

F−1n (t) = inf{x : Fn(x) ≥ t} and Yn = F−1n (F (Zn − Zn+1)).

Li et al. [13] showed that {Yn, n ≥ 1} is a sequence of pairwise NQD random
variables and for all n ≥ 1, the distribution function of Yn is Fn. For each
n ≥ 1, j ∈ B, put Xj

n = |cj |Yn where
∑
j∈B c

2
j < ∞. We consider Xn =∑

j∈B X
j
nej , n ≥ 1 (see Example 2.2), then {Xn, n ≥ 1} is a sequence of

H-valued coordinatewise pairwise NQD random vectors.
But

Cov(Zn − Zn+1, Zn+1 − Zn+2) = −1

then Xn and Xn+1 are not independent. Consequently, {Xn, n ≥ 1} is not a
sequence of pairwise independent random vectors.

The following lemma plays an essential role in our main results.
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Lemma 2.4 ([12]). Let X and Y be R-valued NQD random variables. Then,
i) cov(X,Y ) ≤ 0.
ii) If f and g are Borel functions, both of which are monotone increasing (or

both are monotone decreasing), then f(X) and g(X) are NQD.

Lemma 2.5. Let (Xn, n ≥ 1) be a sequence of H-valued coordinatewise pair-
wise NQD random vectors with mean 0 and finite second moments. Then,

E

∥∥∥∥∥
n∑
k=1

Xk

∥∥∥∥∥
2

≤
n∑
k=1

E‖Xk‖2.

Proof. For n ≥ 1, we have by Lemma 2.4 that

E

∥∥∥∥∥
n∑
k=1

Xk

∥∥∥∥∥
2

= E
∑
j∈B

(
〈
n∑
k=1

Xk, ej〉
)2

=
∑
j∈B

E
( n∑
k=1

〈Xk, ej〉
)2

=
∑
j∈B

( n∑
k=1

E〈Xk, ej〉2 +
∑
k 6=i

cov(〈Xk, ej〉, 〈Xi, ej〉)
)

≤
n∑
k=1

∑
j∈B

E〈Xk, ej〉2 =

n∑
k=1

E‖Xk‖2.
�

Lemma 2.6. Let X be an H-valued random vector. Suppose that∑
j∈B

P (|〈X, ej〉| > x) � x−r for a fixed 0 < r < 2.

Then
(a)

∑
j∈B

E(|〈X, ej〉|I(|〈X, ej〉| > x)) � x1−r if 1 < r < 2.

(b)
∑
j∈B

E(|〈X, ej〉|αI(|〈X, ej〉| ≤ x)) � xα−r if α > r > 0.

Proof. To prove (a), we have∑
j∈B

E(|〈X, ej〉|I(|〈X, ej〉| > x)) �
∑
j∈B

∑
k≥x

kP (k < |〈X, ej〉| ≤ k + 1)

=
∑
j∈B

∑
k≥x

P (|〈X, ej〉| > k)

=
∑
k≥x

∑
j∈B

P (|〈X, ej〉| > k)

�
∑
k≥x

k−r � x1−r.
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For the proof of (b), we see∑
j∈B

E(|〈X, ej〉|αI(|〈X, ej〉| ≤ x))

�
∑
j∈B

∑
0≤k≤x−1

(k + 1)αP (k < |〈X, ej〉| ≤ k + 1)

�
∑
j∈B

∑
0≤k≤x−1

((k + 1)α − kα)P (|〈X, ej〉| > k)

�
∑
j∈B

∑
1≤k≤x−1

kα−1P (|〈X, ej〉| > k)

=
∑

1≤k≤x−1

kα−1
∑
j∈B

P (|〈X, ej〉| > k)

�
∑

1≤k≤x−1

kα−1−r � xα−r.
�

3. The main results

We consider {Xn, n ≥ 1} is a sequence of coordinatewise pairwise NQD
random vectors in H. For k ≥ 1, j ∈ B, we set

Xj
k = 〈Xk, ej〉.

Now, the main results can be stated and proved.

Theorem 3.1. Let {Xn;n ≥ 1} be a sequence of H-valued coordinatewise
pairwise NQD random vectors with zero mean and infinite rth moments for
some 1 < r < 2 whose distributions satisfy that

∑
j∈B P (|Xj

n| > x) � x−r for

all n ≥ 1 and lim supx→∞ sup
n≥1

xr
∑
j∈B P (|Xj

n| > x) < ∞. Let (ank; 1 ≤ k ≤

mn, n ≥ 1) be an array of positive real numbers such that

(4)

mn∑
k=1

arnk = o(1).

Then
mn∑
k=1

ankXk
P−→ 0 as n→∞.

Proof. For each j ∈ B,n ≥ 1 and 1 ≤ k ≤ mn. Put

Y jnk = Xj
kI(|Xj

k| ≤ a
−1
kn ) + ankI(Xj

k > a−1nk )− ankI(Xj
k < −a

−1
nk ),

Ynk =
∑
j∈B

Y jnkej , Un =

mn∑
k=1

ank[Ynk − EYnk].
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By using Lemma 2.4, it is easy to see that {Ynk − EYnk, 1 ≤ k ≤ mn} is a
sequence of H-valued coordinatewise pairwise NQD random vectors with mean
0. For an arbitrary ε > 0, by Lemma 2.5 and Lemma 2.6, we have

P (‖Un‖ > ε) ≤ 1

ε2
E(‖Un‖2)

≤ 1

ε2

mn∑
k=1

a2nkE‖Ynk − EYnk‖2

=
1

ε2

mn∑
k=1

a2nk
∑
j∈B

E(Y jnk − EY
j
nk)2

≤ 1

ε2

mn∑
k=1

a2nk
∑
j∈B

E(Y jnk)2

≤ 1

ε2

mn∑
k=1

a2nk
∑
j∈B

E(|Xj
k|

2I(|ankXj
k| ≤ 1))

+
1

ε2

mn∑
k=1

∑
j∈B

P (|Xj
k| > a−1nk )

≤ C

ε2

mn∑
k=1

arnk → 0 as n→∞.(5)

On the other hand, we also have by Lemma 2.6 that

mn∑
k=1

ank‖EYnk‖ =

mn∑
k=1

ank

∥∥∥∥∥∥
∑
j∈B

EY jnkej

∥∥∥∥∥∥
≤

mn∑
k=1

ank

∥∥∥∥∥∥
∑
j∈B

E
(
Xj
kI(|Xj

k| ≤ a
−1
nk )
)
ej

∥∥∥∥∥∥
+

mn∑
k=1

∑
j∈B

P (|Xj
k| > a−1nk )

=

mn∑
k=1

ank

∥∥∥∥∥∥
∑
j∈B

E
(
Xj
kI(|Xj

k| > a−1nk )
)
ej

∥∥∥∥∥∥
+

mn∑
k=1

∑
j∈B

P (|Xj
k| > a−1nk )

≤
mn∑
k=1

ank
∑
j∈B

E
(
|Xj

k|I(|Xj
k| > a−1nk )

)
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+

mn∑
k=1

∑
j∈B

P (|Xj
k| > a−1nk )

≤ C

mn∑
k=1

arnk → 0 as n→∞.(6)

Consequently, (5) and (6) yield that
∑mn

k=1 ankYnk converges in probability to
0. Finally, put Vn =

∑n
k=1 ankYnk and Sn =

∑mn

k=1 ankXk, we have that for
arbitrary ε > 0,

P (‖Vn − Sn‖ > ε) ≤
∑
k≤mn

P (Ynk 6= Xk) ≤
∑
k≤mn

∑
j∈B

P (Y jnk 6= Xj
k)

=
∑
k≤mn

∑
j∈B

P (|Xj
k| > a−1nk ) ≤ C

mn∑
k=1

arnk → 0 as n→∞.

Therefore, Sn
P→ 0 as n→∞. �

When mn = n and ank = 1
bn

(1 ≤ k ≤ n), we obtain the following corollary.

Corollary 3.2. Let {Xn;n ≥ 1} be a sequence of H-valued coordinatewise
pairwise NQD random vectors with zero mean and infinite rth moments for
some 1 < r < 2 whose distributions satisfy that

∑
j∈B P (|Xj

n| > x) � x−r for

n ≥ 1 and lim supx→∞ supn≥1 x
r
∑
j∈B P (|Xj

n| > x) < ∞. Let {bn;n ≥ 1} be
a sequence of positive real numbers such that

lim
n→∞

n1/r

bn
= 0.

Then,

1

bn

n∑
k=1

Xk
P−→ 0 as n→∞.

Example 3.3. Let {Xn, n ≥ 1} be the sequence of random vectors defined
in Example 2.3 with (cj) satisfying the condition

∑
j∈B |cj |r < ∞ for some

1 < r < 2 and {Fn, n ≥ 1} be the distribution functions of a common density
function

f(x) =

{ r

2xr+1
for |x| > 1,

0 otherwise.

One readily checks that, EX1 = 0, E‖X1‖r = ∞ so that the Marcinkiewicz-

Zygmund weak law does not hold. However, it is easy to see that
∑
j∈B P (|Xj

1 |
> x) � x−r then applying Corollary 3.2 we get

1

n1/rl(n)

n∑
k=1

Xk
P−→ 0 as n→∞,

where limn→∞ l(n) =∞.
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The obvious question that comes to mind is whether or not there is almost
sure convergence in Corollary 3.2. The following example shows that the weak
law established in Corollary 3.2 cannot be extended to a strong law.

Example 3.4. Consider the real Hilbert space `2 of all square summable real
sequences with inner product

〈x, y〉 =

∞∑
i=1

xiyi for x, y ∈ `2.

The standard orthonormal basis of `2 is {en, n ≤ 1} where en denote the
element of `2 having 1 in its nth position and 0 elsewhere. For each 1 < r ≤ 2,
let {Xn, n ≥ 1} be a sequence of i.i.d. symmetric random vectors in `2 space
such that

Xn = (X1
n, X

2
n, . . . , X

j
n, . . . ),

where

P (|Xj
n| > x) = cjx

−r (cj > 0,

∞∑
j=1

cj <∞) for all x > x0 > 0, and j = 1, 2, . . . .

Then the hypotheses of Corollary 3.2 are met. Now, let bn = (n log n)1/r, n ≥ 1.
For each j > 0, we obtain

∞∑
n=1

P (|Xj
n| > cbn) � c

∞∑
n=1

1

brn
= c

∞∑
n=1

1

n log n
=∞ for any c > 0,

so that, by the Borel-Cantelli lemma,

P (|Xj
n| > cbn infinitely often) = 1 for any c > 0.

Thus

lim sup
n→∞

Xj
n

bn
=∞ almost surely.

On the other hand,

Xj
n

bn
=

∑n
k=1X

j
k

bn
− bn−1

bn

∑n−1
k=1 X

j
k

bn−1
.

This implies for each j = 1, 2, . . . ,∑n
k=1X

j
k

bn
6→ 0 almost surely.

Therefore, SLLN ∑n
k=1Xk

bn
→ 0 almost surely

fails.
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Theorem 3.5. Let {Xn;n ≥ 1} be a sequence of H-valued coordinatewise
pairwise NQD random vectors whose distributions satisfying

∑
j∈B P (|Xj

n| >
x) � x−r for n ≥ 1 and lim supx→∞ supn≥1 x

r
∑
j∈B P (|Xj

n| > x) < ∞ (0 <

r ≤ 1). Let (ank; 1 ≤ k ≤ mn, n ≥ 1) be an array of positive real numbers such
that

(7)

mn∑
k=1

arnk = o(1).

Then

(8)

mn∑
k=1

ank

(
Xk − EYnk

)
P−→ 0 as n→∞,

where Ynk are defined as in proof of Theorem 3.1.

Proof. It is well known that {Ynk − EYnk, 1 ≤ k ≤ mn} is a sequence of
coordinatewise pairwise NQD random vectors in H. Let ε be an arbitrary
positive number. We have, by Lemma 2.6,

P
(∥∥∥∥∥

mn∑
k=1

ank

(
Ynk − EYnk

)∥∥∥∥∥ > ε
)

≤ 1

ε2
E
∥∥∥ mn∑
k=1

ank

(
Ynk − EYnk

)∥∥∥2
≤ 1

ε2

mn∑
k=1

a2nkE‖Ynk − EYnk‖2 =
1

ε2

mn∑
k=1

a2nk
∑
j∈B

E(Y jnk − EY
j
nk)2

≤ 1

ε2

mn∑
k=1

a2nk
∑
j∈B

E(Y jnk)2

≤ 1

ε2

mn∑
k=1

a2nk
∑
j∈B

E(|Xj
k|

2I(|ankXj
k| ≤ 1)) +

1

ε2

mn∑
k=1

∑
j∈B

P (|Xj
k| > a−1nk )

≤ C

mn∑
k=1

arnk → 0 as n→∞.

This implies that

(9)

mn∑
k=1

ank

(
Ynk − EYnk

)
P−→ 0 as n→∞.

On the other hand, we see

P (
∥∥∥ mn∑
k=1

ank(Xk − Ynk)
∥∥∥ > ε) ≤

∑
k≤mn

P (Ynk 6= Xk) ≤
∑
k≤mn

∑
j∈B

P (Y jnk 6= Xj
k)
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=
∑
k≤mn

∑
j∈B

P (|Xj
k| > a−1nk )

≤ C
mn∑
k=1

arnk → 0 as n→∞.(10)

(9) and (10) yield the conclusion (8). �

Corollary 3.6. Under the assumptions of Theorem 3.5, if 0 < r < 1, then we
have

(11)

mn∑
k=1

ankXk
P−→ 0 as n→∞.

Proof. By Lemma 2.6, we have∥∥∥ mn∑
k=1

ankEYnk

∥∥∥ ≤ mn∑
k=1

ank‖EYnk‖ ≤
mn∑
k=1

ank
∑
j∈B

E|Y jnk|

≤
mn∑
k=1

ank
∑
j∈B

E
(
|Xj

k|I(|Xj
k| ≤ a

−1
nk )
)

+

mn∑
k=1

∑
j∈B

P (|Xj
k| > a−1nk )

≤ C
mn∑
k=1

arnk → 0 as n→∞.(12)
�

Example 3.7. Let {Xn, n ≥ 1} be the sequence of random vectors defined
in Example 2.3 with (cj) such that

∑
j∈B |cj |r < ∞ for some 0 < r < 1 and

{Fn, n ≥ 1} be the distribution functions of common density function

f(x) =

{ r

2xr+1
for |x| > 1,

0 otherwise.

Then
∑
j∈B P (|Xj

1 | > x) � x−r. Using Corollary 3.6 with ank = 1
n1/rl(n)

,

1 ≤ k ≤ n, where limn→∞ l(n) =∞, we get

1

n1/rl(n)

n∑
k=1

Xk
P−→ 0 as n→∞.

In the case l(n) = (log n)1/r, we get the same result as in Example 6.4.4 (p. 282)
of [7].

Corollary 3.8. Under the assumptions of Theorem 3.5, if r = 1 and there
exists A ∈ H such that

lim
n→∞

mn∑
k=1

ank
∑
j∈B

EXj
kI(|Xj

k| ≤ a
−1
nk )ej = A,(13)
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then we have

(14)

mn∑
k=1

ankXk
P−→ A as n→∞.

Proof. We have∥∥∥ mn∑
k=1

ankEYnk −
mn∑
k=1

ank
∑
j∈B

EXj
kI(|Xj

k| ≤ a
−1
nk )ej

∥∥∥
mn∑
k=1

ank
∑
j∈B

E|Y jnk −X
j
kI(|Xj

k| ≤ a
−1
nk )|

=

mn∑
k=1

∑
j∈B

P (|Xj
k| > a−1nk ) ≤ C

mn∑
k=1

arnk → 0 as n→∞.

Then

lim
n→∞

mn∑
k=1

ankEYkn = A,

by Theorem 3.5, we obtain (14). �

In the following corollary, we restrict to the identically distributed coordi-
natewise pairwise NQD random vector case. We recall the concept of slowly
varying function at infinity as follows: Let a ≥ 0, a positive measurable function
f(x) on [a;∞) is said to be slowly varying at infinity if

lim
x→∞

f(tx)

f(x)
= 1 for all t > 0.

Clearly, log x, log log x are slowly varying functions at infinity (the readers may
refer to [5, 7]).

Corollary 3.9. Let {Xn;n ≥ 1} be a sequence of H-valued identically dis-
tributed coordinatewise pairwise NQD random vectors whose common distri-
butions satisfy

∑
j∈B P (|Xj | > x) � x−1. In addition, we suppose that there

exists a sequence of real numbers (αj)j∈B such that
∑
j∈B α

2
j <∞ and

lim
x→∞

EXjI(|Xj | ≤ x)

log x
= αj (j ∈ B)(15)

then for each real number β > −1 and a slowly varying sequence l(n) we have

(16)
1

nβ+1l(n) log n

n∑
k=1

kβl(k)Xk
P−→ α

1 + β
as n→∞,

where α =
∑
j∈B αjej.
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Proof. Using Corollary 3.8, with mn = n, ank = bk
cn

, bk = kβl(k) and cn =

nβ+1l(n) log n. We note

n∑
j=1

bj ∼
1

1 + β
nβ+1l(n),

n∑
j=1

bj log bj ∼
β

1 + β
nβ+1l(n) log n and log cn ∼ (β + 1) log n,

∑
j∈B

E(|Xj |I(|Xj | ≤ x)) �
∑
j∈B

∑
0≤k≤x−1

(k + 1)P (k < |Xj | ≤ k + 1)

=
∑
j∈B

∑
1≤k≤x−1

P (|Xj | > k)

=
∑

1≤k≤x−1

∑
j∈B

P (|Xj | > k)

�
∑

1≤k≤x−1

k−1 � log x.

This implies that

∑
j∈B

∣∣∣ n∑
k=1

ankEX
jI(|Xj | ≤ a−1nk )

∣∣∣ ≤ 1

cn

n∑
k=1

bk
∑
j∈B

E|Xj |I(|Xj | ≤ cn
bk

)

� 1

cn

n∑
k=1

bk log(
cn
bk

)→ 1

1 + β
as n→∞,

so

(17) sup
n

∑
j∈B

∣∣∣ n∑
k=1

ankEX
jI(|Xj | ≤ a−1nk )

∣∣∣ <∞.
Moreover, for each j ∈ B, by (15) we have

n∑
k=1

ankEX
jI{|Xj | ≤ a−1nk } ∼ αj

∑n
k=1 bk log( cnbk )

cn
→ αj

1 + β
as n→∞.

Using (17),

A = lim
n→∞

n∑
k=1

ank
∑
j∈B

EXj
kI(|Xj

k| ≤ a
−1
nk )ej →

α

1 + β
as n→∞.

This completes the proof. �
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4. Applications

4.1. Extended Pareto-Zipf distribution

In this subsection, we extend Theorem 3.1 of Nakata [16] as follows.
We consider {Xn, n ≥ 1} as a sequence of coordinatewise pairwise NQD

random vectors in H whose distributions are defined by P (Xj
n = 0) = 1− αj

crn
,

(j ∈ B) and the tail probability

P (Xj
n > x) =

αj
(x+ cn)r

for x > 0, j ∈ B,

where r > 0, αj ≥ 0,
∑
j∈B αj < ∞ and {cn;n ≥ 1} is a sequence of positive

numbers such that

crn ≥ max{αj} for all n.

Clearly, ∑
j∈B

P (|Xj
n| > x) � x−r

for n ≥ 1 and

lim sup
x→∞

sup
n≥1

xr
∑
j∈B

P (|Xj
n| > x) <∞.

We have the following theorem.

Theorem 4.1. Let 0 < r < 2; r 6= 1. Suppose that

Cn =

n∑
k=1

c−rk →∞ as n→∞,

and

Cn = o(brn).

If 0 < r < 1, then

(18)
1

bn

n∑
k=1

Xk

ck

P−→ 0 as n→∞.

If 1 < r < 2, then

(19)
1

bn

( n∑
k=1

Xk

ck
− Cnα

r − 1

)
P−→ 0 as n→∞,

where α =
∑
j αjej.

Proof. If 0 < r < 1, it is easy to obtain (18) by Corollary 3.6.
In the case 1 < r < 2, we have by Theorem 3.1 that

1

bn

n∑
k=1

1

ck
(Xk − E(Xk))

P−→ 0 as n→∞.
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Moreover,

1

bn

n∑
k=1

1

ck
EXk =

1

bn

n∑
k=1

1

ck

∑
j∈B

EXj
ke
j

=
1

bn

n∑
k=1

1

ck

∑
j∈B

(

∫ ∞
0

P (Xj
k > x)dx)ej

=
1

bn

n∑
k=1

1

ck

∑
j∈B

(

∫ ∞
0

αj
(x+ ck)r

dx)ej

=
α

bn

n∑
k=1

1

(r − 1)crk
=

Cnα

(r − 1)bn
.

This completes the proof. �

Theorem 4.2. Let r = 1. Suppose that

Cn =

n∑
k=1

c−1k →∞ as n→∞.

Then,

(20)
1

Cn logCn

n∑
k=1

Xk

ck

P−→ α as n→∞.

Proof. From Corollary 3.8, with ank = 1
ckCn logCn

(1 ≤ k ≤ n), it is sufficient

to show A = α. It follows that for large x > 0,∑
j∈B

EXj
kI(Xj

k ≤ x)ej =
∑
j∈B

(
xP (Xj

k ≤ x)−
∫ x

0

P (Xj
k ≤ t)dt

)
ej ∼ α log

x

ck
,

then

A = lim
n→∞

1

Cn logCn

n∑
k=1

1

ck

∑
j∈B

EXj
kI(Xj

k ≤ Cn logCnck)ej

= α lim
n→∞

Cn log(Cn logCn)

Cn logCn
= α.

�

4.2. A generalized St. Petersburg Game

We consider {Xn, n ≥ 1} as a sequence of identically distributed coordinate-
wise pairwise NQD random vectors in H with

P (Xj
n = 2k/r) = αj2

−k for k ≥ 1, n ≥ 1, j ∈ B, and P (Xj
n = 0) = 1− αj ,

where 0 < r < 2, 0 ≤ αj ≤ 1,
∑
j∈B αj <∞. Put α =

∑
j∈B αjej .
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If 1 < r < 2, then mj = EXj
n =

αj

1−21/r−1 , m =
∑
jmjej = E(Xn) =

α
1−21/r−1 . Thus, we also have

∑
j∈B P (|Xj

n − mj | > x) � x−r. Therefore,

applying Corollary 3.2 with bn = n1/r log log n, we get

1

n1/r log log n

n∑
k=1

(Xk −m)
P−→ 0 as n→∞.

If 0 < r < 1, we also have
∑
j∈B P (|Xj

n| > x) � x−r. Therefore, applying

Corollary 3.6 with ank = 1
n1/r log logn

(1 ≤ k ≤ n), we get

1

n1/r log log n

n∑
k=1

Xk
P−→ 0 as n→∞.

If r = 1, note that EXjI{|Xj |≤x} ∼ αj log x/ log 2 for all j ∈ B. By Corollary
3.9, for β > −1 and a slowly varying sequence l(n), we have

lim
n→∞

∑n
j=1 j

βl(j)Xj

nβ+1l(n) log n
=

1

(1 + β) log 2
in probability.
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