J. Korean Math. Soc. **56** (2019), No. 2, pp. 353–385

https://doi.org/10.4134/JKMS.j180190 pISSN: 0304-9914 / eISSN: 2234-3008

# COMBINATORIAL AUSLANDER-REITEN QUIVERS AND REDUCED EXPRESSIONS

Se-jin  $Oh^{\dagger}$  and Uhi Rinn  $Suh^{\ddagger}$ 

ABSTRACT. In this paper, we introduce the notion of combinatorial Auslander-Reiten (AR) quivers for commutation classes  $[\widetilde{w}]$  of w in a finite Weyl group. This combinatorial object is the Hasse diagram of the convex partial order  $\prec_{[\widetilde{w}]}$  on the subset  $\Phi(w)$  of positive roots. By analyzing properties of the combinatorial AR-quivers with labelings and reflection functors, we can apply their properties to the representation theory of KLR algebras and dual PBW-basis associated to any commutation class  $[\widetilde{w}_0]$  of the longest element  $w_0$  of any finite type.

#### Introduction

For a Dynkin quiver Q of finite type ADE, the Auslander-Reiten quiver  $\Gamma_Q$  encodes the representation theory of the path algebra  $\mathbb{C}Q$  in the following sense: (i) the set of vertices corresponds to the set Ind Q of isomorphism classes of indecomposable  $\mathbb{C}Q$ -modules, (ii) the set of arrows corresponds to the set of irreducible morphisms between objects in Ind Q. On the other hand, by reading the residues of vertices of  $\Gamma_Q$  in a compatible way ([2]), one can obtain reduced expressions  $\widetilde{w}_0$  of the longest element  $w_0$  in the Weyl group W. Such reduced expressions can be grouped into one class [Q] via commutation equivalence  $\sim$ :  $\widetilde{w}_0 \sim \widetilde{w}'_0$  if and only if  $\widetilde{w}'_0$  can be obtained by applying the commutation relations  $s_i s_j = s_j s_i$ .

A reduced expression in [Q] is called *adapted to* Q.

Another important role of  $\Gamma_Q$  in Lie theory is a realization of the convex partial order  $\prec_Q$  on  $\Phi^+$ , which has been used in representation theory intensively (see, for example, [7,11,13]). Here, the order  $\prec_Q$  is defined as follows: For a reduced expression  $\widetilde{w}_0 = s_{i_1} s_{i_2} \cdots s_{i_N} \in [Q]$ , we denote a positive root  $s_{i_1} s_{i_2} \cdots s_{i_{k-1}} \alpha_k \in \Phi^+$  by  $\beta_k^{\widetilde{w}_0}$  and assign the residue  $i_k$  to  $\beta_k^{\widetilde{w}_0}$ . Then each reduced expression  $\widetilde{w}_0 \in [Q]$  induces the total order  $<_{\widetilde{w}_0}$  on  $\Phi^+$  such that

Received March 19, 2018; Revised July 15, 2018; Accepted July 31, 2018. 2010 Mathematics Subject Classification. 81R50, 05E10, 16T30, 17B37.

Key words and phrases. combinatorial AR-quiver, reduced expressions.

<sup>&</sup>lt;sup>†</sup>This work was supported by NRF Grant #2016R1C1B2013135.

 $<sup>^{\</sup>ddagger}$  This work was supported by NRF Grant #2016R1C1B1010721.

 $\beta_k^{\widetilde{w}_0} <_{\widetilde{w}_0} \beta_l^{\widetilde{w}_0} \iff k < l.$  Using the total orders  $<_{\widetilde{w}_0'}$  for  $\widetilde{w}_0' \in [Q]$ , we obtain the convex partial order  $\prec_Q$  on  $\Phi^+$ :

$$\alpha \prec_Q \beta$$
 if and only if  $\alpha <_{\widetilde{w}_0'} \beta$  for all  $\widetilde{w}_0' \in [Q]$ 

such that  $\alpha \prec_Q \beta$  and  $\gamma = \alpha + \beta \in \Phi^+$  imply  $\alpha \prec_Q \gamma \prec_Q \beta$  (the convexity).

As the definition itself,  $\prec_Q$  is quite complicated since there are lots of reduced expressions in each [Q]. However, interestingly,  $\Gamma_Q$  realizes  $\prec_Q$  in the sense that

$$\alpha \prec_Q \beta$$
 if and only if there exists a path from  $\beta$  to  $\alpha$  in  $\Gamma_Q$ 

and there exists a way of finding root labels<sup>1</sup> of vertices in  $\Gamma_Q$  only with its shape. Hence,  $\Gamma_Q$  is one of the most efficient tools for analyzing  $\prec_Q$ .

For the longest element  $w_0$  in W of any finite type, it is proved in [18,27] that any convex total order < on  $\Phi^+$  is  $<_{\widetilde{w}_0}$  for some  $\widetilde{w}_0$ . Here,  $\widetilde{w}_0$  is not necessarily adapted. Moreover, any order  $<_{\widetilde{w}_0}$  is a convex order and each convex order  $<_{\widetilde{w}_0}$  does a crucial role in the representation theory (see [4,14] and Theorem 5.7). However, to the best of the authors' knowledge, properties of general  $<_{\widetilde{w}_0}$  and  $\prec_{[\widetilde{w}_0]}$  are not studied well, as much as  $\prec_Q$  of type ADE. Inspired from the facts, in this article, we mainly deal with convex orders  $<_{\widetilde{w}_0}$  and  $\prec_{[\widetilde{w}_0]}$ , for general  $\widetilde{w}_0$  of any finite types.

To see orders  $\prec_{[\widetilde{w}_0]}$  efficiently, we introduce the new quiver  $\Upsilon_{[\widetilde{w}]}$  called the *combinatorial AR-quiver* for a reduced expression  $\widetilde{w}$  of  $w \in W$ , which realizes the convex partial order  $\prec_{[\widetilde{w}]}$  on  $\Phi(w)$ ; that is,

$$\alpha \prec_{[\widetilde{w}]} \beta$$
 if and only if there exists a path from  $\beta$  to  $\alpha$  in  $\Upsilon_{[\widetilde{w}]}$ .

More precisely, we suggest a purely combinatorial algorithm for constructing the quiver  $\Upsilon_{[\widetilde{w}]}$  associated with  $\widetilde{w} = s_{i_1} \cdots s_{i_\ell}$  (Algorithm 2.1) and show, indeed, it is the Hasse diagram of  $\prec_{[\widetilde{w}]}$ . Thus  $\Gamma_Q \simeq \Upsilon_{[Q]}$  and  $\Upsilon_{[\widetilde{w}]}$  are distinct in the sense that  $\Upsilon_{[\widetilde{w}]} \simeq \Upsilon_{[\widetilde{w}']}$  if and only if  $[\widetilde{w}'] = [\widetilde{w}]$  (Theorem 2.21 and Theorem 2.22). In Section 3, we explain an efficient way to compute root labels, which are most useful in our applications. Since, via Algorithm 2.1, it requires a lot of computations to obtain labels, to avoid it, we show every vertex in a sectional path shares a *component* (Definition 3.5). As a consequence, the property allows us to find the labels with a little of computations.

Due to the results in Section 2 and Section 3, we can understand  $\prec_{[\widetilde{w}_0]}$  completely using the quiver  $\Upsilon_{[\widetilde{w}_0]}$ . However, since there are too many classes  $[\widetilde{w}_0]$  of reduced expressions to investigate  $\prec_{[\widetilde{w}_0]}$  one by one, we aim to classify the classes. To this end, in Section 4, we consider another equivalence relation called a reflection equivalence relation on the set of commutation equivalence classes. An equivalence class induced from reflection equivalences is called an r-cluster point  $[\![\widetilde{w}_0]\!]$ . As one may expect, there are similarities between representation theories related to [Q] and [Q'] (for example, [7,11,15-17], see also Corollary 5.15) and  $\{[Q]\}$  forms an r-cluster point  $[\![\Delta]\!]$ , called the adapted

<sup>&</sup>lt;sup>1</sup>elements in  $\Phi^+$  corresponding to vertices in  $\Gamma_Q$ 

cluster point. In addition, we introduce the notion of Coxeter composition (Definition 4.10) with respect to a Dynkin diagram automorphism  $\sigma$ .

In Section 5, we apply our results in previous sections to the representation theory of KLR-algebras ([10,21]) and PBW-bases of quantum groups ([12,23]). It is well known that proper standard modules  $\{\overrightarrow{S}_{\widetilde{w}_0}(\underline{m})\}$  of a KLR-algebra associated to  $\widetilde{w}_0$  categorify the corresponding dual PBW-basis  $\{P_{\widetilde{w}_0}(\underline{m})\}$  ([4, 7–9,14]). Moreover, for finite type cases,  $\{\overrightarrow{S}_{\widetilde{w}_0}(\underline{m})\}$  depends only on the commutation class  $[\widetilde{w}_0]$ , up to  $q^{\mathbb{Z}}$ , and so does  $\{P_{\widetilde{w}_0}(\underline{m})\}$  (see [4,14]). Note that this property is originated from the commutation relation between operators  $T_i$  and  $T_j$  in [12,23]. In Theorem 5.8, we give an alternative proof of the property using our observation on  $\prec_{[\widetilde{w}_0]}$  and  $\Upsilon_{[\widetilde{w}_0]}$ .

If the Lie algebra  $\mathfrak g$  is of finite simply laced type, the set of all simple modules of the KLR-algebra categorifies the dual canonical basis ([22, 26]). In [14], a transition map between a dual PBW-basis and the dual canonical basis was introduced (see (5.6)) and we consider a more refined transition map using  $\prec_{[\widetilde{w}_0]}$  (see (5.7)). By the refined transition map, in Proposition 5.12, we prove that the root modules  $S_{[\widetilde{w}_0]}(\beta)$  ( $\beta \in \Phi^+$ ) for  $\beta$ 's lying on the same sectional path q-commute to each other and hence so do the dual PBW-generators  $P_{[\widetilde{w}_0]}(\beta)$ 's. In addition, reflection functors on  $[[\widetilde{w}_0]]$  allow us to show similarities between  $\{S_{[\widetilde{w}_0]}(\alpha)\}$  and  $\{S_{[\widetilde{w}_0]}(\alpha')\}$  for  $[\widetilde{w}_0], [\widetilde{w}_0'] \in [[\widetilde{w}_0]]$  (Corollary 5.15).

In Appendix, we give a table of r-cluster points of  $A_4$  (Appendix A) and observations on the relations between  $\Upsilon_{[\widetilde{w}']}$  and  $\Upsilon_{[\widetilde{w}]}$  when  $\widetilde{w}'$  is obtained from  $\widetilde{w}$  by a braid relation (Appendix B).

## 1. Auslander-Reiten quivers

In this section, we recall properties of Auslander-Reiten quivers. We refer to [1,6,11,24] for the basic theories on quiver representations and Auslander-Reiten quivers. For the combinatorial properties, we refer to [2,16].

# 1.1. Auslander-Reiten quivers and related notions

Let  $A = (a_{ij})_{i,j \in I}$  for  $I = \{1, \ldots, n\}$  be a Cartan matrix of a finite-dimensional simple Lie algebra  $\mathfrak{g}$ . Let  $\Delta$  be the Dynkin diagram associated to A. For vertices  $i, j \in I$  in  $\Delta$ , the minimal length of a path from i to j is called the *distance* between i and j and is denoted by  $d_{\Delta}(i, j)$ .

We denote by  $\Pi = \{\alpha_i \mid i \in I\}$  the set of simple roots,  $\Phi$  the set of roots,  $\Phi^+$  (resp.  $\Phi^-$ ) the set of positive roots (resp. negative roots). Let  $\{\epsilon_i \mid 1 \leq i \leq m\}$  be the set of orthonormal basis of  $\mathbb{C}^m$ . The free abelian group  $Q := \bigoplus_{i \in I} \mathbb{Z} \alpha_i$  is called the *root lattice*. Set  $Q^+ = \sum_{i \in I} \mathbb{Z}_{\geq 0} \alpha_i \subset Q$  and  $Q^- = \sum_{i \in I} \mathbb{Z}_{\leq 0} \alpha_i \subset Q$ . For  $\beta = \sum_{i \in I} m_i \alpha_i \in Q^+$ , we set  $\operatorname{ht}(\beta) = \sum_{i \in I} m_i$ . Let  $(\cdot, \cdot)$  be the the symmetric bilinear form on  $Q \times Q$  (we refer [3, Plate I $\sim$ IX]).

A Dynkin quiver Q is obtained by adding an orientation to each edge in the Dynkin diagram  $\Delta$  of a finite simply laced type. In other words,  $Q = (Q^0, Q^1)$  where  $Q^0$  is the set of vertices indexed by I and  $Q^1$  is the set of oriented edges

with the underlying graph  $\Delta$ . We say that the vertex  $i \in \Delta$  is a sink (resp. source) if every edge between i and j is oriented as follows:  $j \to i$  (resp.  $i \to j$ ).

- **1.1.1.** Auslander-Reiten quivers. Let  $\operatorname{Mod}(\mathbb{C}Q)$  be the category of finite dimensional modules over the path algebra  $\mathbb{C}Q$ . An object  $M \in \operatorname{Mod}\mathbb{C}Q$  consists of the following data:
  - (1) a finite dimensional module  $M_i$  for each  $i \in Q^0$ ,
  - (2) a linear map  $\psi_{i\to j}: M_i \to M_j$  for each oriented edge  $i \to j$ .

The dimension vector of the module M is  $\underline{\dim} M = \sum_{i \in I} (\dim M_i) \alpha_i$  and a simple object in  $\operatorname{Mod} \mathbb{C}Q$  is S(i) for some  $i \in I$  where  $\underline{\dim} S(i) = \alpha_i$ . In  $\operatorname{Mod} \mathbb{C}Q$ , the set of isomorphism classes [M] of indecomposable modules is denoted by  $\operatorname{Ind} Q$ .

**Theorem 1.1** (Gabriel's theorem). Let Q and  $\Phi^+$  be a Dynkin quiver and the set of positive roots of finite type  $A_n$ ,  $D_n$  or  $E_n$ . Then there is a bijection between Ind Q and  $\Phi^+$ :

$$[M] \mapsto \underline{\dim} M.$$

Now we recall the Auslander-Reiten (AR) quiver  $\Gamma_Q$  associated to a Dynkin quiver Q of finite type  $A_n$ ,  $D_n$ , or  $E_n$ . Let us denote by Ind Q the set of isomorphism classes [M] of indecomposable modules in Mod  $\mathbb{C}Q$ , where Mod  $\mathbb{C}Q$  is the category of finite dimensional modules over the path algebra  $\mathbb{C}Q$ .

**Definition 1.2.** The quiver  $\Gamma_Q = (\Gamma_Q^0, \Gamma_Q^1)$  is called the Auslander-Reiten quiver (AR quiver) if

- (i) each vertex  $V_M$  in  $\Gamma_Q^0$  corresponds to an isomorphism class [M] in Ind Q,
- (ii) an arrow  $V_M \to V_{M'}$  in  $\Gamma_Q^1$  corresponds to an *irreducible* morphism  $M \to M'$ .

Gabriel's theorem (Theorem 1.1) tells that there is a natural one-to-one correspondence between the set  $\Gamma_Q^0$  of vertices in  $\Gamma_Q$  and the set  $\Phi^+$  of positive roots. Hence we use  $\Phi^+$  as the index set of  $\Gamma_Q^0$ .

**1.1.2.** Adapted reduced expressions. The Weyl group W of a finite type with rank n is generated by simple reflections  $s_i \in \operatorname{Aut}(\mathbb{Q}), i \in I$ , defined by  $s_i(\alpha) := \alpha - \frac{(\alpha, \alpha_i)}{(\alpha_i, \alpha_i)} \alpha_i$ . Note that  $(w(\alpha), w(\beta)) = (\alpha, \beta)$  for any  $w \in W$  and  $\alpha, \beta \in \mathbb{Q}$ . For  $w \in W$ , the length of w is

$$\ell(w) = \min\{l \in \mathbb{Z}_{\geq 0} \mid s_{i_1} \cdots s_{i_l} = w, \ s_{i_k} \text{ are simple reflections}\}.$$

If  $w = s_{i_1} s_{i_2} \cdots s_{i_{\ell(w)}}$ , then the sequence of simple reflections  $\widetilde{w} = (s_{i_1}, \dots, s_{i_{\ell(w)}})$  is called a *reduced expression* associated to w. We denote by  $w_0$  the longest element in W and by \* the involution on I induced by  $w_0$ ; i.e.,

(1.1) 
$$w_0(\alpha_i) := -\alpha_{i^*} \text{ for all } i \in I.$$

For  $w \in W$  with a reduced expression  $(s_{i_1}, \ldots, s_{i_l})$ , consider the subset ([3])

(1.2) 
$$\begin{aligned} \Phi(w) &= \{ \alpha \in \Phi^+ \mid w^{-1}(\alpha) \in \Phi^- \} \\ &= \{ s_{i_1} s_{i_2} \cdots s_{i_{k-1}}(\alpha_{i_k}) \mid k = 1, \dots, \ell(w) \} \text{ such that } |\Phi(w)| = \ell(w). \end{aligned}$$

In particular,  $\Phi(w_0) = \Phi^+$ . Note that the definition of (1.2) does not depends on the choice of a reduced expression.

The action of a simple reflection  $s_i$ ,  $i \in I$ , on the set of Dynkin quivers is defined by  $s_i(Q) = Q'$ , where  $s_i(Q)$  is a quiver obtained by Q by reversing all the arrows incident with i.

**Definition 1.3.** A reduced expression  $\widetilde{w} = (s_{i_1}, \dots, s_{i_l})$  of w is said to be adapted to a Dynkin quiver Q if

$$i_k$$
 is a sink of  $Q_{k-1} = s_{i_{k-1}} \cdots s_{i_1}(Q)$ .

Here,  $Q_0 := Q$ .

Remark 1.4. The followings are well known facts:

- (1) A reduced expression  $\widetilde{w}_0$  of  $w_0$  is adapted to at most one Dynkin quiver Q.
- (2) For each Dynkin quiver Q, there is a reduced expression  $\widetilde{w}_0$  of  $w_0$  adapted to Q.

Note that two different reduced expressions of  $w_0$  can be adapted to the same Dynkin quiver Q. Actually, we can assign a *class* of reduced expressions of  $w_0$  to each Dynkin quiver Q. (See Definition 1.5 and Proposition 1.6.)

**Definition 1.5** ([2,11]). Let  $\widetilde{w} = (s_{i_1}, s_{i_2}, \dots, s_{i_k})$  and  $\widetilde{w}' = (s_{i'_1}, s_{i'_2}, \dots, s_{i'_k})$  be reduced expressions of  $w \in W$ . If  $\widetilde{w}'$  can be obtained from  $\widetilde{w}$  by a sequence of commutation relations,  $s_i s_j = s_j s_i$  for  $d_{\Delta}(i,j) > 1$ , then we say  $\widetilde{w}$  and  $\widetilde{w}'$  are *commutation equivalent* and write  $\widetilde{w} \sim \widetilde{w}'$ . The *equivalence class* of  $\widetilde{w}$  is denoted by  $[\widetilde{w}]$ .

**Proposition 1.6** ([2,11]). Reduced expressions  $\widetilde{w}_0 = (s_{i_1}, s_{i_2}, \ldots, s_{i_l})$  and  $\widetilde{w}'_0 = (s_{i'_1}, s_{i'_2}, \ldots, s_{i'_l})$  of  $w_0$  are adapted to the same quiver Q if and only if  $\widetilde{w}_0 \sim \widetilde{w}'_0$  and  $\widetilde{w}_0$  is adapted to Q.

Thus we can denote by [Q] the equivalence class of  $w_0$  consisting of all reduced expressions adapted to the Dynkin quiver Q.

**1.1.3.** Coxeter elements. An element  $\phi = s_{i_1} s_{i_2} \cdots s_{i_n} \in W$  where  $\{i_1, i_2, \ldots, i_n\} = I$  is called a Coxeter element. There is the one-to-one correspondence between the set of Dynkin quivers and the set of Coxeter elements

$$Q \longleftrightarrow \phi_Q$$

where  $\phi_Q$  is the Coxeter element all of whose reduced expressions are adapted to Q.

**1.1.4.** Partial orders on  $\Phi(w)$ . Let w be an element in W of finite type. An order  $\leq$  on the set  $\Phi(w)$  is said to be *convex* if

$$\alpha, \beta, \alpha + \beta \in \Phi(w)$$
 and  $\alpha \leq \beta$  implies  $\alpha \leq \alpha + \beta \leq \beta$ .

**Definition 1.7.** The total order  $<_{\widetilde{w}}$  on  $\Phi(w)$  associated to  $\widetilde{w} = (s_{i_1}, s_{i_2}, \dots, s_{i_l})$  is defined by

$$\beta_{j}^{\widetilde{w}} <_{\widetilde{w}} \beta_{k}^{\widetilde{w}} \quad \text{if and only if} \quad j < k \quad \text{where } \beta_{j}^{\widetilde{w}} := s_{i_{1}} s_{i_{2}} \cdots s_{i_{j-1}}(\alpha_{i_{j}}).$$

**Definition 1.8.** Let  $\alpha, \beta \in \Phi(w) \subset \Phi^+$ . We define an order  $\prec_{[\widetilde{w}]}$  on  $\Phi(w)$  as follows:

$$\alpha \prec_{[\widetilde{w}]} \beta$$
 if and only if  $\alpha <_{\widetilde{w}'} \beta$  for any  $\widetilde{w}' \in [\widetilde{w}]$ .

**Proposition 1.9** ([18]). The total order  $<_{\widetilde{w}}$  and the partial order  $\prec_{[\widetilde{w}]}$  are convex orders on  $\Phi(w)$ .

Remark 1.10. Consider the adapted class [Q] associated to the Dynkin quiver Q of type ADE. The convex partial order  $\prec_{[Q]}$  is often denoted by  $\prec_Q$  for the simplicity of notation.

## 1.2. Construction of AR-quivers

Consider the height function  $\xi: I \to \mathbb{Z}$  associated to the Dynkin quiver Q, that is  $\xi$  satisfies

if there exists an arrow 
$$i \to j$$
 in  $Q$ , then  $\xi(j) = \xi(i) - 1 \in \mathbb{Z}$ .

Note that a height function exists and is unique (up to constant) since the Dynkin diagram do not have a cycle and connected.

The repetition quiver  $\mathbb{Z}Q$  of Q associated to the height function  $\xi$  consists of the set of vertices

$$(\mathbb{Z}Q)^0 = \{(i,p) \in I \times \mathbb{Z} \mid p - \xi(i) \in 2\mathbb{Z}\}\$$

and the set of arrows

$$(\mathbb{Z}Q)^1 = \{(j,p+1) \to (i,p), \, (i,p) \to (j,p-1) \, | \, i,j \in I \text{ such that } d_{\Delta}(i,j) = 1\}.$$

For  $i \in I$ , we define positive roots  $\gamma_i$  and  $\theta_i$  in the following way:

(1.3) 
$$\gamma_i = \alpha_i + \sum_{j \in \stackrel{\leftarrow}{i}} \alpha_j \quad \text{and} \quad \theta_i = \alpha_i + \sum_{j \in \stackrel{\rightarrow}{i}} \alpha_j,$$

where

- $\stackrel{\leftarrow}{i}$  is the set of vertices j in  $Q^0$  such that there exists a path from i to j,
- i is the set of vertices j in  $Q^0$  such that there exists a path from j to i.

Note that  $\{\gamma_i | i \in I\} = \Phi(\phi_Q)$  and  $\{\theta_i | i \in I\} = \Phi(\phi_Q^{-1})$ . Consider the map  $\pi_Q : \Phi^+ \to (\mathbb{Z}Q)^0$  such that

(1.4) 
$$\gamma_i \mapsto (i, \xi(i)), \ \phi_Q(\alpha) \mapsto (i, p-2) \text{ if } \pi_Q(\alpha) = (i, p) \text{ and } \phi_Q(\alpha), \ \alpha \in \Phi^+.$$

**Proposition 1.11** ([7]). The subquiver of  $\mathbb{Z}Q$  consisting of  $\pi_Q(\Phi^+)$  is the same as the quiver  $\Gamma_Q$  by identifying their vertices as  $\Phi^+$ .

For a given Dynkin quiver Q and a root  $\alpha \in \Phi^+$ , (i, p) is the *coordinate* of  $\alpha$  in  $\Gamma_Q$  and i is the *residue* of  $\alpha$  in  $\Gamma_Q$ , when  $\pi_Q(\alpha) = (i, p)$ .

**Proposition 1.12** ([2,19]). Let  $\widetilde{w}_0 = (s_{i_1}, s_{i_2}, \dots, s_{i_l}) \in [Q]$ . The correspondence between coordinates of  $\Gamma_Q$  and roots in  $\Phi^+$  is given as follows:

$$(1.5) (i,\xi(i)+2m) \leftrightarrow \beta = s_{i_1}s_{i_2}\cdots s_{i_{k-1}}(\alpha_i) \in \Phi^+$$

for  $m = \#\{t \mid i_t = i, 1 \le t < k\}$  and  $i = i_k$ .

**Example 1.13.** Let  $\widetilde{w}_0=(s_1,s_3,s_2,s_4,s_1,s_3,s_5,s_2,s_4,s_1,s_3,s_5,s_2,s_4,s_1)$  of  $A_5$ , which is adapted to the Dynkin quiver  $Q=\underset{1}{\circ}\underset{2}{\circ}\underset{2}{\circ}\underset{3}{\circ}\underset{4}{\circ}\underset{5}{\circ}$ . The AR quiver  $\Gamma_Q$  associated to Q is:



Here  $[a, b] := \sum_{i=a}^{b} \alpha_i \in \Phi^+$ .

**Definition 1.14.** A path  $\beta_0 \to \beta_1 \to \cdots \to \beta_s$  in  $\Gamma_Q$  is called a *sectional* path if, for each  $0 \le k < l \le s$ ,  $d_{\Delta}(i_k, i_l) = k - l$ . Here  $i_t$   $(0 \le t \le s)$  denotes the residue of  $\beta_t$  in  $\Gamma_Q$ . Combinatorially, a path is sectional if the path is *upwards* or *downwards* in  $\Gamma_Q$ .

# 1.3. Properties of AR-quivers

The AR quiver  $\Gamma_Q$  is the Hasse diagram of the convex partial order  $\prec_Q$  when Q is a Dynkin quiver Q of type ADE in the following sense:

**Theorem 1.15** ([20]). For a Dynkin quiver Q and  $\alpha, \beta \in \Phi^+$ , we have  $\alpha \prec_Q \beta$  if and only if there is a path from  $\beta$  to  $\alpha$  in  $\Gamma_Q$ . Furthermore, there exists an arrow from  $\beta$  to  $\alpha$  in  $\Gamma_Q$  if and only if  $\beta$  is a cover of  $\alpha$  with respect to  $\prec_Q$ .

Also, adapted reduced expressions to Q can be obtained from the AR-quiver  $\Gamma_Q$  by compatible readings. Here, a compatible reading of the AR quiver  $\Gamma_Q$  is the sequence  $s_{i_1}, \ldots, s_{i_N}$  (resp.  $i_1, \ldots, i_N$ ) of simple reflections (resp. indices) such that whenever there is an arrow from  $(i_q, n_q)$  to  $(i_r, n_r)$  in  $\Gamma_Q$ , read  $s_{i_r}$  before  $s_{i_q}$ .

Moreover, we have the following theorem.

**Theorem 1.16** ([2]). Let Q be a Dynkin quiver of finite type  $A_n$ ,  $D_n$ ,  $E_n$ . Then any reduced expression of  $w_0 \in W$  adapted to the quiver Q can be obtained by a compatible reading of the AR quiver  $\Gamma_Q$ .

Note that, by Proposition 1.15, a compatible reading of  $\Gamma_Q$  gives a compatible reading of positive roots, in the sense that  $\alpha$  is read before  $\beta$  if  $\alpha \prec_Q \beta$  for  $\alpha, \beta \in \Phi^+$ .

## 2. Combinatorial AR-quivers and convex partial orders

In this section, we shall introduce combinatorial object  $\Upsilon_{[\widetilde{w}]}$  which can be understood as the Hasse diagram of  $\prec_{[\widetilde{w}]}$  on  $\Phi(w)$  for a reduced expression  $\widetilde{w}$  of any element w in any finite Weyl group W. First we suggest an algorithm for the object and then prove that the combinatorial object is distinct in the sense that  $\Upsilon_{[\widetilde{w}]} = \Upsilon_{[\widetilde{w}']}$  if and only if  $[\widetilde{w}] = [\widetilde{w}']$ .

# 2.1. Combinatorial AR-quivers

**Algorithm 2.1.** The quiver  $\Upsilon_{\widetilde{w}} = (\Upsilon_{\widetilde{w}}^0, \Upsilon_{\widetilde{w}}^1)$  associated to  $\widetilde{w} = (s_{i_1}, s_{i_2}, \ldots, s_{i_{\ell(w)}})$  is constructed in the following algorithm:

- (Q1)  $\Upsilon_{\widetilde{w}}^0$  consists of  $\ell(w)$  vertices labeled by  $\beta_1^{\widetilde{w}}, \ldots, \beta_{\ell(w)}^{\widetilde{w}}$ .
- (Q2) There is an arrow from  $\beta_k^{\widetilde{w}}$  to  $\beta_j^{\widetilde{w}}$  if
- $(i) \ k > j, \quad (ii) \ d_{\Delta}(i_k, i_j) = 1 \quad and \quad (iii) \ \{ \ t \ | \ j < t < k, \ i_t = i_j \ or \ i_k \} = \emptyset.$
- (Q3) Assign the color  $m_{jk} = -(\alpha_{i_j}, \alpha_{i_k})$  to each arrow  $\beta_k^{\widetilde{w}} \to \beta_j^{\widetilde{w}}$  in (Q2); that is,  $\beta_k^{\widetilde{w}} \xrightarrow{m_{jk}} \beta_i^{\widetilde{w}}$ . Replace  $\xrightarrow{1} by \to , \xrightarrow{2} by \Rightarrow and \xrightarrow{3} by \Longrightarrow$ .

We call the quiver  $\Upsilon_{\widetilde{w}}$  the combinatorial AR-quiver associated to  $\widetilde{w}$ . Now we can define the notion of sectional paths in  $\Upsilon_{\widetilde{w}}$  as in Definition 1.14. In  $\Upsilon_{[\widetilde{w}]}$ , the residue of the vertex labeled by  $\beta_k^{\widetilde{w}}$  is  $i_k$ .

Remark 2.2.

- (1) To compute  $\beta_k^{\widetilde{w}}$  from the reduced expression  $\widetilde{w}$ , we need lots of computations in general. So, we significantly deal with this problem separately, in Section 3.
- (2) The shape of  $\Upsilon_{[\widetilde{w}]}$  can be obtained directly, without any computation, from Algorithm 2.1 (see (2.1) in Example 2.4).

The following proposition follows from the construction of the quiver  $\Upsilon_{\widetilde{w}}$ :

**Proposition 2.3.** If two reduced expressions  $\widetilde{w}$  and  $\widetilde{w}'$  are commutation equivalent, then  $\Upsilon_{\widetilde{w}} = \Upsilon_{\widetilde{w}'}$ . Hence we can define the combinatorial AR-quiver on  $[\widetilde{w}]$ :

$$\Upsilon_{[\widetilde{w}]} := \Upsilon_{\widetilde{w}'} \text{ for any } \widetilde{w}' \in [\widetilde{w}].$$

**Example 2.4.** Let  $\widetilde{w} = (s_1, s_2, s_3, s_5, s_4, s_3, s_1, s_2, s_3, s_5, s_4, s_3, s_1)$  of  $A_5$ . Then one can easily check that  $\widetilde{w}$  is *not* adapted to *any* Dynkin quiver Q of type  $A_5$ . According to Algorithm 2.1, the shape of  $\Upsilon_{[\widetilde{w}]}$  is:



Labels of vertices of the combinatorial AR quiver  $\Upsilon_{[\widetilde{w}]}$  are

$$\begin{split} &(\beta_k^{\widetilde{w}} \,|\, 1 \leq k \leq \ell(w) = 13) \\ &= ([1], [1, 2], [1, 3], [5], [1, 5], [4, 5], [2], [2, 5], [2, 3], [1, 4], [2, 4], [4], [3, 5]). \end{split}$$

Hence  $\Upsilon_{[\widetilde{w}]}$  is drawn as follows:



Here [2,4] and [2] are positive roots whose residues are 4 and 1, and lie in the sectional path:

$$[2,4] \to [2,4] \to [2,5] \to [2]$$

**Example 2.5.** Let  $\widetilde{w}_0 = (s_3, s_2, s_3, s_2, s_1, s_2, s_3, s_2, s_1)$  of  $B_3$ . The combinatorial AR quiver of  $[\widetilde{w}_0]$  is:

$$\Upsilon_{[\widetilde{w}_0]} = \underset{2}{1} \alpha_1$$

$$\underset{\alpha_1 + \alpha_2}{2} \alpha_1 + \alpha_2$$

$$\underset{\alpha_1 + \alpha_2 + \alpha_3}{\alpha_1 + \alpha_2 + 2\alpha_3} \alpha_2 + 2\alpha_3$$

$$\underset{\alpha_2 + \alpha_3}{\alpha_2 + 2\alpha_3} \alpha_2$$

**Example 2.6.** A combinatorial AR quiver is not necessarily connected. For example, let  $\widetilde{w} = (s_4, s_3, s_1)$  of  $A_4$ . Then

$$\Upsilon_{[\widetilde{w}]} = \frac{1}{1} \alpha_1$$

$$\frac{2}{3} \alpha_3 + \alpha_4$$

$$4$$

**Example 2.7.** Let  $\widetilde{w}_0 = (s_1, s_2, s_3, s_1, s_2, s_4, s_1, s_2, s_3, s_1, s_2, s_4)$  of  $D_4$ . Note that  $\widetilde{w}_0$  is *not* adapted to any Dynkin quiver of type  $D_4$ . We can draw the combinatorial AR quiver  $\Upsilon_{[\widetilde{w}_0]}$  as follows:



**Example 2.8.** Let  $\widetilde{w} = (s_1, s_2, s_1, s_2, s_1)$  of  $G_2$ . Then

$$\Upsilon_{[\widetilde{w}]} = 1 \qquad \alpha_1 + 3\alpha_2 \qquad 2\alpha_1 + 3\alpha_2 \qquad \alpha_1 + \alpha_2 \qquad \alpha_2 \qquad \alpha_1 + \alpha_2 \qquad \alpha_2 \qquad \alpha_1 + \alpha_2 \qquad \alpha_2 \qquad \alpha_2 \qquad \alpha_1 + \alpha_2 \qquad \alpha_2 \qquad \alpha_2 \qquad \alpha_2 \qquad \alpha_3 \qquad \alpha_4 + \alpha_2 \qquad \alpha_4 \qquad \alpha_5 \qquad \alpha_$$

Remark 2.9. A combinatorial AR quiver is not necessarily connected (see Example 2.6). However, when  $\widetilde{w}$  is a reduced expression consisting of simple reflections  $\{s_{i_1},\ldots,s_{i_k}\}$ , the quiver  $\Upsilon_{[\widetilde{w}]}$  is connected if and only if the full subdiagram of  $\Delta$  consisting of the set of indices  $\{i_1,\ldots,i_k\}$  is connected.

# 2.2. Combinatorial AR-quivers and convex partial orders

In this subsection, we shall show each combinatorial AR-quiver gives rise to a distinct convex partial order  $\prec_{[\widetilde{w}]}$  on  $\Phi(w)$ . To do this, we aim to show the converse (see Theorem 2.21):

(2.3) 
$$\Upsilon_{[\widetilde{w}]} = \Upsilon_{[\widetilde{w}']} \text{ then } [\widetilde{w}] = [\widetilde{w}']$$

of Proposition 2.3, by using the *level functions* (Definitions 2.10, 2.12) of  $\widetilde{w}$  and of  $\Upsilon_{[\widetilde{w}]}$ .

**Definition 2.10** ([2]). Let  $\widetilde{w} = (s_{i_1}, s_{i_2}, \dots, s_{i_l})$  be a reduced expression of w. Given  $\alpha \in \Phi(w)$ , let

$$(2.4) \beta_1, \beta_2, \dots, \beta_k = \alpha$$

be a sequence of distinct elements of  $\Phi(w)$  ending with  $\alpha$  such that

(2.5) 
$$\beta_{i-1} <_{\widetilde{w}} \beta_i \text{ and } (\beta_i, \beta_{i-1}) \neq 0.$$

The function  $\lambda_{\widetilde{w}}:\Phi(w)\to\mathbb{N}$  associated to the reduced expression  $\widetilde{w}$  is defined as follows:

(2.6) 
$$\lambda_{\widetilde{w}}(\alpha) = \max\{k \ge 1 \mid \beta_1, \beta_2, \dots, \beta_k = \alpha \text{ is the sequence in } (2.4)\}.$$

We call it the level function associated to  $\widetilde{w}$ .

**Proposition 2.11** ([2]). Two reduced expressions  $\widetilde{w}$  and  $\widetilde{w}'$  of w are in the same commutation class if and only if  $\lambda_{\widetilde{w}} = \lambda_{\widetilde{w}'}$ .

**Definition 2.12.** The level function  $\lambda_{\Upsilon_{[\widetilde{w}]}}: \Phi^+(w) \to \mathbb{N}$  of  $\Upsilon_{[\widetilde{w}]}$  is defined by  $\lambda_{\Upsilon_{[\widetilde{w}]}}(\beta) = \text{the length of the longest path in } \Upsilon_{[\widetilde{w}]} \text{ from } \beta.$ 

Remark 2.13. By Proposition 2.11 and (2.3), the converse (Theorem 2.21) of Proposition 2.3 can be re-written as

(2.7) 
$$\Upsilon_{[\widetilde{w}]} = \Upsilon_{[\widetilde{w}']} \text{ then } \lambda_{\widetilde{w}} = \lambda_{\widetilde{w}'}.$$

We shall prove (2.7) by showing  $\lambda_{\Upsilon_{[\widetilde{w}]}} = \lambda_{\widetilde{w}}$  (Proposition 2.20).

The following lemmas (Lemma 2.14 and Lemma 2.19) will be used in Proposition 2.20. They explain the sequence  $\beta_1, \beta_2, \ldots, \beta_k$  for the level function  $\lambda_{\widetilde{w}}$  in (2.6), in terms of  $\Upsilon_{\lceil \widetilde{w} \rceil}$ .

**Lemma 2.14.** Let  $\alpha$  and  $\beta$  have residues i and j in the combinatorial Auslander-Reiten quiver  $\Upsilon_{[\widetilde{w}]}$ . If  $\alpha$  and  $\beta$  are connected by one arrow, then we have  $(\alpha, \beta) = -(\alpha_i, \alpha_j) > 0$ .

*Proof.* Take a reduced expression  $\widetilde{w} = (s_{i_1}, \dots, s_{i_{\ell(w)}}) \in [\widetilde{w}]$  and denote  $\alpha = \beta_k^{\widetilde{w}}$  and  $\beta = \beta_l^{\widetilde{w}}$  for  $1 \leq k < l \leq \ell(w)$ . Then the arrow is directed from  $\beta$  to  $\alpha$ . If l = k + 1, then our assertion follows from the formula below:

$$(\alpha, \beta) = (s_{i_1} \cdots s_{i_{k-1}}(\alpha_{i_k}), s_{i_1} \cdots s_{i_k}(\alpha_{i_l})) = (-\alpha_{i_k}, \alpha_{i_l}).$$

Assume that l > k+1 and set  $\widetilde{w}_{k \leq \cdot \leq l} := (s_{i_k}, \ldots, s_{i_l})$ . It is enough to show that there exists a reduced expression  $\widetilde{w}' \in [\widetilde{w}]$  such that  $\beta_{k'}^{\widetilde{w}'} = \alpha$  and  $\beta_{k'+1}^{\widetilde{w}'} = \beta$  for some  $k' \in \{1, \ldots, \ell(w) - 1\}$ .

 $\beta_{k'+1}^{\widetilde{w}'} = \beta$  for some  $k' \in \{1, \dots, \ell(w) - 1\}$ . Observe that the following property is followed by the algorithm of combinatorial AR quivers

- (i)  $\{i_t \mid k < t < l, i_t = i\} = \{i_t \mid k < t < l, i_t = j\} = \emptyset,$
- (ii) if  $i' \neq i, j$ , then  $s_{i'}s_i = s_i s_{i'}$  or  $s_{i'}s_j = s_j, s_{i'}$ .

Hence we can find a reduced expression  $\widetilde{w}' = (s_{i'_1}, \dots, s_{i'_{\ell(w)}}) \in [\widetilde{w}]$  such that  $\alpha = \beta_{k'}^{\widetilde{w}'}$  and  $\beta = \beta_{k'+1}^{\widetilde{w}'}$  for some  $1 \leq k' < \ell(w)$ .

**Proposition 2.15.** Let  $\alpha$  and  $\beta$  have residues  $i=i_0$  and  $j=i_k$  in  $\Upsilon_{[\widetilde{w}]}$ . Suppose there is a sectional path in  $\Upsilon_{[\widetilde{w}]}$ 

$$\beta = \gamma_k \xrightarrow{m_{i_{k-1},i_k}} \gamma_{k-1} \xrightarrow{m_{i_{k-2},i_{k-1}}} \cdots \xrightarrow{m_{i_1,i_2}} \gamma_1 \xrightarrow{m_{i_0,i_1}} \gamma_0 = \alpha.$$

Then we have

(2.8) 
$$(\alpha, \beta) = \begin{cases} \prod_{\substack{t=1 \\ t=0}}^{k-1} 2^{\delta_{3,i_t}} \prod_{t=0}^{k-1} m_{i_t, i_{t+1}} & \text{for Type } F_4, \\ \prod_{t=0}^{k-1} m_{i_t, i_{t+1}} & \text{otherwise,} \end{cases}$$

where  $i_t$  is the residue of  $\gamma_t$  and  $m_{a,b} := -(\alpha_a, \alpha_b)$  for  $a, b \in I$  (Algorithm 2.1).

$$(\alpha, \beta) > 0.$$

*Proof.* Note that, by induction on k, we can see that

$$s_{i_0}s_{i_1}\cdots s_{i_{k-1}}(\alpha_{i_k}) = \alpha_{i_k} + \sum_{p=1}^k (-2)^p \frac{\prod_{t=0}^{p-1}(\alpha_{i_{k-t-1}}, \alpha_{i_{k-t}})}{\prod_{t=0}^{p-1}(\alpha_{i_{k-t-1}}, \alpha_{i_{k-t-1}})} \alpha_{i_{k-p}}.$$

There exists  $w \in W$  such that  $\alpha = w(\alpha_i)$  and  $\beta = w s_i s_{i_1} s_{i_2} \cdots s_{i_{k-1}}(\alpha_j)$ . Hence we have

$$(w(\alpha_{i}), ws_{i}s_{i_{1}}s_{i_{2}}\cdots s_{i_{k-1}}(\alpha_{j}))$$

$$= \left(\alpha_{i_{0}}, (-2)^{k-1} \frac{\prod_{t=1}^{k-1} (\alpha_{i_{t}}, \alpha_{i_{t+1}})}{\prod_{t=1}^{k-1} (\alpha_{i_{t}}, \alpha_{i_{t}})} \alpha_{i_{1}} + (-2)^{k} \frac{\prod_{t=0}^{k-1} (\alpha_{i_{t}}, \alpha_{i_{t+1}})}{\prod_{t=0}^{k-1} (\alpha_{i_{t}}, \alpha_{i_{t}})} \alpha_{i_{0}}\right)$$

$$= -(-2)^{k-1} \frac{\prod_{t=1}^{k-1} (\alpha_{i_{t}}, \alpha_{i_{t+1}})}{\prod_{t=1}^{k-1} (\alpha_{i_{t}}, \alpha_{i_{t}})} (\alpha_{i_{0}}, \alpha_{i_{1}})$$

$$= \prod_{t=1}^{k-1} \frac{2}{(\alpha_{i_{t}}, \alpha_{i_{t}})} \prod_{t=0}^{k-1} -(\alpha_{i_{t}}, \alpha_{i_{t+1}})$$

since  $(\alpha_{i_0}, \alpha_{i_a}) = 0$  for  $a \neq 0, 1$ . Here we note that only  $i_0$  and  $i_k$  can be 1 or n. According to [3], except  $F_4$  case, we can check that  $(\alpha_{i_t}, \alpha_{i_t}) = 2$  for all  $t = 1, 2, \ldots, k-1$ . In the case of type  $F_4$ , we have  $(\alpha_2, \alpha_2) = 2$  and  $(\alpha_3, \alpha_3) = 1$ . Hence we get the formula (2.8).

Remark 2.16. For any finite type other than  $F_4$ , we have

$$(\alpha, \beta) = \prod_{t=0}^{k-1} (\gamma_t, \gamma_{t+1}) = \prod_{t=0}^{k-1} -(\alpha_{i_t}, \alpha_{i_{t+1}}) = \prod_{t=0}^{k-1} m_{i_t, i_{t+1}} > 0.$$

Here we use notations in Proposition 2.15.

**Example 2.17.** Let us consider  $\widetilde{w}_0 = (s_3, s_2, s_3, s_2, s_1, s_2, s_3, s_2, s_1)$  of type  $C_3$ . Then:

$$\Upsilon_{[\widetilde{w}_0]} = \underset{2}{1} \alpha_1 \underbrace{\alpha_1 + \alpha_2}_{2\alpha_1 + 2\alpha_2 + \alpha_3} \underbrace{\alpha_1 + \alpha_2 + \alpha_3}_{\alpha_1 + \alpha_2 + \alpha_3} \underbrace{\alpha_2 + \alpha_3}_{2\alpha_2 + \alpha_3} \underbrace{\alpha_2 + \alpha_3}_{\alpha_3}$$

One can check that Proposition 2.15 holds in the above quiver. For instance,

$$2 = (\alpha_1 + 2\alpha_2 + \alpha_3, 2\alpha_1 + 2\alpha_2 + \alpha_3)$$
  
=  $(\alpha_1 + 2\alpha_2 + \alpha_3, \alpha_1 + \alpha_2 + \alpha_3)(\alpha_1 + \alpha_2 + \alpha_3, 2\alpha_1 + 2\alpha_2 + \alpha_3)$   
=  $(\alpha_1, \alpha_2)(\alpha_2, \alpha_3)$ .

**Lemma 2.18.** Let  $\alpha, \beta \in \Phi(w)$  and  $\widetilde{w}$  be a reduced expression of  $w \in W$ . If there is no path between  $\alpha$  and  $\beta$  in  $\Upsilon_{[\widetilde{w}]}$ , then there are two distinct reduced expressions  $\widetilde{w}'$  and  $\widetilde{w}''$  in  $[\widetilde{w}]$  and two integers  $k, l \in \mathbb{N}$  such that  $\beta_k^{\widetilde{w}'} = \alpha$ ,  $\beta_{k+1}^{\widetilde{w}'} = \beta$  and  $\beta_{l+1}^{\widetilde{w}''} = \alpha$ ,  $\beta_l^{\widetilde{w}''} = \beta$ .

Proof. Let  $\alpha = \beta_s^{\widetilde{w}}$  and  $\beta = \beta_t^{\widetilde{w}}$  have residues i and j, respectively, for  $1 \leq s < t \leq \ell(w)$ . Since there is no path from  $\beta$  to  $\alpha$  in  $\Upsilon_{[\widetilde{w}]}$ , if there is a root  $\gamma = \beta_{t'}^{\widetilde{w}}$  for s < t' < t with residue i', then  $s_{i'}s_i = s_is_{i'}$  or  $s_{i'}s_j = s_js_{i'}$ . Hence there is a reduced expression  $\widetilde{w}' \in [\widetilde{w}]$  such that  $\alpha = \beta_k^{\widetilde{w}'}$  and  $\beta = \beta_{k+1}^{\widetilde{w}'}$ . Also, since we know  $s_is_j = s_js_i$ , we have  $\widetilde{w}'' \in [\widetilde{w}]$  such that  $\alpha = \beta_{k+1}^{\widetilde{w}'}$  and  $\beta = \beta_k^{\widetilde{w}'}$ .

**Lemma 2.19.** Let  $\alpha, \beta \in \Phi(w)$  and  $\widetilde{w}$  be a reduced expression of  $w \in W$ . Suppose there is no path between  $\alpha$  and  $\beta$  in  $\Upsilon_{[\widetilde{w}]}$ . Then we have  $(\alpha, \beta) = 0$ .

*Proof.* Since  $<_{\widetilde{w}}$  is a total order, we can assume that  $\beta_k^{\widetilde{w}} = \alpha$  and  $\beta_l^{\widetilde{w}} = \beta$  for k < l without loss of generality. If l - k = 1, then

$$(\alpha, \beta) = (s_{i_1} \dots, s_{i_{k-1}}(\alpha_{i_k}), s_{i_1} \dots, s_{i_{k-1}}s_{i_k}(\alpha_{i_l}))$$
  
=  $(\alpha_{i_k}, s_{i_k}(\alpha_{i_l})) = (\alpha_{i_k}, \alpha_{i_l}) = 0.$ 

Now our assertion follows from Lemma 2.18.

**Proposition 2.20.** Consider a reduced expression  $\widetilde{w}$  of  $w \in W$  of any finite type. We have

$$\lambda_{\Upsilon_{[\widetilde{w}]}} = \lambda_{[\widetilde{w}]}.$$

*Proof.* Suppose  $\lambda_{\Upsilon_{[\widetilde{w}]}}(\alpha) = k$  and it is obtained by a path  $\alpha = \beta_k \to \beta_{k-1} \to \cdots \to \beta_2 \to \beta_1$  in  $\Upsilon_{[\widetilde{w}]}$ . Then  $\beta_{i-1} \prec_{[\widetilde{w}]} \beta_i$  for  $i = 2, \ldots, k$  so that  $\beta_{i-1} <_{\widetilde{w}} \beta_i$ . Also,  $(\beta_i, \beta_{i-1}) \neq 0$  by Lemma 2.14. Hence  $\lambda_{\widetilde{w}}(\alpha) \geq \lambda_{\Upsilon_{[\widetilde{w}]}}(\alpha) = k$ .

On the other hand, suppose  $\lambda_{\widetilde{w}}(\alpha) = k$  is obtained by the sequence  $\beta_1 <_{\widetilde{w}}$   $\beta_2 <_{\widetilde{w}} \cdots <_{\widetilde{w}} \beta_{k-1} <_{\widetilde{w}} \beta_k = \alpha$  such that  $(\beta_{i-1}, \beta_i) \neq 0$  for  $i = 2, \ldots, k$ . Then  $\beta_{i-1} \prec_{[\widetilde{w}]} \beta_i$  since otherwise  $(\beta_{i-1}, \beta_i) = 0$  by Lemma 2.19. Hence there is a path  $\alpha = \beta_k \to \beta_{k-1} \to \cdots \to \beta_2 \to \beta_1$  in  $\Upsilon_{[\widetilde{w}]}$  which implies  $k = \lambda_{\widetilde{w}}(\alpha) \leq \lambda_{\Upsilon_{[\widetilde{w}]}}(\alpha)$ . As a consequence, we have  $\lambda_{\Upsilon_{[\widetilde{w}]}} = \lambda_{[\widetilde{w}]}$ .

**Theorem 2.21.** Two reduced expressions  $\widetilde{w}$  and  $\widetilde{w}'$  are in the same commutation class if and only if  $\Upsilon_{[\widetilde{w}]} = \Upsilon_{[\widetilde{w}']}$ .

*Proof.* It is enough to show that if  $\Upsilon_{[\widetilde{w}]} = \Upsilon_{[\widetilde{w}']}$ , then  $[\widetilde{w}] = [\widetilde{w}']$ . However, since we know that  $\lambda_{[\widetilde{w}]} = \lambda_{\Upsilon_{[\widetilde{w}]}} = \lambda_{\Upsilon_{[\widetilde{w}']}} = \lambda_{[\widetilde{w}']}$  and  $\lambda_{[\widetilde{w}]} = \lambda_{[\widetilde{w}']}$  implies  $[\widetilde{w}] = [\widetilde{w}']$  by Proposition 2.20, our assertion follows.

The following theorem shows  $\Upsilon_{[\widetilde{w}]}$  can be understood as a generalization of  $\Gamma_Q$ .

## Theorem 2.22.

- (1) Every reduced expression of  $w \in [\widetilde{w}]$  can be obtained by a compatible reading of  $\Upsilon_{[\widetilde{w}]}$ .
- (2) The combinatorial AR quiver  $\Upsilon_{[\widetilde{w}]}$  is the Hasse diagram of convex partial order  $\preceq_{[\widetilde{w}]}$ . That is  $\alpha \preceq_{[\widetilde{w}]} \beta$  if and only if there is a path from  $\beta$  to  $\alpha$  in  $\Upsilon_{[\widetilde{w}]}$ .
- (3) If  $\widetilde{w}_0 \in [Q]$ , we have  $\Upsilon_{[\widetilde{w}_0]} \simeq \Gamma_Q$ .

*Proof.* (1) In Algorithm 2.1, since the existence of arrow  $\beta_k^{\widetilde{w}} \to \beta_j^{\widetilde{w}}$  in  $\Upsilon_{[\widetilde{w}]}$  implies k > j, any reduced expression  $\widetilde{w} \in [\widetilde{w}]$  can be obtained by a compatible reading of  $\Upsilon_{[\widetilde{w}]}$ .

(2) If there is a path from  $\alpha$  to  $\beta$  in  $\Upsilon_{[\widetilde{w}]}$ , then any compatible reading of  $\Upsilon_{[\widetilde{w}]}$  reads  $\beta$  before  $\alpha$ . On the other hand, if there is no path from  $\alpha$  to  $\beta$  or from  $\beta$  to  $\alpha$ , then there are two compatible readings of  $\Upsilon_{[\widetilde{w}]}$  such that one

is obtained by reading  $\alpha$  before  $\beta$  and the other one is obtained by reading  $\beta$  before  $\alpha$  (see Lemma 2.18). Hence  $\Upsilon_{[\widetilde{w}]}$  is the Hasse diagram of  $\prec_{[\widetilde{w}]}$ .

(3) Since 
$$\Gamma_Q$$
 is the Hasse diagram of  $\prec_Q$  and  $\Upsilon_{[\widetilde{w}_0]}$  is the Hasse diagram of  $\prec_{[\widetilde{w}_0]}$ , if  $[Q] = [\widetilde{w}_0]$ , then  $\Gamma_Q \simeq \Upsilon_{[\widetilde{w}_0]}$ .

**Example 2.23.** In Example 2.4, we can obtain the following reduced expression in  $[\widetilde{w}_0]$  by compatible reading:

$$(s_1, s_2, s_5, s_3, s_4, s_3, s_1, s_2, s_5, s_1, s_3, s_4, s_3).$$

Theorem 2.22(3) shows a combinatorial AR-quiver is a generalization of an AR-quiver. As AR-quivers are used to investigate convex orders associated to adapted reduced expressions, combinatorial AR-quivers can be used to see convex orders associated to non-adapted reduced expressions.

#### 3. Labeling of combinatorial AR quivers

In this section, we discuss finding labels of combinatorial AR quivers. For classical finite types, there is a more efficiency way to find the label of each vertex  $\alpha \in \Phi^+$  in  $\Gamma_Q$  than direct computations. Similarly, for the labeling of  $\Upsilon_{[\widetilde{w}]}$ , there exists analogous way to avoid large amount of computations (see Remark 2.2(1)). We mainly focus on combinatorial AR quivers of type  $A_n$  and generalize the argument to other classical finite types.

# 3.1. Labeling of AR-quivers of type A

Let  $\Gamma_Q$  be an AR quiver of finite type  $A_n$ . Recall that we denote by  $\pi_Q(\alpha)$  for  $\alpha \in \Phi^+$  the coordinate of the vertex in  $\Gamma_Q$  labeled by  $\alpha$ .

**Lemma 3.1** ([2,8]). We call the vertex k in the Dynkin quiver Q a left intermediate if Q has the subquiver  $\circ \xrightarrow{k-1} \circ \xrightarrow{k} \circ \xrightarrow{k+1}$  and call the vertex k in the Dynkin quiver Q a right intermediate if Q has the subquiver  $\circ \xleftarrow{k-1} \circ \xrightarrow{k} \circ \xrightarrow{k+1}$ . Then we have the following properties.

(1) For a simple root  $\alpha_k$ , we have

$$(3.1) \quad \pi_Q(\alpha_k) = \left\{ \begin{array}{ll} (k,\xi_k), & \text{if $k$ is a sink in $Q$,} \\ (n+1-k,\xi_k-n+1), & \text{if $k$ is a source in $Q$,} \\ (1,\xi_k-k+1), & \text{if $k$ is a right intermediate,} \\ (n,\xi_k-n+k), & \text{if $k$ is a left intermediate.} \end{array} \right.$$

(2) If  $\beta \to \alpha$  is an arrow in  $\Gamma_Q$  for  $\alpha, \beta \in \Phi^+$ , then  $(\beta, \alpha) = 1$ . Here  $\xi$  is the height function such that  $\max\{\xi_k \mid k = 1, \dots, n\} = 0$ .

After all, the following theorem shows how to find labels of vertices in  $\Gamma_Q$  in an efficient way. In order to introduce the method, we distinguish types of sectional paths in AR quivers.

**Definition 3.2** (cf. [17, Definition 3.3]). In an AR quiver  $\Gamma_Q$ , a sectional path is called *N-sectional* if the path is upwards. On the other hand, if a sectional path is downwards, it is said to be an *S-sectional* path.

**Theorem 3.3** ([16]). For a positive root  $\alpha = \sum_{j=k_1}^{k_2} \alpha_j$  of type  $A_n$ , let us call  $\alpha_{k_1}$  the left end and  $\alpha_{k_2}$  the right end of  $\alpha$ .

- (a) Every vertex in an N-sectional path in  $\Gamma_Q$  shares its left end.
- (b) Every vertex in an S-sectional path in  $\Gamma_Q$  shares its right end.

Now we know how to draw the AR quiver  $\Gamma_Q$  associated to the Dynkin quiver Q of  $A_n$  purely combinatorially. We summarize the procedure with the example below.

**Example 3.4.** For  $Q = \circ_1 \longrightarrow \circ_2 \longrightarrow \circ_3 \longrightarrow \circ_4 \longrightarrow \circ_5 \longrightarrow \circ_6$  of type  $A_6$ , Lemma 3.1 tells that  $\Gamma_Q$  can be drawn with partial labels:



Finally, using Theorem 3.3, we can *complete* whole labels of  $\Gamma_Q$ :



## 3.2. Labeling of combinatorial AR-quivers

Now, we generalize the above arguments in  $\Gamma_Q$ . In order to find analogous results for  $\Upsilon_{[\widetilde{w}]}$  of any classical finite type, we introduce the notion of *component*:

**Definition 3.5.** Let  $\alpha = \sum_{i \in J} c_i \epsilon_i$  and  $\beta = \sum_{i \in J} d_i \epsilon_i$ . (Note that J need not to be the same as I.)

- (1) If  $i \in I$  satisfies  $c_i \neq 0$ , then  $\epsilon_i$  is called a component of  $\alpha$ .
- (2) If  $i \in I$  satisfies  $c_i > 0$  (resp.  $c_i < 0$ ), then  $\epsilon_i$  is called a positive component (resp. negative component) of  $\alpha$ .

(3) We say  $\alpha$  and  $\beta$  share a component if there is  $i \in I$  such that  $\epsilon_i$  is a positive component to both  $\alpha$  and  $\beta$  or a negative component to both

Remark 3.6. In  $A_n$  type, we have  $[i,j] = \epsilon_i - \epsilon_{j+1}$ . Hence Theorem 3.3 can be restated as follows: An N-sectional (resp. S-sectional) path in  $\Gamma_Q$  shares a positive (resp. negative) component. In short, each sectional path in  $\Gamma_Q$  shares a component.

For type  $A_n$ , recall that the action  $s_i$  on  $\Phi^+$  can be described as follows:

$$(3.2) \qquad [j,k] \mapsto \begin{cases} [j,k-1] & \text{if } j < k = i, \\ [j+1,k] & \text{if } j = i < k, \\ [j,k+1] & \text{if } j < k = i-1, \\ [j-1,k] & \text{if } j = i+1 < k, \\ -[i] & \text{if } i = j = k, \\ [j,k] & \text{otherwise.} \end{cases}$$

Then the following lemma is an easy consequence induced from the action of simple reflection on  $\Phi^+$ .

**Lemma 3.7.** Let  $s_t$  be a simple reflection on W of type  $A_n$  and  $[i,j] := \sum_{k=1}^{j} \alpha_k$ for  $i, j \in I$ .

- (1) If  $s_t[i,k]$ ,  $s_t[j,k] \in \Phi^+$ , then  $s_t[i,k] = [i',k']$  and  $s_t[j,k] = [j',k']$  for
- some  $i', j' \le k' \in \{1, 2, ..., n\}$ .

  (2) If  $s_t[i, j]$ ,  $s_t[i, k] \in \Phi^+$ , then  $s_t[i, j] = [i', j']$  and  $s_t = [i', k']$  for some  $i' \le j', k' \in \{1, 2, ..., n\}$ .

**Proposition 3.8.** Let  $\widetilde{w} = (s_{i_1}, s_{i_2}, \dots, s_{i_N})$  be a reduced expression of  $w \in W$ of type  $A_n$  and  $\Upsilon_{[\widetilde{w}]}$  be the combinatorial AR quiver.

- (a) If there is an arrow from  $\beta_{k_1}^{\widetilde{w}}$  of the residue l to  $\beta_{k_2}^{\widetilde{w}}$  of the residue (l-1), then the corresponding positive roots  $[i_1, j_1]$  and  $[i_2, j_2]$  to  $\beta_{k_1}^{\widetilde{w}}$  and  $\beta_{k_2}^{\widetilde{w}}$ satisfy  $i_1 = i_2$ .
- (b) If there is an arrow from  $\beta_{k_1}^{\tilde{w}}$  of the residue l to  $\beta_{k_2}^{\tilde{w}}$  in the residue (l+1), then the corresponding positive roots  $[i_1,j_1]$  and  $[i_2,j_2]$  to  $\beta_{k_1}^{\widetilde{w}}$ and  $\beta_{k_2}^{\widetilde{w}}$  satisfy  $j_1 = j_2$ .

*Proof.* (a) The arrow from  $\beta_{k_1}^{\tilde{w}}$  of the residue l to  $\beta_{k_2}^{\tilde{w}}$  of the residue (l-1)implies that  $k_1 > k_2$  and

(3.3) the vertices  $\{\beta_k^{\widetilde{w}} \mid k = k_2 + 1, \dots, k_1 - 1\}$  in  $\Upsilon_{[\widetilde{w}]}$  are not of the residue l or (l-1).

Denote  $\widetilde{w}_{\leq k_2-1} = s_{i_1} s_{i_2} \cdots s_{k_2-1}$ . Then  $[i_1, j_1] = \widetilde{w}_{\leq k_2-1} s_{i_{k_2}} s_{i_{k_2}+1} \cdots s_{i_{k_1-1}} (\alpha_{i_{k_1}} = [l])$  and  $[i_2, j_2] = \widetilde{w}_{\leq k_2-1}$  ( $\alpha_{i_{k_2}} = [l-1]$ ). Using (3.2) and (3.3), we have

$$s_{i_{k_2}}s_{i_{k_2}+1}\cdots s_{i_{k_1-1}}(\alpha_{i_{k_1}})=[l-1,j]$$

for some  $j \geq l$ . Then the first assertion follows from Lemma 3.7.

(b) The same argument as that in the proof of (a) works.

**Theorem 3.9.** For any  $\Upsilon_{[\widetilde{w}]}$  of type A, if two roots  $\alpha$  and  $\beta$  are in an N-sectional (resp. S-sectional) path, then  $\alpha$  and  $\beta$  share their positive (resp. negative) components.

Using Theorem 3.9, we can find labels of combinatorial AR-quivers avoiding large amount of computations.

**Example 3.10.** Let  $\widetilde{w}_0 = (s_1, s_2, s_1, s_3, s_5, s_4, s_3, s_2, s_3, s_5, s_4, s_1, s_3, s_2, s_3)$  of  $A_5$ . We can easily find that labels of sinks and sources of the quiver  $\Upsilon_{[\widetilde{w}_0]}$  are [1], [5] and [3].



By Proposition 3.8, we can see the labels  $\Upsilon_{[\widetilde{w}_0]}$  has the form of:



Since (i) there are four different roots with the positive (resp. negative) component  $\epsilon_{\ddagger}$  (resp.  $\epsilon_{\dagger+1}$ ) (ii)  $\ddagger \neq 1$  (resp.  $\dagger \neq 5$ ), we have  $\ddagger = 2$  (resp.  $\dagger = 4$ ). On the other hand, since  $s_1(\alpha_2) = [1, 2], \ \sharp = 2$ .



Now, since  $\Phi(w_0) = \Phi^+$ , one can see that  $\diamond = 4$ , \* = 3,  $\triangle = 4$  and  $\star = 3$ . Hence we complete finding labels of  $\Upsilon_{\lceil \widetilde{w}_0 \rceil}$ .



By applying similar arguments of Lemma 3.7 and Proposition 3.8, we have the following theorem for classical finite types ABCD:

**Theorem 3.11.** For any  $\Upsilon_{[\widetilde{w}]}$  of classical finite types, a sectional path shares a component; that is, if two roots  $\alpha$  and  $\beta$  are in a sectional path, then  $\alpha$  and  $\beta$  share one component.

We can observe the following remark without consideration of types:

Remark 3.12. For  $\alpha$  and  $\beta$  in a sectional path in  $\Upsilon_{[\widetilde{w}]}$  of any finite type, there exists no set of vertices  $\{\gamma_i \mid 1 \leq i \leq r\} \subset \Phi^+$  in the same sectional path such that

$$\sum_{i=1}^{r} \gamma_i = \alpha + \beta \quad \text{ and } \quad \gamma_i \neq \alpha, \beta \quad \text{for all } 1 \leq i \leq r.$$

Example 3.13. Recall that the set of positive roots can be expressed as

$$\{ \epsilon_i \pm \epsilon_j \mid 1 \le i < j \le n \}.$$

For type  $D_5$ , consider the reduced expression

$$\widetilde{w}_0 = (s_2, s_1, s_3, s_2, s_1, s_5, s_3, s_2, s_1, s_4, s_3, s_2, s_1, s_5, s_3, s_2, s_1, s_4, s_3, s_5).$$

The combinatorial AR quiver  $\Upsilon_{[\widetilde{w}_0]}$  has the form of:



Here  $\epsilon_i \pm \epsilon_j$  is denoted by  $\langle i, \pm j \rangle$ . Note that the labels filled in the previous quiver are not hard to find by direct computations. Now, by Theorem 3.11, we can complete to find all labels in  $\Upsilon_{[\widetilde{w_0}]}$ .



**Example 3.14.** In Example 2.17,  $\Upsilon_{[\widetilde{w}_0]}$  of type  $C_3$  can be also labeled in terms of orthonormal basis:

$$\Upsilon_{[\widetilde{w}_0]} = 1 \quad \epsilon_1 - \epsilon_2$$

$$2 \quad \epsilon_1 - \epsilon_3 \quad \epsilon_1 + \epsilon_3$$

$$3 \quad 2\epsilon_1$$

which implies Theorem 3.11. Note that, for any reduced expression of  $w_0$  of type  $C_n$ , every positive root of the form  $2\epsilon_i$  has residue n and any positive root has residue n is of the form  $2\epsilon_i$ .

# 4. Combinatorial reflection functors and r-cluster points

# 4.1. Reflection maps on $\Upsilon_{[\widetilde{w}_0]}$

The following theorem is a well-known fact about sinks and sources of a Dynkin quiver Q and an AR quiver  $\Gamma_Q$ .

**Theorem 4.1.** Let Q be a Dynkin quiver of type  $A_n$ ,  $D_n$ , or  $E_n$  and  $\Gamma_Q$  be the associated AR quiver. The followings are equivalent.

- (a)  $i \in I$  is a sink (resp. source) of Q.
- (b) There are reduced expressions  $\widetilde{w}_0$  adapted to Q such that  $\widetilde{w}_0$  starts (resp. ends) with  $s_i$  (resp.  $s_{i^*}$ ).
- (c)  $\alpha_i$  is a sink (resp. source) of  $\Gamma_Q$ .

Let  $\Delta$  be a Dynkin diagram of simply laced type. On the set of AR quivers  $\Gamma_{\Delta} = \{ \Gamma_{Q} \mid Q \text{ is a Dynkin quiver of } \Delta \}$ , for  $i \in I$ , define  $\mathit{right}$  (resp.  $\mathit{left}$ ) reflection functor

$$r_i:\Gamma_\Delta\to\Gamma_\Delta$$

by  $\Gamma_Q \mapsto \Gamma_Q r_i$  (resp.  $\Gamma_Q \mapsto \Gamma_Q r_i$ ), where

$$\Gamma_{Q}r_{i} = \begin{cases}
\Gamma_{s_{i}(Q)} & \text{if } i \text{ is a sink in } Q, \\
\Gamma_{Q} & \text{otherwise,}
\end{cases} \text{ and}$$

$$r_{i}\Gamma_{Q} = \begin{cases}
\Gamma_{s_{i^{*}}(Q)} & \text{if } i^{*} \text{ is a source in } Q, \\
\Gamma_{Q} & \text{otherwise.}
\end{cases}$$

**Example 4.2.** Let  $\widetilde{w}_0 = (s_3, s_1, s_2, s_4, s_1, s_3, s_5, s_2, s_4, s_1, s_3, s_5, s_2, s_1, s_4) \in [Q]$  of  $A_5$ . Note that  $\widetilde{w}_0$  is adapted. Then  $\alpha_3$  is a sink of  $\Gamma_Q$  and  $\alpha_2$  is a source of  $\Gamma_Q$ .



Let i be a sink (resp. source) in Q. The right (resp. left) reflection functor  $r_i$  on  $\Gamma_{\Delta}$  can be described as follows:

(4.2)(i) Delete the sink (resp. source)  $\alpha_i$  (resp.  $\alpha_{i^*}$ ) in  $\Gamma_Q$ .

- (ii) Put a new vertex  $\alpha_i$  (resp.  $\alpha_{i^*}$ ) with residue  $i^*$  at the beginning (resp. end) of  $\Gamma_Q$  and arrows starting from  $\alpha_i$  (resp. ending at  $\alpha_{i*}$ ) and ending at the first vertices (resp. starting from the last vertices) with residues j such that  $d_{\Delta}(i^*, j) = 1$ .
- (iii) Change each label  $\beta$  in  $\Phi^+ \setminus \{\alpha_i\}$  (resp.  $\Phi^+ \setminus \{\alpha_{i^*}\}$ ) with  $s_i\beta$  (resp.  $s_{i^*}\beta$ ).

Analogously, we can define reflection functors on combinatorial AR quivers. In order to do this, we need notions of source and sink of commutation classes  $[\widetilde{w}]$  of W.

**Definition 4.3.** For a commutation equivalence class  $[\widetilde{w}]$ , we say that  $i \in I$ is a sink (resp. source) if there is a reduced expression  $\widetilde{w}' \in [\widetilde{w}]$  of w starting with  $s_i$  (resp. ending with  $s_i$ ).

The following proposition follows from the construction of the combinatorial AR quiver  $\Upsilon_{[\widetilde{w}]}$  and (1.2):

## Proposition 4.4.

- (a) i is a sink of  $[\widetilde{w}]$  if and only if  $\alpha_i$  is a sink in the quiver  $\Upsilon_{[\widetilde{w}]}$ .
- (b) i is a source of  $[\widetilde{w}]$  if and only if  $-w(\alpha_i)$  is a source in the quiver  $\Upsilon_{[\widetilde{w}]}$ .

Using sources and sinks of a commutation equivalence class, we shall define a reflection functor on the set of combinatorial AR quivers

$$\Upsilon_{w_0} := \{ \Upsilon_{[\widetilde{w}_0]} \mid \widetilde{w}_0 \text{ is a reduced expression of } w_0 \}$$

and divide the set  $\Upsilon_{w_0}$  into the orbits  $\Upsilon_{[\![\widetilde{w}_0]\!]}$  of reflection functors (see also Definition 4.10 below):

$$\Upsilon_{w_0} = igsqcup_{\llbracket \widetilde{w}_0 
rbracket} \Upsilon_{\llbracket \widetilde{w}_0 
rbracket}$$

**Definition 4.5.** The right reflection functor  $r_i$  on  $[\widetilde{w}_0]$  is defined by

$$\left[\widetilde{w}_{0}\right]r_{i} = \begin{cases} \left[\left(s_{i_{2}}, \ldots, s_{i_{N}}, s_{i^{*}}\right)\right] & \text{if } i \text{ is a sink and } \widetilde{w}_{0}' = \left(s_{i}, s_{i_{2}}, \ldots, s_{i_{N}}\right) \in \left[\widetilde{w}_{0}\right], \\ \left[\widetilde{w}_{0}\right] & \text{if } i \text{ is not a sink of } \left[\widetilde{w}_{0}\right]. \end{cases}$$

On the other hand, the left reflection functor  $r_i$  on  $[\widetilde{w}_0]$  is defined by

$$r_i\left[\widetilde{w}_0\right] = \begin{cases} \left[(s_{i^*}, s_{i_1} \dots, s_{i_{N-1}})\right] \text{ if } i \text{ is a source and } \widetilde{w}_0' = (s_{i_1}, \dots, s_{i_{N-1}}, s_i) \in \left[\widetilde{w}_0\right], \\ \left[\widetilde{w}_0\right] & \text{if } i \text{ is not a source of } \left[\widetilde{w}_0\right]. \end{cases}$$

The following propositions show that a reflection functor is well-defined on  $\{ [\widetilde{w}_0] \mid \widetilde{w}_0 \text{ is a reduced expression of } w_0 \}.$ 

**Proposition 4.6.** Let  $\widetilde{w}_0 = (s_{i_1}, \dots, s_{i_{N-1}}, s_{i_N})$  be a reduced expression of  $w_0$ .

- (a)  $\widetilde{w}'_0 = (s_{i_N^*}, s_{i_1}, \dots, s_{i_{N-1}})$  is a reduced expression of  $w_0$  which is not in
- $[\widetilde{w_0}].$ (b)  $\widetilde{w}_0'' = (s_{i_2}, \dots, s_{i_{N-1}}, s_{i_N}, s_{i_1^*})$  is a reduced expression of  $w_0$  which is

*Proof.* Remark that  $w_0(s_i(\alpha_j)) = -s_{i^*}(\alpha_{j^*})$  for any  $i, j \in I$ .

- (a) We have  $s_{i_N^*} w_0 s_{i_N}(\alpha_j) = s_{i_N^*}(-s_{i_N^*}(\alpha_{j^*})) = -\alpha_{j^*}$ . Since  $s_{i_1} s_{i_2} \cdots s_{i_N} = w_0$ ,  $s_{i_N^*} s_{i_1} s_{i_2} \cdots s_{i_{N-1}} = w_0$ . Hence  $\widetilde{w}_0'$  is also a reduced expression of  $w_0$ . Also, since  $i_N$  a source in  $\Upsilon_{[\widetilde{w}_0]}$  but is not in  $\Upsilon_{\widetilde{w}_0'}$ ,  $[\widetilde{w}_0] \neq [\widetilde{w}_0']$ .
  - (b) By the same argument as (a), we can prove (b).

Remark 4.7. To the experts, the fact that  $\widetilde{w}'_0$  and  $\widetilde{w}''_0$  are also reduced expressions of  $w_0$  may be well known (for example, [5, page 7] and [9, page 650]). However, we have had a difficulty finding its proof. Thus we provide a proof by using the system of positive roots.

**Proposition 4.8.** Let  $\widetilde{w}_0 = (s_{i_1}, \dots, s_{i_N})$  and  $\widetilde{w}'_0 = (s_{i'_1}, \dots, s_{i'_N})$  be reduced expressions in  $[\widetilde{w}_0]$ .

- (a) If  $i_1 = i_1'$ , then  $\widetilde{w}_0^1 = (s_{i_2}, \dots, s_{i_N}, s_{i_1^*})$  and  $\widetilde{w}_0^2 = (s_{i_2'}, \dots, s_{i_N'}, s_{i_1^*})$  are in the same commutation equivalence class.
- (b) If  $i_N = i_N'$ , then  $\widetilde{w}_0^3 = (s_{i_N^*}, s_{i_1}, \dots, s_{i_{N-1}})$  and  $\widetilde{w}_0^4 = (s_{i_N^*}, s_{i_1}, \dots, s_{i_{N-1}})$  are in the same commutation equivalence class.

*Proof.* Since we have  $\Upsilon_{[\widetilde{w}_0^1]} = \Upsilon_{[\widetilde{w}_0^2]}$  and  $\Upsilon_{[\widetilde{w}_0^3]} = \Upsilon_{[\widetilde{w}_0^4]}$  by (4.2), our assertion follows.

The reflecting functor on  $[\widetilde{w}_0]$  induces the right (resp. left) reflection functor  $r_i$  for  $i \in I$  on  $\Upsilon_{w_0}$  as follows:

$$(4.3) \Upsilon_{[\widetilde{w}_0]} r_i = \Upsilon_{[\widetilde{w}_0] r_i} (resp. r_i \Upsilon_{[\widetilde{w}_0]} = \Upsilon_{r_i[\widetilde{w}_0]}).$$

Then the right (resp. left) reflection functor on  $\Upsilon_{[\widetilde{w}_0]}$  can be described as an analogue of (4.2):

- (4.4)(i) Delete the sink (resp. source)  $\alpha_i$  (resp.  $\alpha_{i^*}$ ) with residue i and arrows incident with  $\alpha_i$  (resp.  $\alpha_{i^*}$ ) in  $\Upsilon_{\lceil \widetilde{w}_0 \rceil}$ .
  - (ii) Put a new vertex  $\alpha_i$  (resp.  $\alpha_{i^*}$ ) in the end (resp. beginning) of  $\Upsilon_{[\widetilde{w}_0]}$  and arrows the conditions in Algorithm 2.1.
  - (iii) Change each label  $\beta$  in  $\Phi^+ \setminus \{\alpha_i\}$  (resp.  $\Phi^+ \setminus \{\alpha_{i^*}\}$ ) with  $s_i\beta$  (resp.  $s_{i^*}\beta$ ).

**Example 4.9.** Let us consider reduced expression  $\widetilde{w}_0 = (s_1, s_2, s_1, s_3, s_4, s_3, s_2, s_3, s_1, s_2)$  of  $A_4$  which is not adapted to any Dynkin quiver Q. Then we have:



Since 2 is a source of  $[\widetilde{w}_0]$ , we have  $r_2[\widetilde{w}_0] = (s_3, s_1, s_2, s_1, s_3, s_4, s_3, s_2, s_3, s_1)$  and  $r_2 \Upsilon_{[\widetilde{w}_0]}$  is:



## Definition 4.10.

- (1) Let  $[\widetilde{w}_0]$  and  $[\widetilde{w}'_0]$  be two commutation equivalence classes. We say  $[\widetilde{w}_0]$  and  $[\widetilde{w}'_0]$  are in the same reflection equivalence class and write  $[\widetilde{w}_0] \stackrel{r}{\sim} [\widetilde{w}'_0]$  if  $[\widetilde{w}'_0]$  can be obtained from  $[\widetilde{w}_0]$  by a sequence of reflection functors. The family of commutation equivalence classes  $[\![\widetilde{w}_0]\!] := \{[\widetilde{w}_0] \mid [\widetilde{w}_0] \stackrel{r}{\sim} [\widetilde{w}'_0]\}$  is called an r-cluster point.
- (2) If  $[\widetilde{w}_0] \stackrel{r}{\sim} [\widetilde{w}'_0]$ , then we say  $\Upsilon_{[\widetilde{w}_0]}$  and  $\Upsilon_{[\widetilde{w}'_0]}$  are equivalent via reflection functors and write  $\Upsilon_{[\widetilde{w}_0]} \stackrel{r}{\sim} \Upsilon_{[\widetilde{w}'_0]}$ . Also,  $\Upsilon_{[\widetilde{w}_0]} := \{ \Upsilon_{[\widetilde{w}_0]} | [\widetilde{w}_0] \stackrel{r}{\sim} [\widetilde{w}'_0] \}$  is called an r-cluster point.

## 4.2. $\sigma$ -composition

The number of commutation classes for  $w_0$  of a finite simply laced type increases drastically as n increases (see [25, A006245]). Also, in the last subsection, for example (4.4), we showed classes in the same r-cluster point are closely related to each other. Hence, in this section, we introduce a composition shared by classes in the same r-cluster point.

Recall that, for a Dynkin diagram  $\Delta$  of finite simply-laced type, there exist non-trivial automorphisms  $\sigma$  as follows:

(4.7a) 
$$A_n: \bigcap_{1=2}^{\infty} \bigcap_{n=1}^{\infty} \bigcap_{n$$

**Definition 4.11.** Let  $\sigma$  be one of Dynkin diagram automorphisms in (4.7a), (4.7b), (4.7c), (4.7d) and k be the number of  $\sigma$ -orbits of the index set I. Take a sequence of  $\sigma$ -orbits  $\mathcal{O} = (o_1, o_2, \ldots, o_k)$  where  $o_i \neq o_j$  for  $1 \leq i < j \leq k$ . For a reduced expression  $\widetilde{w}_0 = (s_{i_1}, \ldots, s_{i_N})$  of  $w_0$ , the  $\sigma$ -composition of  $[\widetilde{w}_0]$  associated to  $\mathcal{O}$  is

 $(c_1, c_2, \dots, c_k) \in \mathbb{Z}_{>1}^k$  where  $c_j = |\{s_{i_t} \mid i_t \in o_j \text{ for some } k \in \mathbb{Z}\}|$ .

The well definedness of  $\sigma$ -composition follows by the fact that if  $\widetilde{w}_0 = (s_{i_1}, \ldots, s_{i_N})$  and  $\widetilde{w}'_0 = (s_{i'_1}, \ldots, s_{i'_N})$  are in the same commutation class, then

$$\#\{i_k \mid i_k \in o_i\} = \#\{i'_k \mid i'_k \in o_i\} \text{ for any orbit } o_i.$$

**Example 4.12.** (1) Let us take a Dynkin diagram involution  $\sigma$  of  $A_4$  in (4.7a). Then  $\sigma$ -composition of  $[\widetilde{w}_0]$  in Example (4.5) is

since there are 4 of  $s_i$ 's for i=1 or 4 in  $\widetilde{w}_0$  and 6 of  $s_j$ 's for j=2 or 3 in  $\widetilde{w}_0$ .

(2) Let us take a Dynkin diagram involution  $\sigma$  of  $D_4$  in (4.7b). Then  $\sigma$ -composition of  $[\widetilde{w}_0]$  in Example 2.7 is

(3) Let us take a Dynkin diagram automorphism  $\sigma$  of  $D_4$  in (4.7d). Then  $\sigma$ -composition of  $[\widetilde{w}_0]$  for  $\widetilde{w}_0 = (s_1, s_2, s_3, s_2, s_1, s_2, s_4, s_2, s_1, s_2, s_3, s_2)$  is

**Proposition 4.13.** If two commutation equivalence classes  $[\widetilde{w}_0]$  and  $[\widetilde{w}'_0]$  of  $w_0$  are in the same r-cluster point, then  $\sigma$ -compositions of  $[\widetilde{w}_0]$  and  $[\widetilde{w}'_0]$  are the same.

Proof. Let  $\widetilde{w}_0 = (s_{i_1}, \dots, s_{i_N})$ . The only thing we need to show is that  $\sigma$ -compositions of  $[\widetilde{w}_0]$ ,  $r_{i_N}[\widetilde{w}_0]$  and  $[\widetilde{w}_0]r_{i_1}$  are same. If  $r_{i_N}[\widetilde{w}_0] = [\widetilde{w}'_0]$ , then  $(s_{i_N^*}, s_{i_1}, \dots, s_{i_{N-1}}) \in [\widetilde{w}'_0]$ . Hence  $\sigma$ -compositions of  $[\widetilde{w}_0]$  and  $[\widetilde{w}'_0]$  are same. Similarly,  $\sigma$ -compositions of  $[\widetilde{w}_0]r_{i_1}$  and  $[\widetilde{w}_0]$  are same. Hence we proved the proposition.

## Example 4.14.

Let  $\widetilde{w}_0$  be a reduced expression of  $w_0$  of  $A_n$  adapted to

$$Q = \underbrace{\circ}_1 \underbrace{\circ}_2 \underbrace{\circ}_{n-1} \underbrace{\circ}_n.$$

Let  $\sigma = *$ . Then the  $\sigma$ -composition of  $[\widetilde{w}_0]$  consists of  $\lceil \frac{n+1}{2} \rceil$  components such that

$$\left\{ \begin{array}{ll} (n+1,\ldots,n+1) & \text{if $n$ is even,} \\ (n+1,\ldots,n+1,\frac{n+1}{2}) & \text{if $n$ is odd.} \end{array} \right.$$

It is well known that all the adapted reduced expressions of  $w_0$  are in this r-cluster point and all of equivalent classes in this r-cluster point are adapted to some Dynkin quiver.

# 5. Application to KLR algebras and PBW bases

In this section, we apply our results in previous sections to the representation theory of KLR algebras which were introduced by Khovanov-Lauda [10] and Rouquier [21], independently.

# 5.1. KLR algebra

Let I be an index set. A symmetrizable Cartan datum D is a quintuple  $(A, P, \Pi, P^{\vee}, \Pi^{\vee})$  consisting of (a) an integer-valued matrix  $A = (a_{ij})_{i,j \in I}$ called the symmetrizable generalized Cartan matrix, (b) a free abelian group P, called the weight lattice, (c)  $\Pi = \{\alpha_i \in P \mid i \in I\}$ , called the set of simple roots, (d)  $P^{\vee} := \text{Hom}(P, \mathbb{Z})$ , called the coweight lattice, (e)  $\Pi^{\vee} = \{h_i \mid i \in \mathbb{Z}\}$  $\{I\} \subset P^{\vee}$ , called the set of *simple coroots*, satisfying  $\langle h_i, \alpha_j \rangle = a_{ij}$  for all  $i, j \in I$ I and Π is linearly independent. The free abelian group  $Q := \bigoplus_{i \in I} \mathbb{Z}\alpha_i$  is called the root lattice and set  $Q^+ = \sum_{i \in I} \mathbb{Z}_{\geq 0} \alpha_i$ . Let **k** be a commutative ring. Take  $i, j \in I$  such that  $i \neq j$  and a family of

polynomials  $(Q_{ij})_{i,j\in I}$  in  $\mathbf{k}[u,v]$  which satisfy

(5.1) 
$$Q_{ij}(u,v) = \delta(i \neq j) \sum_{\substack{(p,q) \in \mathbb{Z}_{\geq 0}^2 \\ d_i \times p + d_j \times q = -d_i \times a_{ij}}} t_{i,j;p,q} u^p v^q$$

for  $t_{i,j;p,q} \in \mathbf{k}$ ,  $t_{i,j;p,q} = t_{j,i;q,p}$  and  $t_{i,j;-a_{ij},0} \in \mathbf{k}^{\times}$ . Thus we have  $Q_{i,j}(u,v) =$  $Q_{j,i}(v,u)$ .

We denote by  $\mathfrak{S}_n = \langle \mathfrak{s}_1, \dots, \mathfrak{s}_{n-1} \rangle$  the symmetric group on n letters, where  $\mathfrak{s}_i := (i, i+1)$  is the transposition of i and i+1. Then  $\mathfrak{S}_n$  acts on  $I^n$  by place permutations.

For  $n \in \mathbb{Z}_{\geq 0}$  and  $\beta \in \mathbb{Q}^+$  such that  $\operatorname{ht}(\beta) = n$ , we set

$$I^{\beta} = \{ \nu = (\nu_1, \dots, \nu_n) \in I^n \mid \alpha_{\nu_1} + \dots + \alpha_{\nu_n} = \beta \}.$$

**Definition 5.1.** For  $\beta \in \mathbb{Q}^+$  with  $|\beta| = n$ , the Khovanov-Lauda-Rouquier (KLR) algebra  $R(\beta)$  at  $\beta$  associated with a symmetrizable Cartan datum (A, P, P, P) $\Pi, \mathsf{P}^{\vee}, \Pi^{\vee}$ ) and a matrix  $(Q_{ij})_{i,j \in I}$  is the  $\mathbb{Z}$ -gradable **k**-algebra generated by the elements  $\{e(\nu)\}_{\nu\in I^{\beta}}$ ,  $\{x_k\}_{1\leq k\leq n}$ ,  $\{\tau_m\}_{1\leq m\leq n-1}$  satisfying the following defining relations:

$$e(\nu)e(\nu') = \delta_{\nu,\nu'}e(\nu), \quad \sum_{\nu \in I^{\beta}} e(\nu) = 1, \quad x_k x_m = x_m x_k, \quad x_k e(\nu) = e(\nu)x_k,$$

$$\tau_m e(\nu) = e(\mathfrak{s}_m(\nu))\tau_m, \quad \tau_k \tau_m = \tau_m \tau_k \quad \text{if } |k - m| > 1,$$

$$\tau_k^2 e(\nu) = Q_{\nu_k, \nu_{k+1}}(x_k, x_{k+1}) e(\nu),$$

$$(\tau_k x_m - x_{\mathfrak{s}_k(m)} \tau_k) e(\nu) = \begin{cases} -e(\nu) & \text{if } m = k, \nu_k = \nu_{k+1}, \\ e(\nu) & \text{if } m = k+1, \nu_k = \nu_{k+1}, \\ 0 & \text{otherwise,} \end{cases}$$

$$(\tau_{k+1}\tau_k\tau_{k+1}-\tau_k\tau_{k+1}\tau_k)e(\nu)=\delta_{\nu_k,\nu_{k+2}}\frac{Q_{\nu_k,\nu_{k+1}}(x_k,x_{k+1})-Q_{\nu_k,\nu_{k+1}}(x_{k+2},x_{k+1})}{x_k-x_{k+2}}e(\nu).$$

For  $\beta, \gamma \in \mathbb{Q}^+$  with  $\operatorname{ht}(\beta) = m$ ,  $\operatorname{ht}(\gamma) = n$ , set

$$e(\beta,\gamma) = \sum_{\substack{\nu \in I^{m+n}, \\ (\nu_1, \dots, \nu_m) \in I^{\beta}, \ (\nu_{m+1}, \dots, \nu_{m+n}) \in I^{\gamma}}} e(\nu) \in R(\beta + \gamma).$$

Then  $e(\beta, \gamma)$  is an idempotent. Let

(5.2) 
$$R(\beta) \otimes R(\gamma) \to e(\beta, \gamma) R(\beta + \gamma) e(\beta, \gamma)$$

be the k-algebra homomorphism given by

$$e(\mu) \otimes e(\nu) \mapsto e(\mu * \nu) \ (\mu \in I^{\beta}),$$

$$x_k \otimes 1 \mapsto x_k e(\beta, \gamma) \ (1 \le k \le m), \ 1 \otimes x_k \mapsto x_{m+k} e(\beta, \gamma) \ (1 \le k \le n),$$

$$\tau_k \otimes 1 \mapsto \tau_k e(\beta, \gamma) \ (1 \le k < m), \quad 1 \otimes \tau_k \mapsto \tau_{m+k} e(\beta, \gamma) \ (1 \le k < n),$$

where  $\mu * \nu$  is the concatenation of  $\mu$  and  $\nu$ ; i.e.,  $\mu * \nu = (\mu_1, \dots, \mu_m, \nu_1, \dots, \nu_n)$ . For a  $R(\beta)$ -module M and a  $R(\gamma)$ -module N, we define the *convolution* product  $M \circ N$  by

$$M \circ N := R(\beta + \gamma)e(\beta, \gamma) \otimes_{R(\beta) \otimes R(\gamma)} (M \otimes N)$$

and, for a graded  $R(\beta)$ -module  $M=\bigoplus_{k\in\mathbb{Z}}M_k$ , we define  $qM=\bigoplus_{k\in\mathbb{Z}}(qM)_k$ , where

$$(qM)_k = M_{k-1} \ (k \in \mathbb{Z}).$$

We call q the grading shift functor on the category of graded  $R(\beta)$ -modules.

Let  $\operatorname{Rep}(R(\beta))$  be the category consisting of finite dimensional graded  $R(\beta)$ -modules and  $[\operatorname{Rep}(R(\beta))]$  be the Grothendieck group of  $\operatorname{Rep}(R(\beta))$ . Then  $[\operatorname{Rep}(R)] := \bigoplus_{\beta \in \mathbb{Q}^+} [\operatorname{Rep}(R(\beta))]$  has a natural  $\mathbb{Z}[q,q^{-1}]$ -algebra structure induced by the convolution product  $\circ$  and the grading shift functor q. In this paper, we usually ignore grading shifts.

For an  $R(\beta)$ -module M and an  $R(\gamma_k)$ -module  $M_k$   $(1 \le k \le n)$ , we denote by

$$M^{\circ 0} := \mathbf{k}, \quad M^{\circ r} = \underbrace{M \circ \cdots \circ M}_{r}, \quad \mathop{\circ}_{k=1}^{n} M_{k} = M_{1} \circ \cdots \circ M_{n}.$$

**Theorem 5.2** ([10, 21]). For a given symmetrizable Cartan datum D, let  $U_{\mathbb{Z}[q,q^{-1}]}(\mathfrak{g})^{\vee}$  the dual of the integral form of the negative part of the quantum group  $U_q(\mathfrak{g})$  associated with D and R be the KLR algebra associated with D and  $(Q_{ij}(u,v))_{i,j\in I}$ . Then we have

(5.3) 
$$U_{\mathbb{Z}[q,q^{-1}]}^{-}(\mathfrak{g})^{\vee} \simeq [\operatorname{Rep}(R)].$$

From now on, we shall deal with the representation theory of KLR algebras which are associated to the Cartan matrix A of finite types.

**Convention 5.3.** For a reduced expression  $\widetilde{w}$  of  $w \in W$ , we fix a labeling of  $\Phi(w)$  as  $\{\beta_k^{\widetilde{w}} \mid 1 \leq k \leq \ell(w)\}$ .

- (i) We identify a sequence  $\underline{m}_{\widetilde{w}} = (m_1, m_2, \dots, m_{\ell(w)}) \in \mathbb{Z}_{\geq 0}^{\ell(w)}$  with  $(m_1 \beta_1^{\widetilde{w}}, m_2 \beta_2^{\widetilde{w}}, \dots, m_{\ell(w)} \beta_{\ell(w)}^{\widetilde{w}}) \in (\mathbb{Q}^+)^{\ell(w)}$ .
- (ii) For a sequence  $\underline{m}_{\widetilde{w}}$  and another reduced expression  $\widetilde{w}'$  of w,  $\underline{m}_{\widetilde{w}'}$  is a sequence in  $\mathbb{Z}_{\geq 0}^{\ell(w)}$  by considering  $\underline{m}_{\widetilde{w}}$  as a sequence of positive roots,

rearranging with respect to  $<_{\widetilde{w}'}$  and applying the convention (i).

(iii) For a sequence  $\underline{m}_{\widetilde{w}} \in \mathbb{Z}_{>0}^{\ell(w)}$ , a weight  $\operatorname{wt}(\underline{m}_{\widetilde{w}})$  of  $\underline{m}_{\widetilde{w}}$  is defined by  $\sum_{i=1}^{\ell(w)} m_i \beta_i^{\widetilde{w}} \in \mathsf{Q}^+.$ 

We usually drop the script  $\widetilde{w}$  if there is no fear of confusion.

**Definition 5.4** ([14,17]). For sequences  $\underline{m}, \underline{m}' \in \mathbb{Z}_{>0}^{\ell(w)}$ , we define an order  $\leq_{\widetilde{w}}^{b}$ as follows:

 $\underline{m}' = (m_1', \dots, m_{\ell(w)}') <_{\widetilde{w}}^{\mathsf{b}} \underline{m} = (m_1, \dots, m_{\ell(w)}) \text{ if and only if } \operatorname{wt}(\underline{m}) = \operatorname{wt}(\underline{m}')$ and there exist integers k, s such that  $1 \le k \le s \le \ell(w)$  satisfying

$$m'_t = m_t$$
 if  $t < k$  or  $t > s$  and  $m'_t < m_t$  if  $t = s, k$ .

The following order on sequences of positive roots was introduced in [17].

**Definition 5.5** ([17]). For sequences  $\underline{m}, \underline{m}' \in \mathbb{Z}_{\geq 0}^{\ell(w)}$ , we define an order  $\prec_{\lceil \widetilde{w} \rceil}^{\flat}$ as follows:

$$(5.4) \qquad \frac{\underline{m}' = (m'_1, \dots, m'_{\ell(w)}) \prec^{\mathtt{b}}_{[\widetilde{w}]} \underline{m} = (m_1, \dots, m_{\ell(w)}) \text{ if and only if } \\ \underline{m}'_{\widetilde{w}'} <^{\mathtt{b}}_{\widetilde{w}'} \underline{m}_{\widetilde{w}'} \text{ for all reduced expression } \widetilde{w}' \in [\widetilde{w}].$$

Note that  $\prec_{[\widetilde{w}]}^{b}$  is far coarser than  $<_{\widetilde{w}}^{b}$ .

**Definition 5.6.** A pair  $\underline{m} = (\alpha, \beta) \in (\Phi(w))^2$  is called a minimal pair of  $\gamma \in \Phi(w)$  with respect to the convex total order  $\prec_{[\widetilde{w}]}^{\mathbf{b}}$  if  $\underline{m}$  is a cover of  $\gamma$ . A pair of positive roots is  $[\widetilde{w}]$ -simple if it is minimal with respect to the partial order  $\prec_{[\widetilde{w}]}^{b}$  (see [14, §2.1] and [17]).

**Theorem 5.7** ([4,14]). Let R be the KLR algebra corresponding to a Cartan matrix A of finite type. For each positive root  $\beta \in \Phi^+$ , there exists a simple module  $S_{\widetilde{w}_0}(\beta)$  satisfying the following properties:

- (a)  $S_{\widetilde{w}_0}(\beta)^{\circ m}$  is a simple  $R(m\beta)$ -module.
- (b) Let  $l := \ell(w_0)$  and  $\underline{m}_{\widetilde{w}_0} \in \mathbb{Z}^l_{\geq 0}$ . There exists a non-zero R-module homomorphism

(5.5) 
$$\mathbf{r}_{\underline{m}} : \overrightarrow{S}_{\widetilde{w}_0}(\underline{m}) := S_{\widetilde{w}_0}(\beta_1)^{\circ m_1} \circ \cdots \circ S_{\widetilde{w}_0}(\beta_l)^{\circ m_l} \\ \rightarrow \overleftarrow{S}_{\widetilde{w}_0}(\underline{m}) := S_{\widetilde{w}_0}(\beta_l)^{\circ m_l} \circ \cdots \circ S_{\widetilde{w}_0}(\beta_1)^{\circ m_1}$$

such that

(i) 
$$\operatorname{Hom}_{R(\operatorname{wt}(m))}(\overrightarrow{S}_{\widetilde{w}_0}(\underline{m}), \overleftarrow{S}_{\widetilde{w}_0}(\underline{m})) = \mathbf{k} \cdot \mathbf{r}_m$$
,

(ii) 
$$\operatorname{Im}(\mathbf{r}_{\underline{m}}) \simeq \operatorname{hd}\left(\overset{\rightarrow}{S}_{\widetilde{w}_0}(\underline{m})\right) \simeq \operatorname{soc}\left(\overset{\leftarrow}{S}_{\widetilde{w}_0}(\underline{m})\right)$$
 is simple.  
(c) For any  $\underline{m}_{\widetilde{w}_0} \in \mathbb{Z}_{\geq 0}^{\ell(w_0)}$ , we have

$$(5.6) \qquad \qquad [\overrightarrow{S}_{\widetilde{w}_0}(\underline{m})] \in [\operatorname{Im}(\mathbf{r}_{\underline{m}})] + \sum_{\underline{m}' < \frac{\mathsf{b}}{w_0} \underline{m}} \mathbb{Z}_{\geq 0}[q^{\pm 1}][\operatorname{Im}(\mathbf{r}_{\underline{m}'})].$$

- (d) For any  $\underline{m}_{\widetilde{w}_0} \in \mathbb{Z}_{\geq 0}^{\ell(w_0)}$ ,  $\overrightarrow{S}_{\widetilde{w}_0}(\underline{m})$  has a unique simple head  $\operatorname{hd}\left(\overrightarrow{S}_{\widetilde{w}_0}(\underline{m})\right)$  and  $\operatorname{hd}\left(\overrightarrow{S}_{\widetilde{w}_0}(\underline{m})\right) \not\simeq \operatorname{hd}\left(\overrightarrow{S}_{\widetilde{w}_0}(\underline{m}')\right)$  if  $\underline{m} \neq \underline{m}'$ .

  (e) For every simple R-module M, there exists a unique  $\underline{m} \in \mathbb{Z}_{\geq 0}^{\mathsf{N}}$  such
- (e) For every simple R-module M, there exists a unique  $\underline{m} \in \mathbb{Z}_{\geq 0}^{\mathsf{N}}$  such that  $M \simeq \operatorname{Im}(\mathbf{r}_m) \simeq \operatorname{hd}(\overset{\rightarrow}{S}_{\widetilde{w}_0}(\underline{m}))$ .
- (f) For any minimal pair  $(\beta_k^{\widetilde{w}_0}, \beta_l^{\widetilde{w}_0})$  of  $\beta_j^{\widetilde{w}_0} = \beta_k^{\widetilde{w}_0} + \beta_l^{\widetilde{w}_0}$  with respect to  $<_{\widetilde{w}_0}$ , there exists an exact sequence

$$0 \to S_{\widetilde{w}_0}(\beta_j) \to S_{\widetilde{w}_0}(\beta_k) \circ S_{\widetilde{w}_0}(\beta_l) \xrightarrow{\mathbf{r}_m} S_{\widetilde{w}_0}(\beta_l) \circ S_{\widetilde{w}_0}(\beta_k) \to S_{\widetilde{w}_0}(\beta_j) \to 0,$$

$$where \ \underline{m}_{\widetilde{w}_0} \in \mathbb{Z}_{\geq 0}^{\ell(w_0)} \ such \ that \ m_k = m_l = 1 \ and \ m_i = 0 \ for \ all \ i \neq k, l.$$

Note that the set Irr(R) of isomorphism classes of all simple R-modules forms a natural basis of [Rep(R)] and does *not* depend on the choice of reduced expression  $\widetilde{w}_0$  of  $w_0$ .

We also note that Theorem 5.7 implies that

- (i) the subset  $\overrightarrow{S}_{\widetilde{w}_0}(R) := \left\{ \left[ \overrightarrow{S}_{\widetilde{w}_0}(\underline{m}) \right] \mid \underline{m}_{\widetilde{w}_0} \in \mathbb{Z}_{\geq 0}^{\ell(w_0)} \right\}$  of isomorphism classes of R-modules forms another basis of  $[\operatorname{Rep}(R)]$ ,
- (ii)  $<_{\widetilde{w}_0}^{\mathsf{b}}$  can be interpreted as a unitriangular matrix which plays the role of the transition matrix between  $\overrightarrow{S}_{\widetilde{w}_0}(R)$  and  $\operatorname{Irr}(R)$  for any reduced expression  $\widetilde{w}_0$  of  $w_0$ .

# 5.2. Applications of combinatorial AR-quivers

In this subsection, we apply the observations in the previous sections to the representation theory of KLR-algebras and PBW-bases.

Now we shall give an alternative proof of the following theorem:

**Theorem 5.8** ([17, Theorem 5.13]). For any  $\widetilde{w}_0$  of  $w_0$  and  $\underline{m}_{\widetilde{w}_0} \in \mathbb{Z}_{\geq 0}^{\ell(w_0)}$ , we can define the module  $\overrightarrow{S}_{[\widetilde{w}_0]}(\underline{m})$ ; i.e.,

$$\overrightarrow{S}_{\widetilde{w}_0}(\underline{m}_{\widetilde{w}_0}) \simeq \overrightarrow{S}_{\widetilde{w}_0'}(\underline{m}_{\widetilde{w}_0'}) \quad \text{for all } \widetilde{w}_0, \widetilde{w}_0' \in [\widetilde{w}_0].$$

Moreover, we can refine the transition matrix between  $\overrightarrow{S}_{[\widetilde{w}_0]}(R) := \{\overrightarrow{S}_{[\widetilde{w}_0]}(\underline{m}) \mid \underline{m} \in \mathbb{Z}^{\ell(w_0)}_{\geq 0}\}$  and  $\operatorname{Irr}(R)$  by replacing  $<_{\widetilde{w}_0}^{\mathbf{b}}$  with the far coarser order  $\prec_{[\widetilde{w}_0]}^{\mathbf{b}}$ .

Remark 5.9. For any  $\widetilde{w}_0, \widetilde{w}'_0 \in [\widetilde{w}_0]$ , Theorem 5.7 tells that

$$S_{\widetilde{w}_0}(\beta) \simeq S_{\widetilde{w}'_0}(\beta)$$
 for all  $\beta \in \Phi^+$ .

Thus we denote by  $S_{[\widetilde{w}_0]}(\beta)$  the simple module  $S_{\widetilde{w}_0'}(\beta)$  for any  $\widetilde{w}_0' \in [\widetilde{w}_0]$  and  $\beta \in \Phi^+$ .

**Proposition 5.10.** Let  $\alpha$  and  $\beta$  be incomparable positive roots with respect to the order  $\prec_{[\widetilde{w}_0]}$ . Then  $(\alpha, \beta)$  is  $[\widetilde{w}_0]$ -simple and we have

$$S_{[\widetilde{w}_0]}(\alpha) \circ S_{[\widetilde{w}_0]}(\beta) \simeq S_{[\widetilde{w}_0]}(\beta) \circ S_{[\widetilde{w}_0]}(\alpha)$$
 is simple.

Proof. By Lemma 2.18, there exist  $\widetilde{w}'_0 \in [\widetilde{w}_0]$  and  $k \in \mathbb{Z}_{\geq 1}$  such that  $\alpha = \beta_k^{\widetilde{w}'_0}$  and  $\beta = \beta_{k+1}^{\widetilde{w}'_0}$ . Let us denote by  $(\alpha, \beta)$  the sequence  $\underline{m}_{\widetilde{w}'_0}$  such that  $m_k = m_{k+1} = 1$  and  $m_i = 0$  for all  $i \neq k, k+1$ . Then there is no  $\underline{m}_{\widetilde{w}'_0}$  such that  $\underline{m} <_{\widetilde{w}'_0}^{\mathbf{b}}(\alpha, \beta)$ . Hence Theorem 5.7(c) tells that the composition series of  $S_{[\widetilde{w}_0]}(\alpha) \circ S_{[\widetilde{w}_0]}(\beta)$  consists of  $\mathrm{Im}(\mathbf{r}_{(\alpha,\beta)})$ . Then our assertion follows from Theorem 5.7(b).

Remark 5.11. Proposition 5.10 tells that  $S_{[\widetilde{w}_0]}(\alpha)$  and  $S_{[\widetilde{w}_0]}(\beta)$  commute up to grading shift (or q-commutes) if  $\alpha$  and  $\beta$  are incomparable with respect to  $\prec_{[\widetilde{w}_0]}$ . However, the converse is not true. As we see in Proposition 5.12 below, when  $\alpha$  and  $\beta$  lie in the same sectional path in  $\Upsilon_{[\widetilde{w}_0]}$  so that they are comparable,  $S_{[\widetilde{w}_0]}(\alpha)$  and  $S_{[\widetilde{w}_0]}(\beta)$  commute. This result is a generalization of [17, Proposition 4.2].

Proof of Theorem 5.8. By proposition 5.10, the isomorphism class of the module  $\overrightarrow{S}_{\widetilde{w}_0}(\underline{m}_{\widetilde{w}_0})$  and the homomorphism  $\mathbf{r}_{\underline{m}_{\widetilde{w}_0}}$  does not depend on the choice of  $\widetilde{w}_0 \in [\widetilde{w}_0]$ . Thus our first assertion follows. By applying the first assertion to (5.6) for all  $\widetilde{w}'_0 \in [\widetilde{w}_0]$ , we have

$$[\overset{\rightarrow}{S}_{[\widetilde{w}_0]}(\underline{m})] \in [\operatorname{Im}(\mathbf{r}_{\underline{m}})] + \sum_{\underline{m}' < ^{\mathtt{b}}_{\widetilde{w}'}, \underline{m} \text{ for all } \widetilde{w}'_0 \in [\widetilde{w}_0]} \mathbb{Z}_{\geq 0}[q^{\pm 1}][\operatorname{Im}(\mathbf{r}_{\underline{m}'})].$$

Thus our second assertion follows from the definition of  $\prec_{[\widetilde{w}_0]}^{b}$ ; that is,

$$(5.7) \qquad [\overset{\rightarrow}{S}_{[\widetilde{w}_0]}(\underline{m})] \in [\operatorname{Im}(\mathbf{r}_{\underline{m}})] + \sum_{\underline{m}' \prec^{\mathsf{b}}_{[\widetilde{w}_0]}\underline{m}} \mathbb{Z}_{\geq 0}[q^{\pm 1}][\operatorname{Im}(\mathbf{r}_{\underline{m}'})]. \qquad \Box$$

**Proposition 5.12.** Let  $\alpha$  and  $\beta$  be in the same sectional path of  $\Upsilon_{[\widetilde{w}_0]}$ . Then  $(\alpha, \beta)$  is  $[\widetilde{w}_0]$ -simple and we have

$$S_{[\widetilde{w}_0]}(\alpha) \circ S_{[\widetilde{w}_0]}(\beta) \simeq S_{[\widetilde{w}_0]}(\beta) \circ S_{[\widetilde{w}_0]}(\alpha)$$
 is simple.

*Proof.* Proposition 3.12 implies that  $(\alpha, \beta)$  is a simple pair with respect to  $\prec_{[\widetilde{w}_0]}$ . Thus our assertion follows from Theorem 5.8.

By Remark 3.12, we have the following corollary from Theorem 5.8.

Corollary 5.13. Let  $\beta_1, \beta_2, \ldots, \beta_p$  be in the same sectional path of  $\Upsilon_{[\widetilde{w}_0]}$ . Then we have

$$S_{[\widetilde{w}_0]}(\beta_1)^{\circ m_1} \circ \cdots \circ S_{[\widetilde{w}_0]}(\beta_p)^{\circ m_p}$$
 is simple for any  $(m_1, m_2, \dots, m_p) \in \mathbb{Z}^p_{\geq 0}$ .

Remark 5.14. By the works in [4, 9, 14],  $S_{\widetilde{w}_0}(\beta)$ 's categorify the dual PBW generators of  $\mathfrak{g}$  associated to  $\widetilde{w}_0$ , which are also elements of the dual canonical basis. Hence our results in this section tell that the dual PBW monomials depend only on  $[\widetilde{w}_0]$  (up to  $q^{\mathbb{Z}}$ ) and some of them are q-commutative under the circumstances we characterized. In particular, when R is symmetric and  $\mathbf{k}$  is of characteristic 0, simple R-modules categorify the dual canonical basis ([22, 26]). Hence (5.7) provides finer information on transition map between the dual canonical basis and the dual PBW basis associated to  $[\widetilde{w}_0]$ .

By (4.4), one can observe the following similarity among  $\{S_{[\widetilde{w}_0]}(\alpha)\}$  and  $\{S_{[\widetilde{w}_0']}(\alpha')\}$  for  $[\widetilde{w}_0], [\widetilde{w}_0']$  in the same r-cluster point  $[\![\widetilde{w}_0]\!]$ :

**Corollary 5.15.** For a class  $[\widetilde{w}_0]$  of reduced expressions of  $w_0$ , let  $(i_1, i_2, \ldots, i_k)$  be a sequence of indices such that

$$i_k$$
 is a sink of  $[\widetilde{w}_0]$   $r_{i_1} \cdots r_{i_{k-1}}$ .

Set  $w = s_{i_{k-1}} \cdots s_{i_1}$ . For  $(\alpha, \beta) \in (\Phi^+)^2$  with  $[\widetilde{w}_0]$ -simple and  $w \cdot \alpha, w \cdot \beta \in \Phi^+$ , we have

$$S_{[\widetilde{w}_0] \cdot r_{\widetilde{w}}}(w \cdot \alpha) \circ S_{[\widetilde{w}_0] \cdot r_{\widetilde{w}}}(w \cdot \beta) \simeq S_{[\widetilde{w}_0] \cdot r_{\widetilde{w}}}(w \cdot \beta) \circ S_{[\widetilde{w}_0] \cdot r_{\widetilde{w}}}(w \cdot \alpha) \text{ is simple,}$$

$$where \ r_{\widetilde{w}} := r_{i_1} \cdot \cdot \cdot r_{i_{k-1}}.$$

## Appendix A. r-cluster points of $A_4$

There are 62 commutation classes of  $w_0$  for  $A_4$  (see [2, Table 1] and [25, A006245]). We can check that the 62 commutation classes are classified into 3-cluster points with respect to  $\sigma = {}^*$  as follows:

Type 
$$1$$
  $(5,5)$ 

| A01 | 1213214321 | A02 | 2132143421 | A03 | 1214342312 | A04 | 3214342341 |
|-----|------------|-----|------------|-----|------------|-----|------------|
| A05 | 4342341234 | A06 | 1321434231 | A07 | 2143423412 | A08 | 1434234123 |

Type 2 (4,6)

| B01 | 2123214321 | B02 | 1232143231 | B03 | 1232124321 | B04 | 1213243212 |
|-----|------------|-----|------------|-----|------------|-----|------------|
| B05 | 2132314321 | B06 | 1323124321 | B07 | 1213432312 | B08 | 1323143231 |
| B09 | 2321243421 | B10 | 2132434212 | B11 | 2124342312 | B12 | 1243421232 |
| B13 | 3231243421 | B14 | 2321432341 | B15 | 2134323412 | B16 | 2143234312 |
| B17 | 3212434231 | B18 | 1324342123 | B19 | 1243423123 | B20 | 1432341232 |
| B21 | 3214323431 | B22 | 1343234123 | B23 | 1432343123 | B24 | 2434212342 |
| B25 | 3243421234 | B26 | 2434231234 | B27 | 4323412342 | B28 | 4342123423 |
| B29 | 3432341234 | B30 | 4323431234 | B31 | 4342312343 | B32 | 3231432341 |

Type 3 (3,7)

| C01 | 2123243212 | C02 | 2321234321 | C03 | 2132343212 | C04 | 2123432312 |
|-----|------------|-----|------------|-----|------------|-----|------------|
| C05 | 3212324321 | C06 | 1232432123 | C07 | 1234321232 | C08 | 3231234321 |
| C09 | 3212343231 | C10 | 1323432123 | C11 | 1234323123 | C12 | 3234321234 |
| C13 | 2324321234 | C14 | 2343212342 | C15 | 2432123432 | C16 | 4321234232 |
| C17 | 3432312343 | C18 | 2343231234 | C19 | 4323123432 | C20 | 3243212343 |
| C21 | 3432123423 | C22 | 4321234323 |     |            |     |            |

## Appendix B. Braid relations and combinatorial AR quivers

By Matsumoto's theorem, for any two reduced expressions  $\widetilde{w}$  and  $\widetilde{w}'$  of  $w \in$ W,  $\widetilde{w}$  can be obtained from  $\widetilde{w}'$  by commutation relations and braid relations. In Proposition 2.3, we showed if  $\widetilde{w}'$  and  $\widetilde{w}$  are related by a series of short braid relations, i.e.,  $[\widetilde{w}] = [\widetilde{w}']$ , then  $\Upsilon_{[\widetilde{w}']} = \Upsilon_{[\widetilde{w}]}$ . In this section, we describe relations between  $\Upsilon_{[\widetilde{w}]}$  and  $\Upsilon_{[\widetilde{w}'']}$  for  $\widetilde{w}''$  which is obtained by a braid relation

Recall that if  $d_{\Delta}(i,j) = 1$ , its corresponding braid relation is given as follows: (Case 1)  $\circ \underset{i}{\longrightarrow} \circ$  implies  $s_i s_j s_i = s_j s_i s_j$ ,

In Sections B.1 and B.2, we shall discuss braid relations on the set of combinatorial AR quivers for (Case 1) and (Case 2). Note that (Case 3) is obvious.

## B.1. Case 1

Suppose a Dynkin diagram  $\Delta$  of type  $X_n$  which has the subdiagram in (Case 1) so that  $s_i s_j s_i = s_j s_i s_j$ .

**Proposition B.1.** Let  $\widetilde{w} = (s_{i_1}, s_{i_2}, \dots, s_{i_{\ell(w)}})$  and  $\widetilde{w}' = (s_{i'_1}, s_{i'_2}, \dots, s_{i'_{\ell(w)}})$  be reduced expressions of w such that  $\widetilde{w}'$  can be obtained by the relation  $s_i s_j s_i =$  $s_i s_i s_j$  from  $\widetilde{w}$ . Equivalently, there exists  $2 \le t \le \ell(w) - 1$  such that

- (i)  $i_m = i'_m$ , if  $1 \le m \le t 2$  or  $t + 2 \le m \le \ell(w)$ ,
- (ii)  $(i_{t-1}, i_t, i_{t+1}) = (i, j, i),$
- (iii)  $(i'_{t-1}, i'_t, i'_{t+1}) = (j, i, j).$

Then we have

- $\begin{array}{ll} (1) \ \beta_{m}^{\widetilde{w}}=\beta_{m}^{\widetilde{w}'}, \ if \ 1\leq m\leq t-2, \ t+2\leq m\leq \ell(w) \ or \ m=t, \\ (2) \ \beta_{t-1}^{\widetilde{w}}=\beta_{t+1}^{\widetilde{w}'} \ and \ \beta_{t+1}^{\widetilde{w}}=\beta_{t-1}^{\widetilde{w}'}. \end{array}$

*Proof.* Our assertion for  $1 \le m \le t-2$  is obvious. For m=t-1,t and t+1,we have

$$\beta_{t-1}^{\widetilde{w}} = s_{i_1} \cdots s_{i_{t-2}}(\alpha_i) = s_{i_1} \cdots s_{i_{t-2}}(s_j s_i(\alpha_j))$$
$$= s_{i'_1} \cdots s_{i'_{t-2}}(s_{i'_{t-1}} s_{i'_t}(\alpha_{i'_{t+1}})) = \beta_{t+1}^{\widetilde{w}'},$$

$$\beta_t^{\widetilde{w}} = s_{i_1} \cdots s_{i_{t-2}}(s_i(\alpha_j)) = s_{i_1} \cdots s_{i_{t-2}}(s_j(\alpha_i))$$

$$= s_{i'_1} \cdots s_{i'_{t-2}}(s_{i'_{t-1}}(\alpha_{i'_t})) = \beta_t^{\widetilde{w}'},$$

$$\beta_{t+1}^{\widetilde{w}} = s_{i_1} \cdots s_{i_{t-2}}(s_i s_j(\alpha_i)) = s_{i_1} \cdots s_{i_{t-2}}(\alpha_j)$$

$$= s_{i'_1} \cdots s_{i'_{t-2}}(\alpha_{i'_{t-1}}) = \beta_{t-1}^{\widetilde{w}'}.$$

Our assertion for  $m \geq t + 2$  follow from the fact that

$$s_{i_{t-1}} s_{i_t} s_{i_{t+1}} s_{i_{t+2}} \cdots s_{i_{m-1}} = s_{i'_{t-1}} s_{i'_t} s_{i'_{t+1}} s_{i'_{t+2}} \cdots s_{i'_{m-1}}.$$

**Example B.2.** Let  $\widetilde{w} = (s_1, s_2, s_3, s_5, s_4, s_1, \mathbf{s_3}, \mathbf{s_2}, \mathbf{s_3}, s_5, s_4, s_3, s_1)$  of  $A_5$ . The quiver  $\Upsilon_{[\widetilde{w}]}$  is drawn as follows:



Consider  $\widetilde{w}' = (s_1, s_2, s_3, s_5, s_4, s_1, \mathbf{s_2}, \mathbf{s_3}, \mathbf{s_2}, s_5, s_4, s_3, s_1)$  of  $A_5$ . The quiver  $\Upsilon_{[\widetilde{w}']}$  is drawn as follows:



Note that, in  $\Upsilon_{[\widetilde{w}_0]}$ , there are arrows from [4] to [4, 5] and from [2, 3] to [1, 3].

**Example B.3.** In Example 2.17, for  $\widetilde{w}_0 = (s_3, s_2, s_3, \mathbf{s_2}, \mathbf{s_1}, \mathbf{s_2}, s_3, s_2, s_1)$  of type  $C_3$ ,

Let us consider  $\widetilde{w}_0' = (s_3, s_2, s_3, \mathbf{s_1}, \mathbf{s_2}, \mathbf{s_1}, s_3, s_2, s_1)$  of type  $C_3$ . Then, by Proposition B.1,



#### B.2. Case 2

Suppose  $\Delta$  of type  $X_n$  (X=B,C,F) has the subdiagram in (Case 2), so that  $s_i s_j s_i s_j = s_j s_i s_j s_i$ . The analogous argument with Proposition B.1, we can see the following proposition.

**Proposition B.4.** Let  $\widetilde{w} = (s_{i_1}, s_{i_2}, \dots, s_{i_{\ell(w)}})$  and  $\widetilde{w}' = (s_{i'_1}, s_{i'_2}, \dots, s_{i'_{\ell(w)}})$  be reduced expressions of w such that  $\widetilde{w}'$  can be obtained by the relation  $s_i s_j s_i s_j =$  $s_j s_i s_j s_i$  from  $\widetilde{w}$ . Equivalently, there exists  $1 \leq t \leq \ell(w) - 3$  such that

- $\begin{array}{ll} \text{(i)} & i_m = i_m', \ if \ 1 \leq m < t \ or \ t+3 < m \leq \ell(w), \\ \text{(ii)} & (i_t, i_{t+1}, i_{t+2}, i_{t+3}) = (i, j, i, j), \end{array}$
- (iii)  $(i'_t, i'_{t+1}, i'_{t+2}, i'_{t+3}) = (j, i, j, i).$

- $\begin{array}{l} (1) \ \beta^{\widetilde{w}}_m = \beta^{\widetilde{w}'}_m \ if \ 1 \leq m < t \ or \ t+3 < m \leq \ell(w), \\ (2) \ \beta^{\widetilde{w}}_t = \beta^{\widetilde{w}'}_{t+3}, \ \beta^{\widetilde{w}}_{t+1} = \beta^{\widetilde{w}'}_{t+2}, \ \beta^{\widetilde{w}}_{t+2} = \beta^{\widetilde{w}'}_{t+1} \ and \ \beta^{\widetilde{w}}_{t+3} = \beta^{\widetilde{w}'}_t. \end{array}$

**Example B.5.** In Example 2.17, for  $\widetilde{w}_0 = (\mathbf{s_3}, \mathbf{s_2}, \mathbf{s_3}, \mathbf{s_2}, s_1, s_2, s_3, s_2, s_1)$  of type  $C_3$ ,

$$\Upsilon_{[\widetilde{w}_0]} = \frac{1}{\alpha_1} \alpha_1 + \alpha_2 \alpha_1 + \alpha_2 \alpha_1 + \alpha_2 \alpha_2 + \alpha_3 \alpha_1 + \alpha_2 + \alpha_3 \alpha_2 \alpha_2 + \alpha_3 \alpha_2 \alpha_2 + \alpha_3 \alpha_3 \alpha_3.$$

Now, for  $\widetilde{w}'_0 = (\mathbf{s_2}, \mathbf{s_3}, \mathbf{s_2}, \mathbf{s_3}, s_1, s_2, s_3, s_2, s_1)$  of type  $C_3$ ,

$$\Upsilon_{[\widetilde{w}'_0]} = \frac{1}{1} \alpha_1$$

$$\frac{\alpha_1 + 2\alpha_2 + \alpha_3}{\alpha_1 + \alpha_2}$$

$$\frac{\alpha_1 + 2\alpha_2 + \alpha_3}{\alpha_2 + \alpha_3}$$

$$\frac{\alpha_2 + \alpha_3}{\alpha_2 + \alpha_3}$$

$$\frac{\alpha_2 + \alpha_3}{\alpha_2 + \alpha_3}$$

## References

- [1] M. Auslander, I. Reiten, and S. O. Smalo, Representation Theory of Artin Algebras, Cambridge Studies in Advanced Mathematics, 36, Cambridge University Press, Cambridge, 1995.
- R. Bédard, On commutation classes of reduced words in Weyl groups, European J. Combin. 20 (1999), no. 6, 483-505.
- [3] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968.
- [4] J. Brundan, A. Kleshchev, and P. J. McNamara, Homological properties of finite-type Khovanov-Lauda-Rouquier algebras, Duke Math. J. 163 (2014), no. 7, 1353–1404.
- J. Claxton and P. Tingley, Young tableaux, multisegments, and PBW bases, Sém. Lothar. Combin. 73 (2015), Art. B73c, 21 pp.
- [6] P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, in Representation theory, I (Proc. Workshop, Carleton Univ., Ottawa, Ont., 1979), 1-71, Lecture Notes in Math., 831, Springer, Berlin, 1980.
- D. Hernandez and B. Leclerc, Quantum Grothendieck rings and derived Hall algebras, J. Reine Angew. Math. 701 (2015), 77-126.

- [8] S.-J. Kang, M. Kashiwara, and M. Kim, Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras. II, Duke Math. J. 164 (2015), no. 8, 1549–1602.
- [9] S. Kato, Poincaré-Birkhoff-Witt bases and Khovanov-Lauda-Rouquier algebras, Duke Math. J. 163 (2014), no. 3, 619–663.
- [10] M. Khovanov and A. D. Lauda, A diagrammatic approach to categorification of quantum groups. I, Represent. Theory 13 (2009), 309–347.
- [11] G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), no. 2, 447–498.
- [12] \_\_\_\_\_, Quantum groups at roots of 1, Geom. Dedicata 35 (1990), no. 1-3, 89–113.
- [13] \_\_\_\_\_\_\_, Canonical bases and Hall algebras, in Representation theories and algebraic geometry (Montreal, PQ, 1997), 365–399, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 514, Kluwer Acad. Publ., Dordrecht, 1998.
- [14] P. J. McNamara, Finite dimensional representations of Khovanov-Lauda-Rouquier algebras I: Finite type, J. Reine Angew. Math. 707 (2015), 103–124.
- [15] S. Oh, Auslander-Reiten quiver of type D and generalized quantum affine Schur-Weyl duality, J. Algebra 460 (2016), 203–252.
- [16] \_\_\_\_\_, Auslander-Reiten quiver of type A and generalized quantum affine Schur-Weyl duality, Trans. Amer. Math. Soc. 369 (2017), no. 3, 1895–1933.
- [17] \_\_\_\_\_\_, Auslander-Reiten quiver and representation theories related to KLR-type Schur-Weyl duality, Math. Z. (2018). https://doi.org/10.1007/s00209-018-2093-2.
- [18] P. Papi, A characterization of a special ordering in a root system, Proc. Amer. Math. Soc. 120 (1994), no. 3, 661–665.
- [19] C. M. Ringel, Tame algebras, Proceedings ICRA 2, Springer LNM 831, (1980), 137–87.
- [20] \_\_\_\_\_, PBW-bases of quantum groups, J. Reine Angew. Math. 470 (1996), 51–88.
- [21] R. Rouquier, 2 Kac-Moody algebras, arXiv:0812.5023 (2008).
- [22] \_\_\_\_\_, Quiver Hecke algebras and 2-Lie algebras, Algebra Colloq. 19 (2012), no. 2, 359–410.
- [23] Y. Saito, PBW basis of quantized universal enveloping algebras, Publ. Res. Inst. Math. Sci. 30 (1994), no. 2, 209–232.
- [24] D. Simson and A. Skowroński, Elements of the representation theory of associative algebras. Vol. 2, London Mathematical Society Student Texts, 71, Cambridge University Press, Cambridge, 2007.
- [25] N. J. A. Sloane, The on-line encyclopedia of integer sequences, published electronically at http://oeis.org.
- [26] M. Varagnolo and E. Vasserot, Canonical bases and KLR-algebras, J. Reine Angew. Math. 659 (2011), 67–100.
- [27] D. P. Zhelobenko, Extremal cocycles on Weyl groups, Funktsional. Anal. i Prilozhen. 21 (1987), no. 3, 11–21, 95.

SE-JIN OH

DEPARTMENT OF MATHEMATICS

EWHA WOMANS UNIVERSITY

SEOUL 03760, KOREA

 $Email\ address: {\tt sejin092@gmail.com}$ 

Uhi Rinn Suh

DEPARTMENT OF MATHEMATICAL SCIENCES

RESEARCH INSTITUTE OF MATHEMATICS

SEOUL NATIONAL UNIVERSITY

Seoul 08826, Korea

 $Email\ address: {\tt uhrisu@gmail.com}$