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COMBINATORIAL AUSLANDER-REITEN QUIVERS

AND REDUCED EXPRESSIONS

Se-jin Oh† and Uhi Rinn Suh‡

Abstract. In this paper, we introduce the notion of combinatorial Aus-

lander-Reiten (AR) quivers for commutation classes [w̃] of w in a finite
Weyl group. This combinatorial object is the Hasse diagram of the convex

partial order ≺[w̃] on the subset Φ(w) of positive roots. By analyzing
properties of the combinatorial AR-quivers with labelings and reflection

functors, we can apply their properties to the representation theory of

KLR algebras and dual PBW-basis associated to any commutation class
[w̃0] of the longest element w0 of any finite type.

Introduction

For a Dynkin quiver Q of finite type ADE, the Auslander-Reiten quiver
ΓQ encodes the representation theory of the path algebra CQ in the following
sense: (i) the set of vertices corresponds to the set IndQ of isomorphism classes
of indecomposable CQ-modules, (ii) the set of arrows corresponds to the set of
irreducible morphisms between objects in IndQ. On the other hand, by reading
the residues of vertices of ΓQ in a compatible way ([2]), one can obtain reduced
expressions w̃0 of the longest element w0 in the Weyl group W. Such reduced
expressions can be grouped into one class [Q] via commutation equivalence ∼:

w̃0 ∼ w̃′0 if and only if w̃′0 can be obtained by applying the commutation
relations sisj = sjsi.

A reduced expression in [Q] is called adapted to Q.
Another important role of ΓQ in Lie theory is a realization of the convex

partial order ≺Q on Φ+, which has been used in representation theory inten-
sively (see, for example, [7, 11, 13]). Here, the order ≺Q is defined as follows:
For a reduced expression w̃0 = si1si2 · · · siN ∈ [Q], we denote a positive root

si1si2 · · · sik−1
αk ∈ Φ+ by βw̃0

k and assign the residue ik to βw̃0

k . Then each
reduced expression w̃0 ∈ [Q] induces the total order <w̃0

on Φ+ such that
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βw̃0

k <w̃0
βw̃0

l ⇐⇒ k < l. Using the total orders <w̃′0 for w̃′0 ∈ [Q], we obtain

the convex partial order ≺Q on Φ+:

α ≺Q β if and only if α <w̃′0 β for all w̃′0 ∈ [Q]

such that α ≺Q β and γ = α+ β ∈ Φ+ imply α ≺Q γ ≺Q β (the convexity).
As the definition itself, ≺Q is quite complicated since there are lots of reduced

expressions in each [Q]. However, interestingly, ΓQ realizes ≺Q in the sense that

α ≺Q β if and only if there exists a path from β to α in ΓQ

and there exists a way of finding root labels1 of vertices in ΓQ only with its
shape. Hence, ΓQ is one of the most efficient tools for analyzing ≺Q.

For the longest element w0 in W of any finite type, it is proved in [18,27] that
any convex total order < on Φ+ is <w̃0

for some w̃0. Here, w̃0 is not necessarily
adapted. Moreover, any order <w̃0

is a convex order and each convex order <w̃0

does a crucial role in the representation theory (see [4, 14] and Theorem 5.7).
However, to the best of the authors’ knowledge, properties of general <w̃0

and
≺[w̃0] are not studied well, as much as ≺Q of type ADE. Inspired from the facts,
in this article, we mainly deal with convex orders <w̃0

and ≺[w̃0], for general
w̃0 of any finite types.

To see orders ≺[w̃0] efficiently, we introduce the new quiver Υ[w̃] called the
combinatorial AR-quiver for a reduced expression w̃ of w ∈ W, which realizes
the convex partial order ≺[w̃] on Φ(w); that is,

α ≺[w̃] β if and only if there exists a path from β to α in Υ[w̃].

More precisely, we suggest a purely combinatorial algorithm for constructing
the quiver Υ[w̃] associated with w̃ = si1 · · · si` (Algorithm 2.1) and show, in-
deed, it is the Hasse diagram of ≺[w̃]. Thus ΓQ ' Υ[Q] and Υ[w̃] are distinct in
the sense that Υ[w̃] ' Υ[w̃′] if and only if [w̃′] = [w̃] (Theorem 2.21 and The-
orem 2.22). In Section 3, we explain an efficient way to compute root labels,
which are most useful in our applications. Since, via Algorithm 2.1, it requires
a lot of computations to obtain labels, to avoid it, we show every vertex in
a sectional path shares a component (Definition 3.5). As a consequence, the
property allows us to find the labels with a little of computations.

Due to the results in Section 2 and Section 3, we can understand ≺[w̃0]

completely using the quiver Υ[w̃0]. However, since there are too many classes
[w̃0] of reduced expressions to investigate ≺[w̃0] one by one, we aim to classify
the classes. To this end, in Section 4, we consider another equivalence relation
called a reflection equivalence relation on the set of commutation equivalence
classes. An equivalence class induced from reflection equivalences is called
an r-cluster point [[w̃0]]. As one may expect, there are similarities between
representation theories related to [Q] and [Q′] (for example, [7, 11, 15–17], see
also Corollary 5.15) and {[Q]} forms an r-cluster point [[∆]], called the adapted

1elements in Φ+ corresponding to vertices in ΓQ
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cluster point. In addition, we introduce the notion of Coxeter composition
(Definition 4.10) with respect to a Dynkin diagram automorphism σ.

In Section 5, we apply our results in previous sections to the representation
theory of KLR-algebras ([10,21]) and PBW-bases of quantum groups ([12,23]).

It is well known that proper standard modules {
→
S w̃0

(m)} of a KLR-algebra
associated to w̃0 categorify the corresponding dual PBW-basis {Pw̃0

(m)} ([4,

7–9,14]). Moreover, for finite type cases, {
→
S w̃0

(m)} depends only on the com-
mutation class [w̃0], up to qZ, and so does {Pw̃0

(m)} (see [4, 14]). Note that
this property is originated from the commutation relation between operators Ti
and Tj in [12,23]. In Theorem 5.8, we give an alternative proof of the property
using our observation on ≺[w̃0] and Υ[w̃0].

If the Lie algebra g is of finite simply laced type, the set of all simple modules
of the KLR-algebra categorifies the dual canonical basis ([22, 26]). In [14], a
transition map between a dual PBW-basis and the dual canonical basis was
introduced (see (5.6)) and we consider a more refined transition map using≺[w̃0]

(see (5.7)). By the refined transition map, in Proposition 5.12, we prove that
the root modules S[w̃0](β) (β ∈ Φ+) for β’s lying on the same sectional path
q-commute to each other and hence so do the dual PBW-generators P[w̃0](β)’s.
In addition, reflection functors on [[w̃0]] allow us to show similarities between
{S[w̃0](α)} and {S[w̃′0](α

′)} for [w̃0], [w̃′0] ∈ [[w̃0]] (Corollary 5.15).
In Appendix, we give a table of r-cluster points of A4 (Appendix A) and

observations on the relations between Υ[w̃′] and Υ[w̃] when w̃′ is obtained from
w̃ by a braid relation (Appendix B).

1. Auslander-Reiten quivers

In this section, we recall properties of Auslander-Reiten quivers. We refer
to [1, 6, 11, 24] for the basic theories on quiver representations and Auslander-
Reiten quivers. For the combinatorial properties, we refer to [2, 16].

1.1. Auslander-Reiten quivers and related notions

Let A=(aij)i,j∈I for I={1, . . . , n} be a Cartan matrix of a finite-dimensional
simple Lie algebra g. Let ∆ be the Dynkin diagram associated to A. For vertices
i, j ∈ I in ∆, the minimal length of a path from i to j is called the distance
between i and j and is denoted by d∆(i, j).

We denote by Π = {αi | i ∈ I} the set of simple roots, Φ the set of roots, Φ+

(resp. Φ−) the set of positive roots (resp. negative roots). Let {εi | 1 ≤ i ≤ m}
be the set of orthonormal basis of Cm. The free abelian group Q :=⊕i∈IZαi is
called the root lattice. Set Q+ =

∑
i∈I Z≥0αi ⊂ Q and Q− =

∑
i∈I Z≤0αi ⊂ Q.

For β =
∑
i∈I miαi ∈ Q+, we set ht(β) =

∑
i∈I mi. Let (·, ·) be the the

symmetric bilinear form on Q× Q (we refer [3, Plate I∼IX]).
A Dynkin quiver Q is obtained by adding an orientation to each edge in the

Dynkin diagram ∆ of a finite simply laced type. In other words, Q = (Q0, Q1)
where Q0 is the set of vertices indexed by I and Q1 is the set of oriented edges
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with the underlying graph ∆. We say that the vertex i ∈ ∆ is a sink (resp.
source) if every edge between i and j is oriented as follows: j → i (resp. i→ j).

1.1.1. Auslander-Reiten quivers. Let Mod(CQ) be the category of finite di-
mensional modules over the path algebra CQ. An object M ∈ ModCQ consists
of the following data:

(1) a finite dimensional module Mi for each i ∈ Q0,
(2) a linear map ψi→j : Mi →Mj for each oriented edge i→ j.

The dimension vector of the module M is dimM =
∑
i∈I(dim Mi)αi and

a simple object in ModCQ is S(i) for some i ∈ I where dimS(i) = αi. In
ModCQ, the set of isomorphism classes [M ] of indecomposable modules is
denoted by IndQ.

Theorem 1.1 (Gabriel’s theorem). Let Q and Φ+ be a Dynkin quiver and
the set of positive roots of finite type An, Dn or En. Then there is a bijection
between IndQ and Φ+ :

[M ] 7→ dimM.

Now we recall the Auslander-Reiten (AR) quiver ΓQ associated to a Dynkin
quiver Q of finite type An, Dn, or En. Let us denote by IndQ the set of iso-
morphism classes [M ] of indecomposable modules in ModCQ, where ModCQ
is the category of finite dimensional modules over the path algebra CQ.

Definition 1.2. The quiver ΓQ = (Γ0
Q,Γ

1
Q) is called the Auslander-Reiten

quiver (AR quiver) if

(i) each vertex VM in Γ0
Q corresponds to an isomorphism class [M ] in IndQ,

(ii) an arrow VM → VM ′ in Γ1
Q corresponds to an irreducible morphism M →

M ′.

Gabriel’s theorem (Theorem 1.1) tells that there is a natural one-to-one
correspondence between the set Γ0

Q of vertices in ΓQ and the set Φ+ of positive

roots. Hence we use Φ+ as the index set of Γ0
Q.

1.1.2. Adapted reduced expressions. The Weyl group W of a finite type with
rank n is generated by simple reflections si ∈ Aut(Q), i ∈ I, defined by si(α) :=

α − (α,αi)
(αi,αi)

αi. Note that
(
w(α), w(β)

)
= (α, β) for any w ∈ W and α, β ∈ Q.

For w ∈W, the length of w is

`(w) = min{l ∈ Z≥0 | si1 · · · sil = w, sik are simple reflections}.

If w=si1si2 · · · si`(w)
, then the sequence of simple reflections w̃ = (si1 , . . . , si`(w)

)
is called a reduced expression associated to w. We denote by w0 the longest
element in W and by ∗ the involution on I induced by w0; i.e.,

w0(αi) :=−αi∗ for all i ∈ I.(1.1)
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For w ∈W with a reduced expression (si1 , . . . , sil), consider the subset ([3])

(1.2)
Φ(w) = {α ∈ Φ+ |w−1(α) ∈ Φ−}

= {si1si2 · · · sik−1
(αik) | k = 1, . . . , `(w)} such that |Φ(w)| = `(w).

In particular, Φ(w0) = Φ+. Note that the definition of (1.2) does not depends
on the choice of a reduced expression.

The action of a simple reflection si, i ∈ I, on the set of Dynkin quivers is
defined by si(Q) = Q′, where si(Q) is a quiver obtained by Q by reversing all
the arrows incident with i.

Definition 1.3. A reduced expression w̃ = (si1 , . . . , sil) of w is said to be
adapted to a Dynkin quiver Q if

ik is a sink of Qk−1 = sik−1
· · · si1(Q).

Here, Q0 := Q.

Remark 1.4. The followings are well known facts:

(1) A reduced expression w̃0 of w0 is adapted to at most one Dynkin quiver
Q.

(2) For each Dynkin quiver Q, there is a reduced expression w̃0 of w0

adapted to Q.

Note that two different reduced expressions of w0 can be adapted to the
same Dynkin quiver Q. Actually, we can assign a class of reduced expressions
of w0 to each Dynkin quiver Q. (See Definition 1.5 and Proposition 1.6.)

Definition 1.5 ([2, 11]). Let w̃ = (si1 , si2 , . . . , sik) and w̃′ = (si′1 , si′2 , . . . , si′k)

be reduced expressions of w ∈W . If w̃′ can be obtained from w̃ by a sequence
of commutation relations, sisj = sjsi for d∆(i, j) > 1, then we say w̃ and w̃′

are commutation equivalent and write w̃ ∼ w̃′. The equivalence class of w̃ is
denoted by [w̃].

Proposition 1.6 ([2, 11]). Reduced expressions w̃0 = (si1 , si2 , . . . , sil) and
w̃′0 = (si′1 , si′2 , . . . , si′l) of w0 are adapted to the same quiver Q if and only

if w̃0 ∼ w̃′0 and w̃0 is adapted to Q.

Thus we can denote by [Q] the equivalence class of w0 consisting of all
reduced expressions adapted to the Dynkin quiver Q.

1.1.3. Coxeter elements. An element φ = si1si2 · · · sin ∈ W where {i1, i2, . . .,
in} = I is called a Coxeter element. There is the one-to-one correspondence
between the set of Dynkin quivers and the set of Coxeter elements

Q←→ φQ,

where φQ is the Coxeter element all of whose reduced expressions are adapted
to Q.
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1.1.4. Partial orders on Φ(w). Let w be an element in W of finite type. An
order � on the set Φ(w) is said to be convex if

α, β, α+ β ∈ Φ(w) and α � β implies α � α+ β � β.

Definition 1.7. The total order <w̃ on Φ(w) associated to w̃=(si1 , si2 , . . . , sil)
is defined by

βw̃j <w̃ β
w̃
k if and only if j < k where βw̃j := si1si2 · · · sij−1(αij ).

Definition 1.8. Let α, β ∈ Φ(w) ⊂ Φ+. We define an order ≺[w̃] on Φ(w) as
follows:

α ≺[w̃] β if and only if α <w̃′ β for any w̃′ ∈ [w̃].

Proposition 1.9 ([18]). The total order <w̃ and the partial order ≺[w̃] are
convex orders on Φ(w).

Remark 1.10. Consider the adapted class [Q] associated to the Dynkin quiver
Q of type ADE. The convex partial order ≺[Q] is often denoted by ≺Q for the
simplicity of notation.

1.2. Construction of AR-quivers

Consider the height function ξ : I → Z associated to the Dynkin quiver Q,
that is ξ satisfies

if there exists an arrow i→ j in Q, then ξ(j) = ξ(i)− 1 ∈ Z.

Note that a height function exists and is unique (up to constant) since the
Dynkin diagram do not have a cycle and connected.

The repetition quiver ZQ of Q associated to the height function ξ consists
of the set of vertices

(ZQ)0 = {(i, p) ∈ I × Z | p− ξ(i) ∈ 2Z}
and the set of arrows

(ZQ)1 = {(j, p+ 1)→ (i, p), (i, p)→ (j, p− 1) | i, j ∈ I such that d∆(i, j) = 1}.
For i ∈ I, we define positive roots γi and θi in the following way:

γi = αi +
∑
j∈
←
i

αj and θi = αi +
∑
j∈
→
i

αj ,(1.3)

where

•
←
i is the set of vertices j in Q0 such that there exists a path from i to
j,

•
→
i is the set of vertices j in Q0 such that there exists a path from j to
i.

Note that {γi | i ∈ I} = Φ(φQ) and {θi | i ∈ I} = Φ(φ−1
Q ). Consider the map

πQ : Φ+ → (ZQ)0 such that

(1.4) γi 7→ (i, ξ(i)), φQ(α) 7→ (i, p− 2) if πQ(α) = (i, p) and φQ(α), α ∈ Φ+.



COMBINATORIAL AR-QUIVERS AND REDUCED EXPRESSIONS 359

Proposition 1.11 ([7]). The subquiver of ZQ consisting of πQ(Φ+) is the same
as the quiver ΓQ by identifying their vertices as Φ+.

For a given Dynkin quiver Q and a root α ∈ Φ+, (i, p) is the coordinate of
α in ΓQ and i is the residue of α in ΓQ, when πQ(α) = (i, p).

Proposition 1.12 ([2, 19]). Let w̃0 = (si1 , si2 , . . . , sil) ∈ [Q]. The correspon-
dence between coordinates of ΓQ and roots in Φ+ is given as follows:

(1.5) (i, ξ(i) + 2m)↔ β = si1si2 · · · sik−1
(αi) ∈ Φ+

for m = #{ t | it = i, 1 ≤ t < k} and i = ik.

Example 1.13. Let w̃0 = (s1, s3, s2, s4, s1, s3, s5, s2, s4, s1, s3, s5, s2, s4, s1) of
A5, which is adapted to the Dynkin quiver Q = ◦oo

1
◦
2

//◦oo
3

◦ oo
4

◦
5
.

The AR quiver ΓQ associated to Q is:

(i, p) −6 −5 −4 −3 −2 −1 0

1 [5]
%%

[4]
&&

[2, 3]
&&

[1]

2 [4, 5]

88

&&
[2, 4]

88

&&
[1, 3]

::

$$
3 [2, 5]

88

&&
[1, 4]

88

&&
[3]

4 [2]

88

&&
[1, 5]

88

&&
[3, 4]

::

5 [1, 2]

88

[3, 5]

88

Here [a, b] :=
∑b
i=a αi ∈ Φ+.

Definition 1.14. A path β0 → β1 → · · · → βs in ΓQ is called a sectional path
if, for each 0 ≤ k < l ≤ s, d∆(ik, il) = k − l. Here it (0 ≤ t ≤ s) denotes the
residue of βt in ΓQ. Combinatorially, a path is sectional if the path is upwards
or downwards in ΓQ.

1.3. Properties of AR-quivers

The AR quiver ΓQ is the Hasse diagram of the convex partial order ≺Q when
Q is a Dynkin quiver Q of type ADE in the following sense:

Theorem 1.15 ([20]). For a Dynkin quiver Q and α, β ∈ Φ+, we have α ≺Q β
if and only if there is a path from β to α in ΓQ. Furthermore, there exists an
arrow from β to α in ΓQ if and only if β is a cover of α with respect to ≺Q.

Also, adapted reduced expressions to Q can be obtained from the AR-quiver
ΓQ by compatible readings. Here, a compatible reading of the AR quiver ΓQ is
the sequence si1 , . . . , siN (resp. i1, . . . , iN ) of simple reflections (resp. indices)
such that whenever there is an arrow from (iq, nq) to (ir, nr) in ΓQ, read sir
before siq .

Moreover, we have the following theorem.
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Theorem 1.16 ([2]). Let Q be a Dynkin quiver of finite type An, Dn, En. Then
any reduced expression of w0 ∈ W adapted to the quiver Q can be obtained by
a compatible reading of the AR quiver ΓQ.

Note that, by Proposition 1.15, a compatible reading of ΓQ gives a compat-
ible reading of positive roots, in the sense that α is read before β if α ≺Q β for
α, β ∈ Φ+.

2. Combinatorial AR-quivers and convex partial orders

In this section, we shall introduce combinatorial object Υ[w̃] which can be
understood as the Hasse diagram of ≺[w̃] on Φ(w) for a reduced expression w̃
of any element w in any finite Weyl group W. First we suggest an algorithm
for the object and then prove that the combinatorial object is distinct in the
sense that Υ[w̃] = Υ[w̃′] if and only if [w̃] = [w̃′].

2.1. Combinatorial AR-quivers

Algorithm 2.1. The quiver Υw̃ = (Υ0
w̃,Υ

1
w̃) associated to w̃ = (si1 , si2 , . . .,

si`(w)
) is constructed in the following algorithm:

(Q1) Υ0
w̃ consists of `(w) vertices labeled by βw̃1 , . . . , β

w̃
`(w).

(Q2) There is an arrow from βw̃k to βw̃j if

(i) k > j, (ii) d∆(ik, ij) = 1 and (iii) { t | j < t < k, it = ij or ik} = ∅.

(Q3) Assign the color mjk = −(αij , αik) to each arrow βw̃k → βw̃j in (Q2);

that is, βw̃k
mjk−−→ βw̃j . Replace

1−→ by →,
2−→ by ⇒ and

3−→ by V.

We call the quiver Υw̃ the combinatorial AR-quiver associated to w̃. Now
we can define the notion of sectional paths in Υw̃ as in Definition 1.14. In Υ[w̃],

the residue of the vertex labeled by βw̃k is ik.

Remark 2.2.

(1) To compute βw̃k from the reduced expression w̃, we need lots of com-
putations in general. So, we significantly deal with this problem sepa-
rately, in Section 3.

(2) The shape of Υ[w̃] can be obtained directly, without any computation,
from Algorithm 2.1 (see (2.1) in Example 2.4).

The following proposition follows from the construction of the quiver Υw̃:

Proposition 2.3. If two reduced expressions w̃ and w̃′ are commutation equiv-
alent, then Υw̃ = Υw̃′ . Hence we can define the combinatorial AR-quiver on
[w̃]:

Υ[w̃] := Υw̃′ for any w̃′ ∈ [w̃].
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Example 2.4. Let w̃ = (s1, s2, s3, s5, s4, s3, s1, s2, s3, s5, s4, s3, s1) of A5. Then
one can easily check that w̃ is not adapted to any Dynkin quiver Q of type A5.
According to Algorithm 2.1, the shape of Υ[w̃] is:

(2.1) residue

1 •
((

•
((

•
2 •

!!

66

•
77

3 •
!!

•
==

•
!!

•
==

4 •
==

((
•
==

((5 •
66

•

Labels of vertices of the combinatorial AR quiver Υ[w̃] are

(βw̃k | 1 ≤ k ≤ `(w) = 13)

= ([1], [1, 2], [1, 3], [5], [1, 5], [4, 5], [2], [2, 5], [2, 3], [1, 4], [2, 4], [4], [3, 5]).

Hence Υ[w̃] is drawn as follows:

(2.2) 1 [3, 5]

**

[2]

**

[1]

2 [2, 5]
&&

44

[1, 2]

66

3 [4]
$$

[2, 3]

88

[4, 5]
&&

[1, 3]

88

4 [2, 4]

88

**

[1, 5]

88

**5 [1, 4]

44

[5]

Here [2, 4] and [2] are positive roots whose residues are 4 and 1, and lie in the
sectional path:

[2, 4]→ [2, 4]→ [2, 5]→ [2]

Example 2.5. Let w̃0 = (s3, s2, s3, s2, s1, s2, s3, s2, s1) of B3. The combinato-
rial AR quiver of [w̃0] is:

Υ[w̃0] = 1 α1
&&

α1+2α2+2α3

))
2 α1+α2

))
α1+α2+2α3

33

α2
&&

α2+2α3

&&
3 α1+α2+α3

44

α2+α3

66

α3

Example 2.6. A combinatorial AR quiver is not necessarily connected. For
example, let w̃ = (s4, s3, s1) of A4. Then

Υ[w̃] = 1 α1

2

3 α3 + α4

''
4 α4 .
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Example 2.7. Let w̃0 = (s1, s2, s3, s1, s2, s4, s1, s2, s3, s1, s2, s4) of D4. Note
that w̃0 is not adapted to any Dynkin quiver of type D4. We can draw the
combinatorial AR quiver Υ[w̃0] as follows:

1 α1+α2+α4
++

α3

**
α2

))
α1

2 α2+α4

55

))
α1+α2+α3+α4

33

((

α2+α3

55

))
α1+α2

88

3 α2+α3+α4

33

α1+α2+α3

55

4 α4

AA

α1+2α2+α3+α4

88

Example 2.8. Let w̃ = (s1, s2, s1, s2, s1) of G2. Then

Υ[w̃] = 1 α1 + 3α2
#/

2α1 + 3α2
#/

α1

2 α1 + 2α2

/:

α1 + α2

2> .

Remark 2.9. A combinatorial AR quiver is not necessarily connected (see Ex-
ample 2.6). However, when w̃ is a reduced expression consisting of simple
reflections {si1 , . . . , sik}, the quiver Υ[w̃] is connected if and only if the full
subdiagram of ∆ consisting of the set of indices {i1, . . . , ik} is connected.

2.2. Combinatorial AR-quivers and convex partial orders

In this subsection, we shall show each combinatorial AR-quiver gives rise to
a distinct convex partial order ≺[w̃] on Φ(w). To do this, we aim to show the
converse (see Theorem 2.21):

(2.3) Υ[w̃] = Υ[w̃′] then [w̃] = [w̃′]

of Proposition 2.3, by using the level functions (Definitions 2.10, 2.12) of w̃ and
of Υ[w̃].

Definition 2.10 ([2]). Let w̃ = (si1 , si2 , . . . , sil) be a reduced expression of w.
Given α ∈ Φ(w), let

(2.4) β1, β2, . . . , βk = α

be a sequence of distinct elements of Φ(w) ending with α such that

(2.5) βi−1 <w̃ βi and (βi, βi−1) 6= 0.

The function λw̃ : Φ(w)→ N associated to the reduced expression w̃ is defined
as follows:

(2.6) λw̃(α) = max {k ≥ 1 |β1, β2, . . . , βk = α is the sequence in (2.4)} .

We call it the level function associated to w̃.

Proposition 2.11 ([2]). Two reduced expressions w̃ and w̃′ of w are in the
same commutation class if and only if λw̃ = λw̃′ .

Definition 2.12. The level function λΥ[w̃]
: Φ+(w)→ N of Υ[w̃] is defined by

λΥ[w̃]
(β) = the length of the longest path in Υ[w̃] from β.
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Remark 2.13. By Proposition 2.11 and (2.3), the converse (Theorem 2.21) of
Proposition 2.3 can be re-written as

(2.7) Υ[w̃] = Υ[w̃′] then λw̃ = λw̃′ .

We shall prove (2.7) by showing λΥ[w̃]
= λw̃ (Proposition 2.20).

The following lemmas (Lemma 2.14 and Lemma 2.19) will be used in Propo-
sition 2.20. They explain the sequence β1, β2, . . . , βk for the level function λw̃
in (2.6), in terms of Υ[w̃].

Lemma 2.14. Let α and β have residues i and j in the combinatorial Aus-
lander-Reiten quiver Υ[w̃]. If α and β are connected by one arrow, then we
have (α, β) = −(αi, αj) > 0.

Proof. Take a reduced expression w̃ = (si1 , . . . , si`(w)
) ∈ [w̃] and denote α = βw̃k

and β = βw̃l for 1 ≤ k < l ≤ `(w). Then the arrow is directed from β to α. If
l = k + 1, then our assertion follows from the formula below:

(α, β) = (si1 · · · sik−1
(αik), si1 · · · sik(αil)) = (−αik , αil).

Assume that l > k + 1 and set w̃k≤·≤l := (sik , . . . , sil). It is enough to

show that there exists a reduced expression w̃′ ∈ [w̃] such that βw̃
′

k′ = α and

βw̃
′

k′+1 = β for some k′ ∈ {1, . . . , `(w)− 1}.
Observe that the following property is followed by the algorithm of combi-

natorial AR quivers

(i) { it | k < t < l, it = i} = { it | k < t < l, it = j} = ∅,
(ii) if i′ 6= i, j, then si′si = sisi′ or si′sj = sj , si′ .

Hence we can find a reduced expression w̃′ = (si′1 , . . . , si′`(w)
) ∈ [w̃] such that

α = βw̃
′

k′ and β = βw̃
′

k′+1 for some 1 ≤ k′ < `(w). �

Proposition 2.15. Let α and β have residues i = i0 and j = ik in Υ[w̃].
Suppose there is a sectional path in Υ[w̃]

β = γk
mik−1,ik−−−−−−→ γk−1

mik−2,ik−1−−−−−−−→ · · ·
mi1,i2−−−−→ γ1

mi0,i1−−−−→ γ0 = α.

Then we have

(2.8) (α, β) =

{ ∏k−1
t=1 2δ3,it

∏k−1
t=0 mit,it+1 for Type F4,∏k−1

t=0 mit,it+1
otherwise,

where it is the residue of γt and ma,b :=−(αa, αb) for a, b ∈ I (Algorithm 2.1).
Hence

(α, β) > 0.

Proof. Note that, by induction on k, we can see that

si0si1 · · · sik−1
(αik) = αik +

k∑
p=1

(−2)p
∏p−1
t=0 (αik−t−1

, αik−t)∏p−1
t=0 (αik−t−1

, αik−t−1
)
αik−p .
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There exists w ∈ W such that α = w(αi) and β = wsisi1si2 · · · sik−1
(αj).

Hence we have

(2.9)

(w(αi), wsisi1si2 · · · sik−1
(αj))

=

(
αi0 , (−2)k−1

∏k−1
t=1 (αit , αit+1

)∏k−1
t=1 (αit , αit)

αi1 + (−2)k
∏k−1
t=0 (αit , αit+1

)∏k−1
t=0 (αit , αit)

αi0

)

= − (−2)k−1

∏k−1
t=1 (αit , αit+1)∏k−1
t=1 (αit , αit)

(αi0 , αi1)

=

k−1∏
t=1

2

(αit , αit)

k−1∏
t=0

−(αit , αit+1)

since (αi0 , αia) = 0 for a 6= 0, 1. Here we note that only i0 and ik can be 1
or n. According to [3], except F4 case, we can check that (αit , αit) = 2 for all
t = 1, 2, . . . , k−1. In the case of type F4, we have (α2, α2) = 2 and (α3, α3) = 1.
Hence we get the formula (2.8). �

Remark 2.16. For any finite type other than F4, we have

(α, β) =
∏k−1
t=0 (γt, γt+1) =

∏k−1
t=0 −(αit , αit+1) =

∏k−1
t=0 mit,it+1 > 0.

Here we use notations in Proposition 2.15.

Example 2.17. Let us consider w̃0 = (s3, s2, s3, s2, s1, s2, s3, s2, s1) of type
C3. Then:

Υ[w̃0] = 1 α1
&&

α1+2α2+α3

((
2 α1+α2

&.
α1+α2+α3

44

α2
"*

α2+α3

"*
3 2α1+2α2+α3

/7

2α2+α3

2:

α3

One can check that Proposition 2.15 holds in the above quiver. For instance,

2 = (α1 + 2α2 + α3, 2α1 + 2α2 + α3)

= (α1 + 2α2 + α3, α1 + α2 + α3)(α1 + α2 + α3, 2α1 + 2α2 + α3)

= (α1, α2)(α2, α3).

Lemma 2.18. Let α, β ∈ Φ(w) and w̃ be a reduced expression of w ∈ W. If
there is no path between α and β in Υ[w̃], then there are two distinct reduced

expressions w̃′ and w̃′′ in [w̃] and two integers k, l ∈ N such that βw̃
′

k = α,

βw̃
′

k+1 = β and βw̃
′′

l+1 = α, βw̃
′′

l = β.

Proof. Let α = βw̃s and β = βw̃t have residues i and j, respectively, for 1 ≤ s <
t ≤ `(w). Since there is no path from β to α in Υ[w̃], if there is a root γ = βw̃t′
for s < t′ < t with residue i′, then si′si = sisi′ or si′sj = sjsi′ . Hence there is

a reduced expression w̃′ ∈ [w̃] such that α = βw̃
′

k and β = βw̃
′

k+1. Also, since we

know sisj = sjsi, we have w̃′′ ∈ [w̃] such that α = βw̃
′

k+1 and β = βw̃
′

k . �
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Lemma 2.19. Let α, β ∈ Φ(w) and w̃ be a reduced expression of w ∈ W.
Suppose there is no path between α and β in Υ[w̃]. Then we have (α, β) = 0.

Proof. Since <w̃ is a total order, we can assume that βw̃k = α and βw̃l = β for
k < l without loss of generality. If l − k = 1, then

(α, β) = (si1 . . . , sik−1
(αik), si1 . . . , sik−1

sik(αil))

= (αik , sik(αil)) = (αik , αil) = 0.

Now our assertion follows from Lemma 2.18. �

Proposition 2.20. Consider a reduced expression w̃ of w ∈ W of any finite
type. We have

λΥ[w̃]
= λ[w̃].

Proof. Suppose λΥ[w̃]
(α) = k and it is obtained by a path α = βk → βk−1 →

· · · → β2 → β1 inΥ[w̃]. Then βi−1 ≺[w̃] βi for i = 2, . . . , k so that βi−1 <w̃ βi.
Also, (βi, βi−1) 6= 0 by Lemma 2.14. Hence λw̃(α) ≥ λΥ[w̃]

(α) = k.

On the other hand, suppose λw̃(α) = k is obtained by the sequence β1 <w̃
β2 <w̃ · · · <w̃ βk−1 <w̃ βk = α such that (βi−1, βi) 6= 0 for i = 2, . . . , k.
Then βi−1 ≺[w̃] βi since otherwise (βi−1, βi) = 0 by Lemma 2.19. Hence
there is a path α = βk → βk−1 → · · · → β2 → β1 in Υ[w̃] which implies
k = λw̃(α) ≤ λΥ[w̃]

(α). As a consequence, we have λΥ[w̃]
= λ[w̃]. �

Theorem 2.21. Two reduced expressions w̃ and w̃′ are in the same commu-
tation class if and only if Υ[w̃] = Υ[w̃′].

Proof. It is enough to show that if Υ[w̃] = Υ[w̃′], then [w̃] = [w̃′]. However,
since we know that λ[w̃] = λΥ[w̃]

= λΥ[w̃′] = λ[w̃′] and λ[w̃] = λ[w̃′] implies

[w̃] = [w̃′] by Proposition 2.20, our assertion follows. �

The following theorem shows Υ[w̃] can be understood as a generalization of
ΓQ.

Theorem 2.22.

(1) Every reduced expression of w ∈ [w̃] can be obtained by a compatible
reading of Υ[w̃].

(2) The combinatorial AR quiver Υ[w̃] is the Hasse diagram of convex par-
tial order �[w̃]. That is α �[w̃] β if and only if there is a path from β
to α in Υ[w̃].

(3) If w̃0 ∈ [Q], we have Υ[w̃0] ' ΓQ.

Proof. (1) In Algorithm 2.1, since the existence of arrow βw̃k → βw̃j in Υ[w̃]

implies k > j, any reduced expression w̃ ∈ [w̃] can be obtained by a compatible
reading of Υ[w̃].

(2) If there is a path from α to β in Υ[w̃], then any compatible reading of
Υ[w̃] reads β before α. On the other hand, if there is no path from α to β
or from β to α, then there are two compatible readings of Υ[w̃] such that one
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is obtained by reading α before β and the other one is obtained by reading β
before α (see Lemma 2.18). Hence Υ[w̃] is the Hasse diagram of ≺[w̃] .

(3) Since ΓQ is the Hasse diagram of ≺Q and Υ[w̃0] is the Hasse diagram of
≺[w̃0], if [Q] = [w̃0], then ΓQ ' Υ[w̃0]. �

Example 2.23. In Example 2.4, we can obtain the following reduced expres-
sion in [w̃0] by compatible reading:

(s1, s2, s5, s3, s4, s3, s1, s2, s5, s1, s3, s4, s3).

Theorem 2.22(3) shows a combinatorial AR-quiver is a generalization of an
AR-quiver. As AR-quivers are used to investigate convex orders associated
to adapted reduced expressions, combinatorial AR-quivers can be used to see
convex orders associated to non-adapted reduced expressions.

3. Labeling of combinatorial AR quivers

In this section, we discuss finding labels of combinatorial AR quivers. For
classical finite types, there is a more efficiency way to find the label of each
vertex α ∈ Φ+ in ΓQ than direct computations. Similarly, for the labeling of
Υ[w̃], there exists analogous way to avoid large amount of computations (see
Remark 2.2(1)). We mainly focus on combinatorial AR quivers of type An and
generalize the argument to other classical finite types.

3.1. Labeling of AR-quivers of type A

Let ΓQ be an AR quiver of finite type An. Recall that we denote by πQ(α)
for α ∈ Φ+ the coordinate of the vertex in ΓQ labeled by α.

Lemma 3.1 ([2,8]). We call the vertex k in the Dynkin quiver Q a left inter-
mediate if Q has the subquiver ◦

k−1
//◦
k

//◦
k+1

and call the vertex k in the

Dynkin quiver Q a right intermediate if Q has the subquiver ◦oo
k−1

◦oo
k

◦
k+1

.

Then we have the following properties.

(1) For a simple root αk, we have

(3.1) πQ(αk) =


(k, ξk), if k is a sink in Q,
(n+ 1− k, ξk − n+ 1), if k is a source in Q,
(1, ξk − k + 1), if k is a right intermediate,
(n, ξk − n+ k), if k is a left intermediate.

(2) If β → α is an arrow in ΓQ for α, β ∈ Φ+, then (β, α) = 1.

Here ξ is the height function such that max{ ξk | k = 1, . . . , n } = 0.

After all, the following theorem shows how to find labels of vertices in ΓQ
in an efficient way. In order to introduce the method, we distinguish types of
sectional paths in AR quivers.
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Definition 3.2 (cf. [17, Definition 3.3]). In an AR quiver ΓQ, a sectional path
is called N-sectional if the path is upwards. On the other hand, if a sectional
path is downwards, it is said to be an S-sectional path.

Theorem 3.3 ([16]). For a positive root α =
∑k2
j=k1

αj of type An, let us call
αk1 the left end and αk2 the right end of α.

(a) Every vertex in an N-sectional path in ΓQ shares its left end.
(b) Every vertex in an S-sectional path in ΓQ shares its right end.

Now we know how to draw the AR quiver ΓQ associated to the Dynkin
quiver Q of An purely combinatorially. We summarize the procedure with the
example below.

Example 3.4. ForQ=◦
1

//◦
2

//◦oo
3

◦
4

//◦ oo
5

◦
6

of typeA6, Lemma 3.1

tells that ΓQ can be drawn with partial labels:

1 •
��

•
��

[2]

""
[1]

2 [5]

>>

""
•

@@

  
•
>>

""
•
<<

3 •
>>

  
•
>>

  
•

;;

##
4 [3]

<<

""
•
>>

  
•
<<

""
[4]

5 •
>>

  
•
>>

  
•
;;

##
6 •

>>

•
<<

[6]

Finally, using Theorem 3.3, we can complete whole labels of ΓQ:

1 [5, 6]
&&

[3, 4]
&&

[2]
&&

[1]

2 [5]

::

$$
[3, 6]

88

&&
[2, 4]

88

&&
[1, 2]

::

3 [3, 5]

88

&&
[2, 6]

88

&&
[1, 4]

88

&&
4 [3]

::

$$
[2, 5]

88

&&
[1, 6]

88

&&
[4]

5 [2, 3]

88

&&
[1, 5]

88

&&
[4, 6]

88

&&
6 [1, 3]

88

[4, 5]

88

[6]

3.2. Labeling of combinatorial AR-quivers

Now, we generalize the above arguments in ΓQ. In order to find analogous
results for Υ[w̃] of any classical finite type, we introduce the notion of compo-
nent:

Definition 3.5. Let α =
∑
i∈J ciεi and β =

∑
i∈J diεi. (Note that J need not

to be the same as I.)

(1) If i ∈ I satisfies ci 6= 0, then εi is called a component of α.
(2) If i ∈ I satisfies ci > 0 (resp. ci < 0), then εi is called a positive

component (resp. negative component) of α.
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(3) We say α and β share a component if there is i ∈ I such that εi is a
positive component to both α and β or a negative component to both
α and β.

Remark 3.6. In An type, we have [i, j] = εi − εj+1. Hence Theorem 3.3 can
be restated as follows: An N -sectional (resp. S-sectional) path in ΓQ shares a
positive (resp. negative) component. In short, each sectional path in ΓQ shares
a component.

For type An, recall that the action si on Φ+ can be described as follows:

[j, k] 7→



[j, k − 1] if j < k = i,

[j + 1, k] if j = i < k,

[j, k + 1] if j < k = i− 1,

[j − 1, k] if j = i+ 1 < k,

−[i] if i = j = k,

[j, k] otherwise.

(3.2)

Then the following lemma is an easy consequence induced from the action of
simple reflection on Φ+.

Lemma 3.7. Let st be a simple reflection on W of type An and [i, j]:=
∑j
k=i αk

for i, j ∈ I.

(1) If st[i, k], st[j, k] ∈ Φ+, then st[i, k] = [i′, k′] and st[j, k] = [j′, k′] for
some i′, j′ ≤ k′ ∈ {1, 2, . . . , n}.

(2) If st[i, j], st[i, k] ∈ Φ+, then st[i, j] = [i′, j′] and st = [i′, k′] for some
i′ ≤ j′, k′ ∈ {1, 2, . . . , n}.

Proposition 3.8. Let w̃ = (si1 , si2 , . . . , siN ) be a reduced expression of w ∈W
of type An and Υ[w̃] be the combinatorial AR quiver.

(a) If there is an arrow from βw̃k1 of the residue l to βw̃k2 of the residue (l−1),

then the corresponding positive roots [i1, j1] and [i2, j2] to βw̃k1 and βw̃k2
satisfy i1 = i2.

(b) If there is an arrow from βw̃k1 of the residue l to βw̃k2 in the residue

(l + 1), then the corresponding positive roots [i1, j1] and [i2, j2] to βw̃k1
and βw̃k2 satisfy j1 = j2.

Proof. (a) The arrow from βw̃k1 of the residue l to βw̃k2 of the residue (l − 1)
implies that k1 > k2 and

the vertices {βw̃k | k=k2+1, . . . , k1−1} in Υ[w̃] are not of the residue(3.3)

l or (l − 1).

Denote w̃≤k2−1 = si1si2 · · · sk2−1. Then [i1, j1] = w̃≤k2−1sik2 sik2+1 · · · sik1−1

(αik1 = [l]) and [i2, j2] = w̃≤k2−1 (αik2 = [l − 1]). Using (3.2) and (3.3), we
have

sik2 sik2+1 · · · sik1−1
(αik1 ) = [l − 1, j]



COMBINATORIAL AR-QUIVERS AND REDUCED EXPRESSIONS 369

for some j ≥ l. Then the first assertion follows from Lemma 3.7.
(b) The same argument as that in the proof of (a) works. �

Theorem 3.9. For any Υ[w̃] of type A, if two roots α and β are in an
N-sectional (resp. S-sectional) path, then α and β share their positive (resp.
negative) components.

Using Theorem 3.9, we can find labels of combinatorial AR-quivers avoiding
large amount of computations.

Example 3.10. Let w̃0 = (s1, s2, s1, s3, s5, s4, s3, s2, s3, s5, s4, s1, s3, s2, s3) of
A5. We can easily find that labels of sinks and sources of the quiver Υ[w̃0] are
[1], [5] and [3].

(3.4) 1 •
''

•
((

[1]

2 •
  

77

•
  

66

•

66

3 [3]

<<

•
  

•
>>

•
!!

•
<<

4 •
>>

''
•
==

((
5 •

66

[5]

By Proposition 3.8, we can see the labels Υ[w̃0] has the form of:

(3.5) 1 [3, 5]

**

[‡, ]]
**

[1]

2 [3, †]
%%

44

[‡, 5]
&&

33

[1, ]]

66

3 [3]

::

[�, †]
&&

[‡, ∗]
99

[4, 5]
''

[1, ?]

99

4 [‡, †]
88

**

[1, 5]

88

**5 [1, †]

33

[5]

Since (i) there are four different roots with the positive (resp. negative)
component ε‡ (resp. ε†+1) (ii) ‡ 6= 1 (resp. † 6= 5), we have ‡ = 2 (resp. † = 4).
On the other hand, since s1(α2) = [1, 2], ] = 2.

(3.6) 1 [3, 5]

**

[2]

**

[1]

2 [3, 4]
&&

44

[2, 5]
&&

33

[1, 2]

66

3 [3]

::

[�, 4]
&&

[2, ∗]
88

[4, 5]
''

[1, ?]

88

4 [2, 4]

88

**

[1, 5]

88

**5 [1, 4]

33

[5]

Now, since Φ(w0) = Φ+, one can see that � = 4, ∗ = 3, 4 = 4 and ? = 3.
Hence we complete finding labels of Υ[w̃0].

(3.7) 1 [3, 5]

**

[2]

**

[1]

2 [3, 4]
$$

44

[2, 5]
&&

44

[1, 2]

66

3 [3]

::

[4]
$$

[2, 3]

88

[4, 5]
&&

[1, 3]

88

4 [2, 4]

88

**

[1, 5]

88

**5 [1, 4]

44

[5]
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By applying similar arguments of Lemma 3.7 and Proposition 3.8, we have
the following theorem for classical finite types ABCD:

Theorem 3.11. For any Υ[w̃] of classical finite types, a sectional path shares
a component; that is, if two roots α and β are in a sectional path, then α and
β share one component.

We can observe the following remark without consideration of types:

Remark 3.12. For α and β in a sectional path in Υ[w̃] of any finite type, there

exists no set of vertices {γi | 1 ≤ i ≤ r} ⊂ Φ+ in the same sectional path such
that

r∑
i=1

γi = α+ β and γi 6= α, β for all 1 ≤ i ≤ r.

Example 3.13. Recall that the set of positive roots can be expressed as

{ εi ± εj | 1 ≤ i < j ≤ n }.
For type D5, consider the reduced expression

w̃0 = (s2, s1, s3, s2, s1, s5, s3, s2, s1, s4, s3, s2, s1, s5, s3, s2, s1, s4, s3, s5).

The combinatorial AR quiver Υ[w̃0] has the form of:

1 〈1,−2〉

&&

•
��

•
��

•
""

〈1,−3〉

&&
2 •

""

<<

•
��

@@

•
��

@@

•
&&

88

〈2,−3〉

3 〈3,−5〉

&&

88

•

��

@@

•
��

@@

•

��

<<

〈2,−4〉

88

4 〈3,4〉

<<

•

@@

5 〈4,−5〉

@@

•

GG

〈2,5〉

AA

Here εi ± εj is denoted by 〈i,±j〉. Note that the labels filled in the previous
quiver are not hard to find by direct computations. Now, by Theorem 3.11, we
can complete to find all labels in Υ[w̃0].

1 〈1,−2〉

&&
〈2,−5〉

&&
〈4,5〉

%%
〈3,−4〉

&&
〈1,−3〉

&&
2 〈1,−5〉

&&

88

〈2,4〉

%%

99

〈3,5〉

&&

88

〈1,−4〉

&&

88

〈2,−3〉

3 〈3,−5〉

&&

88

〈1,4〉

��

88

〈2,3〉

%%

99

〈1,5〉

��

88

〈2,−4〉

88

4 〈3,4〉

88

〈1,2〉

88

5 〈4,−5〉

@@

〈1,3〉

BB

〈2,5〉

@@

Example 3.14. In Example 2.17, Υ[w̃0] of type C3 can be also labeled in terms
of orthonormal basis:

Υ[w̃0] = 1 ε1 − ε2
((

ε1 + ε2
((

2 ε1 − ε3
"*

ε1 + ε3

66

ε2 − ε3
"*

ε2 + ε3
"*

3 2ε1

4<

2ε2

4<

2ε3

which implies Theorem 3.11. Note that, for any reduced expression of w0 of
type Cn, every positive root of the form 2εi has residue n and any positive root
has residue n is of the form 2εi.
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4. Combinatorial reflection functors and r-cluster points

4.1. Reflection maps on Υ[w̃0]

The following theorem is a well-known fact about sinks and sources of a
Dynkin quiver Q and an AR quiver ΓQ.

Theorem 4.1. Let Q be a Dynkin quiver of type An, Dn, or En and ΓQ be
the associated AR quiver. The followings are equivalent.

(a) i ∈ I is a sink (resp. source) of Q.
(b) There are reduced expressions w̃0 adapted to Q such that w̃0 starts

(resp. ends) with si (resp. si∗).
(c) αi is a sink (resp. source) of ΓQ.

Let ∆ be a Dynkin diagram of simply laced type. On the set of AR quivers
Γ∆ = {ΓQ | Q is a Dynkin quiver of ∆}, for i ∈ I, define right (resp. left)
reflection functor

ri : Γ∆ → Γ∆

by ΓQ 7→ ΓQri (resp. ΓQ 7→ ΓQri), where

(4.1)

ΓQri =

{
Γsi(Q) if i is a sink in Q,
ΓQ otherwise,

and

riΓQ =

{
Γsi∗ (Q) if i∗ is a source in Q,
ΓQ otherwise.

Example 4.2. Let w̃0 = (s3, s1, s2, s4, s1, s3, s5, s2, s4, s1, s3, s5, s2, s1, s4) ∈
[Q] of A5. Note that w̃0 is adapted. Then α3 is a sink of ΓQ and α2 is a source
of ΓQ.

[5]

  

[4]

""

[2, 3]

""

[1]

[4, 5]

<<

""

[2, 4]

<<

""
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>>
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<<

""
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<<

""
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[2]
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""
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<<

""

[3, 4]
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[3, 5]

<<

r3 = [5]

  

[3, 4]
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[2]

""

[1]

[3, 5]

<<

""

[2, 4]

<<

""

[1, 2]

>>

[3]

>>

  

[2, 5]

<<

""

[1, 4]

<<

""
[2, 3]

<<

""

[1, 5]

<<

""

[4]

[1, 3]

<<

[4, 5]

<<

r4 [5]

  

[4]

""

[2, 3]

""

[1]

[4, 5]

<<

""

[2, 4]

<<

""

[1, 3]

>>

  
[2, 5]

<<

""

[1, 4]

<<

""

[3]

[2]

<<

""

[1, 5]

<<

""

[3, 4]

>>

[1, 2]

<<

[3, 5]

<<

= [5]

  

[4]

""

[3]

""

[1, 2]

  
[4, 5]

<<

""

[3, 4]

<<

""

[1, 3]

<<

""

[2]

[3, 5]

<<

""

[1, 4]

<<

""

[2, 3]

>>

[1, 5]

<<

""

[2, 4]

<<

[1]

<<

[3, 5]

<<

Let i be a sink (resp. source) in Q. The right (resp. left) reflection functor
ri on Γ∆ can be described as follows:

(4.2)(i) Delete the sink (resp. source) αi (resp. αi∗) in ΓQ.
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(ii) Put a new vertex αi (resp. αi∗) with residue i∗ at the beginning (resp.
end) of ΓQ and arrows starting from αi (resp. ending at αi∗) and
ending at the first vertices (resp. starting from the last vertices) with
residues j such that d∆(i∗, j) = 1.

(iii) Change each label β in Φ+ \ {αi} (resp. Φ+ \ {αi∗}) with siβ (resp.
si∗β).

Analogously, we can define reflection functors on combinatorial AR quivers.
In order to do this, we need notions of source and sink of commutation classes
[w̃] of W.

Definition 4.3. For a commutation equivalence class [w̃], we say that i ∈ I
is a sink (resp. source) if there is a reduced expression w̃′ ∈ [w̃] of w starting
with si (resp. ending with si).

The following proposition follows from the construction of the combinatorial
AR quiver Υ[w̃] and (1.2):

Proposition 4.4.

(a) i is a sink of [w̃] if and only if αi is a sink in the quiver Υ[w̃].
(b) i is a source of [w̃] if and only if −w(αi) is a source in the quiver Υ[w̃].

Using sources and sinks of a commutation equivalence class, we shall define
a reflection functor on the set of combinatorial AR quivers

Υw0
:= {Υ[w̃0] | w̃0 is a reduced expression of w0}

and divide the set Υw0
into the orbits Υ[[w̃0]] of reflection functors (see also

Definition 4.10 below):

Υw0 =
⊔

[[w̃0]]

Υ[[w̃0]]

Definition 4.5. The right reflection functor ri on [w̃0] is defined by

[w̃0] ri=

{
[(si2 , . . . , siN , si∗)] if i is a sink and w̃′0 = (si, si2 , . . . , siN ) ∈ [w̃0],
[w̃0] if i is not a sink of [w̃0].

On the other hand, the left reflection functor ri on [w̃0] is defined by

ri [w̃0]=

{
[(si∗ , si1 . . . , siN−1

)] if i is a source and w̃′0 =(si1 , . . . , siN−1
, si)∈ [w̃0],

[w̃0] if i is not a source of [w̃0].

The following propositions show that a reflection functor is well-defined on

{[w̃0] | w̃0 is a reduced expression of w0}.

Proposition 4.6. Let w̃0 = (si1 , . . . , siN−1
, siN ) be a reduced expression of w0.

(a) w̃′0 = (si∗N , si1 , . . . , siN−1
) is a reduced expression of w0 which is not in

[w̃0].
(b) w̃′′0 = (si2 , . . . , siN−1

, siN , si∗1 ) is a reduced expression of w0 which is
not in [w̃0].
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Proof. Remark that w0(si(αj)) = −si∗(αj∗) for any i, j ∈ I.
(a) We have si∗Nw0siN (αj) = si∗N (−si∗N (αj∗)) = −αj∗ . Since si1si2 · · · siN =

w0, si∗N si1si2 · · · siN−1
= w0. Hence w̃′0 is also a reduced expression of w0. Also,

since iN a source in Υ[w̃0] but is not in Υw̃′0
, [w̃0] 6= [w̃′0].

(b) By the same argument as (a), we can prove (b). �

Remark 4.7. To the experts, the fact that w̃′0 and w̃′′0 are also reduced expres-
sions of w0 may be well known (for example, [5, page 7] and [9, page 650]).
However, we have had a difficulty finding its proof. Thus we provide a proof
by using the system of positive roots.

Proposition 4.8. Let w̃0 = (si1 , . . . , siN ) and w̃′0 = (si′1 , · · · si′N ) be reduced

expressions in [w̃0].

(a) If i1 = i′1, then w̃1
0 = (si2 , . . . , siN , si∗1 ) and w̃2

0 = (si′2 , . . . , si′N , si
∗
1
) are

in the same commutation equivalence class.
(b) If iN = i′N , then w̃3

0 = (si∗N , si1 , . . . , siN−1
) and w̃4

0 =(si∗N , si′1 , . . . , si′N−1
)

are in the same commutation equivalence class.

Proof. Since we have Υ[w̃1
0 ] = Υ[w̃2

0 ] and Υ[w̃3
0 ] = Υ[w̃4

0 ] by (4.2), our assertion
follows. �

The reflecting functor on [w̃0] induces the right (resp. left) reflection functor
ri for i ∈ I on Υw0

as follows:

(4.3) Υ[w̃0] ri = Υ[w̃0] ri (resp. ri Υ[w̃0] = Υri[w̃0]).

Then the right (resp. left) reflection functor on Υ[w̃0] can be described as an
analogue of (4.2):

(4.4)(i) Delete the sink (resp. source) αi (resp. αi∗) with residue i and arrows
incident with αi (resp. αi∗) in Υ[w̃0].

(ii) Put a new vertex αi (resp. αi∗) in the end (resp. beginning) of Υ[w̃0]

and arrows the conditions in Algorithm 2.1.
(iii) Change each label β in Φ+ \ {αi} (resp. Φ+ \ {αi∗}) with siβ (resp.

si∗β).

Example 4.9. Let us consider reduced expression w̃0 = (s1, s2, s1, s3, s4, s3, s2,
s3, s1, s2) of A4 which is not adapted to any Dynkin quiver Q. Then we have:

(4.5)

1 [3, 4]
&&

[2]

**

[1]

2 [3]

::

$$
[2, 4]

$$

44

[1, 2]

::

3 [2, 3]

88

[4]
$$

[1, 3]

88

4 [1, 4]

88
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Since 2 is a source of [w̃0], we have r2[w̃0] = (s3, s1, s2, s1, s3, s4, s3, s2, s3, s1)
and r2Υ[w̃0] is:

(4.6)

1 [4]
$$

[2, 3]

**

[1]

2 [2, 4]
&&

44

[1, 3]

::

$$
3 [2]

::

[3, 4]
&&

[1, 2]

88

[3]

4 [1, 4]

88

Definition 4.10.

(1) Let [w̃0] and [w̃′0] be two commutation equivalence classes. We say
[w̃0] and [w̃′0] are in the same reflection equivalence class and write

[w̃0]
r∼ [w̃′0] if [w̃′0] can be obtained from [w̃0] by a sequence of reflec-

tion functors. The family of commutation equivalence classes [[w̃0]] :=

{ [w̃0] | [w̃0]
r∼ [w̃′0] } is called an r-cluster point.

(2) If [w̃0]
r∼ [w̃′0], then we say Υ[w̃0] and Υ[w̃′0] are equivalent via reflection

functors and write Υ[w̃0]
r∼ Υ[w̃′0]. Also, Υ[[w̃0]] := {Υ[w̃0] | [w̃0]

r∼ [w̃′0] }
is called an r-cluster point.

4.2. σ-composition

The number of commutation classes for w0 of a finite simply laced type
increases drastically as n increases (see [25, A006245]). Also, in the last sub-
section, for example (4.4), we showed classes in the same r-cluster point are
closely related to each other. Hence, in this section, we introduce a composition
shared by classes in the same r-cluster point.

Recall that, for a Dynkin diagram ∆ of finite simply-laced type, there exist
non-trivial automorphisms σ as follows:

An : ◦vv ((
1

◦tt **
2

◦
n−1
◦

n
◦(4.7a)

Dn+1 :
◦
n
ii

uu
◦
1

◦
2

◦
n−1
◦

n−2 ◦
n+1

(4.7b)

E6 :

◦2
◦
1

ww ''◦
3

ww ''◦
4

◦
5

◦
6

(4.7c)

D4 :
◦
3||◦

1

++
◦

2 ◦
4

dd or
◦
3
bb

◦
1

zz ◦
2 ◦

4
33

(4.7d)

Definition 4.11. Let σ be one of Dynkin diagram automorphisms in (4.7a),
(4.7b), (4.7c), (4.7d) and k be the number of σ-orbits of the index set I. Take
a sequence of σ-orbits O = (o1, o2, . . . , ok) where oi 6= oj for 1 ≤ i < j ≤ k.
For a reduced expression w̃0 = (si1 , . . . , siN ) of w0, the σ-composition of [w̃0]
associated to O is

(c1, c2, . . . , ck) ∈ Zk≥1 where cj = |{sit | it ∈ oj for some k ∈ Z}|.
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The well definedness of σ-composition follows by the fact that if w̃0 =
(si1 , . . . , siN ) and w̃′0 = (si′1 , . . . , si′N ) are in the same commutation class, then

#{ik | ik ∈ oi } = #{i′k | i′k ∈ oi } for any orbit oi.

Example 4.12. (1) Let us take a Dynkin diagram involution σ of A4 in (4.7a).
Then σ-composition of [w̃0] in Example (4.5) is

(4, 6)

since there are 4 of si’s for i = 1 or 4 in w̃0 and 6 of sj ’s for j = 2 or 3 in w̃0.
(2) Let us take a Dynkin diagram involution σ of D4 in (4.7b). Then σ-

composition of [w̃0] in Example 2.7 is

(4, 4, 4).

(3) Let us take a Dynkin diagram automorphism σ of D4 in (4.7d). Then
σ-composition of [w̃0] for w̃0 = (s1, s2, s3, s2, s1, s2, s4, s2, s1, s2, s3, s2) is

(6, 6).

Proposition 4.13. If two commutation equivalence classes [w̃0] and [w̃′0] of
w0 are in the same r-cluster point, then σ-compositions of [w̃0] and [w̃′0] are
the same.

Proof. Let w̃0 = (si1 , . . . , siN ). The only thing we need to show is that σ-
compositions of [w̃0], riN [w̃0] and [w̃0]ri1 are same. If riN [w̃0] = [w̃′0], then
(si∗N , si1 , . . . , siN−1

) ∈ [w̃′0]. Hence σ-compositions of [w̃0] and [w̃′0] are same.
Similarly, σ-compositions of [w̃0]ri1 and [w̃0] are same. Hence we proved the
proposition. �

Example 4.14.
Let w̃0 be a reduced expression of w0 of An adapted to

Q = ◦oo
1

◦oo
2

◦ oo
n−1
◦oo

n
◦ .

Let σ =∗. Then the σ-composition of [w̃0] consists of dn+1
2 e components such

that

(4.8)

{
(n+ 1, . . . , n+ 1) if n is even,
(n+ 1, . . . , n+ 1, n+1

2 ) if n is odd.

It is well known that all the adapted reduced expressions of w0 are in this
r-cluster point and all of equivalent classes in this r-cluster point are adapted
to some Dynkin quiver.

5. Application to KLR algebras and PBW bases

In this section, we apply our results in previous sections to the representation
theory of KLR algebras which were introduced by Khovanov-Lauda [10] and
Rouquier [21], independently.
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5.1. KLR algebra

Let I be an index set. A symmetrizable Cartan datum D is a quintuple
(A,P,Π,P∨,Π∨) consisting of (a) an integer-valued matrix A = (aij)i,j∈I ,
called the symmetrizable generalized Cartan matrix, (b) a free abelian group
P, called the weight lattice, (c) Π = {αi ∈ P | i ∈ I}, called the set of sim-
ple roots, (d) P∨ := Hom(P,Z), called the coweight lattice, (e) Π∨ = {hi | i ∈
I} ⊂ P∨, called the set of simple coroots, satisfying 〈hi, αj〉 = aij for all i, j ∈
I and Π is linearly independent. The free abelian group Q:=

⊕
i∈I Zαi is called

the root lattice and set Q+ =
∑
i∈I Z≥0αi.

Let k be a commutative ring. Take i, j ∈ I such that i 6= j and a family of
polynomials (Qij)i,j∈I in k[u, v] which satisfy

(5.1) Qij(u, v) = δ(i 6= j)
∑

(p,q)∈Z2
≥0

di×p+dj×q=−di×aij

ti,j;p,qu
pvq

for ti,j;p,q ∈ k, ti,j;p,q = tj,i;q,p and ti,j;−aij ,0 ∈ k×. Thus we have Qi,j(u, v) =
Qj,i(v, u).

We denote by Sn = 〈s1, . . . , sn−1〉 the symmetric group on n letters, where
si := (i, i+ 1) is the transposition of i and i+ 1. Then Sn acts on In by place
permutations.

For n ∈ Z≥0 and β ∈ Q+ such that ht(β) = n, we set

Iβ = {ν = (ν1, . . . , νn) ∈ In | αν1 + · · ·+ ανn = β}.

Definition 5.1. For β ∈ Q+ with |β| = n, the Khovanov-Lauda-Rouquier
(KLR) algebra R(β) at β associated with a symmetrizable Cartan datum (A,P,
Π,P∨,Π∨) and a matrix (Qij)i,j∈I is the Z-gradable k-algebra generated by
the elements {e(ν)}ν∈Iβ , {xk}1≤k≤n, {τm}1≤m≤n−1 satisfying the following
defining relations:

e(ν)e(ν′) = δν,ν′e(ν),
∑
ν∈Iβ

e(ν) = 1, xkxm = xmxk, xke(ν) = e(ν)xk,

τme(ν) = e(sm(ν))τm, τkτm = τmτk if |k −m| > 1,

τ2
ke(ν) = Qνk,νk+1

(xk, xk+1)e(ν),

(τkxm − xsk(m)τk)e(ν) =


−e(ν) if m = k, νk = νk+1,

e(ν) if m = k + 1, νk = νk+1,

0 otherwise,

(τk+1τkτk+1 − τkτk+1τk)e(ν)=δνk,νk+2

Qνk,νk+1
(xk,xk+1)−Qνk,νk+1

(xk+2,xk+1)

xk−xk+2
e(ν).

For β, γ ∈ Q+ with ht(β) = m, ht(γ) = n, set

e(β, γ) =
∑

ν∈Im+n,

(ν1,...,νm)∈Iβ , (νm+1,...,νm+n)∈Iγ

e(ν) ∈ R(β + γ).
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Then e(β, γ) is an idempotent. Let

R(β)⊗R(γ)→ e(β, γ)R(β + γ)e(β, γ)(5.2)

be the k-algebra homomorphism given by

e(µ)⊗ e(ν) 7→ e(µ ∗ ν) (µ ∈ Iβ),

xk ⊗ 1 7→ xke(β, γ) (1 ≤ k ≤ m), 1⊗ xk 7→ xm+ke(β, γ) (1 ≤ k ≤ n),

τk ⊗ 1 7→ τke(β, γ) (1 ≤ k < m), 1⊗ τk 7→ τm+ke(β, γ) (1 ≤ k < n),

where µ∗ν is the concatenation of µ and ν; i.e., µ∗ν = (µ1, . . . , µm, ν1, . . . , νn).
For a R(β)-module M and a R(γ)-module N , we define the convolution

product M ◦N by

M ◦N :=R(β + γ)e(β, γ)⊗R(β)⊗R(γ) (M ⊗N)

and, for a graded R(β)-module M =
⊕

k∈ZMk, we define qM =
⊕

k∈Z(qM)k,
where

(qM)k = Mk−1 (k ∈ Z).

We call q the grading shift functor on the category of graded R(β)-modules.
Let Rep(R(β)) be the category consisting of finite dimensional graded R(β)-

modules and [Rep(R(β))] be the Grothendieck group of Rep(R(β)). Then
[Rep(R)] :=

⊕
β∈Q+ [Rep(R(β))] has a natural Z[q, q−1]-algebra structure in-

duced by the convolution product ◦ and the grading shift functor q. In this
paper, we usually ignore grading shifts.

For an R(β)-module M and an R(γk)-module Mk (1 ≤ k ≤ n), we denote
by

M◦0 := k, M◦r = M ◦ · · · ◦M︸ ︷︷ ︸
r

,
n◦
k=1

Mk = M1 ◦ · · · ◦Mn.

Theorem 5.2 ([10, 21]). For a given symmetrizable Cartan datum D, let
UZ[q,q−1](g)∨ the dual of the integral form of the negative part of the quan-
tum group Uq(g) associated with D and R be the KLR algebra associated with
D and (Qij(u, v))i,j∈I . Then we have

U−Z[q,q−1](g)∨ ' [Rep(R)].(5.3)

From now on, we shall deal with the representation theory of KLR algebras
which are associated to the Cartan matrix A of finite types.

Convention 5.3. For a reduced expression w̃ of w ∈ W, we fix a labeling of
Φ(w) as {βw̃k | 1 ≤ k ≤ `(w)}.

(i) We identify a sequence mw̃ = (m1,m2, . . . ,m`(w)) ∈ Z`(w)
≥0 with

(m1β
w̃
1 ,m2β

w̃
2 , . . . ,m`(w)β

w̃
`(w)) ∈ (Q+)`(w).

(ii) For a sequence mw̃ and another reduced expression w̃′ of w, mw̃′ is a

sequence in Z`(w)
≥0 by considering mw̃ as a sequence of positive roots,

rearranging with respect to <w̃′ and applying the convention (i).
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(iii) For a sequence mw̃ ∈ Z`(w)
≥0 , a weight wt(mw̃) of mw̃ is defined by∑`(w)

i=1 miβ
w̃
i ∈ Q+.

We usually drop the script w̃ if there is no fear of confusion.

Definition 5.4 ([14,17]). For sequences m, m′ ∈ Z`(w)
≥0 , we define an order ≤b

w̃

as follows:
m′ = (m′1, . . . ,m

′
`(w)) <

b
w̃ m = (m1, . . . ,m`(w)) if and only if wt(m) = wt(m′)

and there exist integers k, s such that 1 ≤ k ≤ s ≤ `(w) satisfying

m′t = mt if t < k or t > s and m′t < mt if t = s, k.

The following order on sequences of positive roots was introduced in [17].

Definition 5.5 ([17]). For sequences m, m′ ∈ Z`(w)
≥0 , we define an order ≺b

[w̃]

as follows:

m′ = (m′1, . . . ,m
′
`(w)) ≺

b
[w̃] m = (m1, . . . ,m`(w)) if and only if

m′w̃′ <
b
w̃′ mw̃′ for all reduced expression w̃′ ∈ [w̃].

(5.4)

Note that ≺b
[w̃] is far coarser than <b

w̃.

Definition 5.6. A pair m = (α, β) ∈ (Φ(w))2 is called a minimal pair of
γ ∈ Φ(w) with respect to the convex total order ≺b

[w̃] if m is a cover of γ. A pair

of positive roots is [w̃]-simple if it is minimal with respect to the partial order
≺b

[w̃] (see [14, §2.1] and [17]).

Theorem 5.7 ([4, 14]). Let R be the KLR algebra corresponding to a Cartan
matrix A of finite type. For each positive root β ∈ Φ+, there exists a simple
module Sw̃0

(β) satisfying the following properties:

(a) Sw̃0
(β)◦m is a simple R(mβ)-module.

(b) Let l := `(w0) and mw̃0
∈ Zl≥0. There exists a non-zero R-module

homomorphism

(5.5)
r
m

:
→
S w̃0

(m) := Sw̃0
(β1)◦m1 ◦ · · · ◦ Sw̃0

(βl)
◦ml

→
←
S w̃0

(m) := Sw̃0
(βl)
◦ml ◦ · · · ◦ Sw̃0

(β1)◦m1

such that

(i) HomR(wt(m))(
→
S w̃0

(m),
←
S w̃0

(m)) = k · r
m

,

(ii) Im(r
m

) ' hd

(
→
S w̃0

(m)

)
' soc

(
←
S w̃0

(m)

)
is simple.

(c) For any mw̃0
∈ Z`(w0)

≥0 , we have

[
→
S w̃0

(m)] ∈ [Im(r
m

)] +
∑

m′<b
w̃0
m

Z≥0[q±1][Im(r
m′

)].(5.6)
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(d) For any mw̃0
∈ Z`(w0)

≥0 ,
→
S w̃0

(m) has a unique simple head hd

(
→
S w̃0

(m)

)
and hd

(
→
S w̃0

(m)

)
6' hd

(
→
S w̃0

(m′)

)
if m 6= m′.

(e) For every simple R-module M , there exists a unique m ∈ ZN
≥0 such

that M ' Im(r
m

) ' hd
(→
S w̃0

(m)
)
.

(f) For any minimal pair (βw̃0

k , βw̃0

l ) of βw̃0
j = βw̃0

k + βw̃0

l with respect to
<w̃0

, there exists an exact sequence

0→ Sw̃0
(βj)→ Sw̃0

(βk) ◦ Sw̃0
(βl)

rm−→ Sw̃0
(βl) ◦ Sw̃0

(βk)→ Sw̃0
(βj)→ 0,

where mw̃0
∈ Z`(w0)

≥0 such that mk = ml = 1 and mi = 0 for all i 6= k, l.

Note that the set Irr(R) of isomorphism classes of all simple R-modules
forms a natural basis of [Rep(R)] and does not depend on the choice of reduced
expression w̃0 of w0.

We also note that Theorem 5.7 implies that

(i) the subset
→
S w̃0

(R):=

{[→
S w̃0

(m)
]
|mw̃0

∈Z`(w0)
≥0

}
of isomorphism classes

of R-modules forms another basis of [Rep(R)],
(ii) <b

w̃0
can be interpreted as a unitriangular matrix which plays the role

of the transition matrix between
→
S w̃0

(R) and Irr(R) for any reduced
expression w̃0 of w0.

5.2. Applications of combinatorial AR-quivers

In this subsection, we apply the observations in the previous sections to the
representation theory of KLR-algebras and PBW-bases.

Now we shall give an alternative proof of the following theorem:

Theorem 5.8 ([17, Theorem 5.13]). For any w̃0 of w0 and mw̃0
∈ Z`(w0)

≥0 , we

can define the module
→
S [w̃0](m); i.e.,

→
S w̃0

(mw̃0
) '

→
S w̃′0(mw̃′0

) for all w̃0, w̃
′
0 ∈ [w̃0].

Moreover, we can refine the transition matrix between
→
S [w̃0](R):={

→
S [w̃0](m) |m

∈ Z`(w0)
≥0 } and Irr(R) by replacing <b

w̃0
with the far coarser order ≺b

[w̃0].

Remark 5.9. For any w̃0, w̃
′
0 ∈ [w̃0], Theorem 5.7 tells that

Sw̃0
(β) ' Sw̃′0(β) for all β ∈ Φ+.

Thus we denote by S[w̃0](β) the simple module Sw̃′0(β) for any w̃′0 ∈ [w̃0] and

β ∈ Φ+.
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Proposition 5.10. Let α and β be incomparable positive roots with respect to
the order ≺[w̃0]. Then (α, β) is [w̃0]-simple and we have

S[w̃0](α) ◦ S[w̃0](β) ' S[w̃0](β) ◦ S[w̃0](α) is simple.

Proof. By Lemma 2.18, there exist w̃′0 ∈ [w̃0] and k ∈ Z≥1 such that α = β
w̃′0
k

and β = β
w̃′0
k+1. Let us denote by (α, β) the sequence mw̃′0

such that mk =

mk+1 = 1 and mi = 0 for all i 6= k, k + 1. Then there is no mw̃′0
such

that m <b
w̃′0

(α, β). Hence Theorem 5.7(c) tells that the composition series

of S[w̃0](α) ◦ S[w̃0](β) consists of Im(r
(α,β)

). Then our assertion follows from

Theorem 5.7(b). �

Remark 5.11. Proposition 5.10 tells that S[w̃0](α) and S[w̃0](β) commute up
to grading shift (or q-commutes) if α and β are incomparable with respect
to ≺[w̃0]. However, the converse is not true. As we see in Proposition 5.12
below, when α and β lie in the same sectional path in Υ[w̃0] so that they are
comparable, S[w̃0](α) and S[w̃0](β) commute. This result is a generalization of
[17, Proposition 4.2].

Proof of Theorem 5.8. By proposition 5.10, the isomorphism class of the mod-

ule
→
S w̃0

(mw̃0
) and the homomorphism r

mw̃0

does not depend on the choice of

w̃0 ∈ [w̃0]. Thus our first assertion follows. By applying the first assertion to
(5.6) for all w̃′0 ∈ [w̃0], we have

[
→
S [w̃0](m)] ∈ [Im(r

m
)] +

∑
m′<b

w̃′0
m for all w̃′0∈[w̃0]

Z≥0[q±1][Im(r
m′

)].

Thus our second assertion follows from the definition of ≺b
[w̃0]; that is,

�(5.7) [
→
S [w̃0](m)] ∈ [Im(r

m
)] +

∑
m′≺b

[w̃0]
m

Z≥0[q±1][Im(r
m′

)].

Proposition 5.12. Let α and β be in the same sectional path of Υ[w̃0]. Then
(α, β) is [w̃0]-simple and we have

S[w̃0](α) ◦ S[w̃0](β) ' S[w̃0](β) ◦ S[w̃0](α) is simple.

Proof. Proposition 3.12 implies that (α, β) is a simple pair with respect to
≺[w̃0]. Thus our assertion follows from Theorem 5.8. �

By Remark 3.12, we have the following corollary from Theorem 5.8.

Corollary 5.13. Let β1, β2, . . . , βp be in the same sectional path of Υ[w̃0]. Then
we have

S[w̃0](β1)◦m1 ◦ · · · ◦ S[w̃0](βp)
◦mp is simple for any (m1,m2, . . . ,mp) ∈ Zp≥0.
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Remark 5.14. By the works in [4, 9, 14], Sw̃0
(β)’s categorify the dual PBW

generators of g associated to w̃0, which are also elements of the dual canonical
basis. Hence our results in this section tell that the dual PBW monomials
depend only on [w̃0] (up to qZ) and some of them are q-commutative under
the circumstances we characterized. In particular, when R is symmetric and
k is of characteristic 0, simple R-modules categorify the dual canonical basis
([22, 26]). Hence (5.7) provides finer information on transition map between
the dual canonical basis and the dual PBW basis associated to [w̃0].

By (4.4), one can observe the following similarity among {S[w̃0](α)} and
{S[w̃′0](α

′)} for [w̃0], [w̃′0] in the same r-cluster point [[w̃0]]:

Corollary 5.15. For a class [w̃0] of reduced expressions of w0, let (i1, i2, . . . , ik)
be a sequence of indices such that

ik is a sink of [w̃0] ri1 · · · rik−1
.

Set w = sik−1
· · · si1 . For (α, β) ∈ (Φ+)2 with [w̃0]-simple and w ·α,w ·β ∈ Φ+,

we have

S[w̃0]·rw̃(w · α) ◦ S[w̃0]·rw̃(w · β) ' S[w̃0]·rw̃(w · β) ◦ S[w̃0]·rw̃(w · α) is simple,

where rw̃ := ri1 · · · rik−1
.

Appendix A. r-cluster points of A4

There are 62 commutation classes of w0 for A4 (see [2, Table 1] and [25,
A006245]). We can check that the 62 commutation classes are classified into
3-cluster points with respect to σ = ∗ as follows:

Type 1
(5, 5)

A01 1213214321 A02 2132143421 A03 1214342312 A04 3214342341
A05 4342341234 A06 1321434231 A07 2143423412 A08 1434234123

Type 2
(4, 6)

B01 2123214321 B02 1232143231 B03 1232124321 B04 1213243212
B05 2132314321 B06 1323124321 B07 1213432312 B08 1323143231
B09 2321243421 B10 2132434212 B11 2124342312 B12 1243421232
B13 3231243421 B14 2321432341 B15 2134323412 B16 2143234312
B17 3212434231 B18 1324342123 B19 1243423123 B20 1432341232
B21 3214323431 B22 1343234123 B23 1432343123 B24 2434212342
B25 3243421234 B26 2434231234 B27 4323412342 B28 4342123423
B29 3432341234 B30 4323431234 B31 4342312343 B32 3231432341
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Type 3
(3, 7)

C01 2123243212 C02 2321234321 C03 2132343212 C04 2123432312
C05 3212324321 C06 1232432123 C07 1234321232 C08 3231234321
C09 3212343231 C10 1323432123 C11 1234323123 C12 3234321234
C13 2324321234 C14 2343212342 C15 2432123432 C16 4321234232
C17 3432312343 C18 2343231234 C19 4323123432 C20 3243212343
C21 3432123423 C22 4321234323

Appendix B. Braid relations and combinatorial AR quivers

By Matsumoto’s theorem, for any two reduced expressions w̃ and w̃′ of w ∈
W, w̃ can be obtained from w̃′ by commutation relations and braid relations.
In Proposition 2.3, we showed if w̃′ and w̃ are related by a series of short
braid relations, i.e., [w̃] = [w̃′], then Υ[w̃′] = Υ[w̃]. In this section, we describe
relations between Υ[w̃] and Υ[w̃′′] for w̃′′ which is obtained by a braid relation
from w̃.

Recall that if d∆(i, j) = 1, its corresponding braid relation is given as follows:
(Case 1) ◦

i
◦
j

implies sisjsi = sjsisj ,

(Case 2) ◦
i

+3◦
j

or ◦
i

◦
j

ks implies sisjsisj = sjsisjsi,

(Case 3) ◦
i

+3◦
j

or ◦
i

◦
j

ks implies sisjsisjsisj = sjsisjsisjsi.

In Sections B.1 and B.2, we shall discuss braid relations on the set of combi-
natorial AR quivers for (Case 1) and (Case 2). Note that (Case 3) is obvious.

B.1. Case 1

Suppose a Dynkin diagram ∆ of type Xn which has the subdiagram in (Case
1) so that sisjsi = sjsisj .

Proposition B.1. Let w̃ = (si1 , si2 , . . . , si`(w)
) and w̃′ = (si′1 , si′2 , . . . , si′`(w)

) be

reduced expressions of w such that w̃′ can be obtained by the relation sisjsi =
sjsisj from w̃. Equivalently, there exists 2 ≤ t ≤ `(w)− 1 such that

(i) im = i′m, if 1 ≤ m ≤ t− 2 or t+ 2 ≤ m ≤ `(w),
(ii) (it−1, it, it+1) = (i, j, i),

(iii) (i′t−1, i
′
t, i
′
t+1) = (j, i, j).

Then we have

(1) βw̃m = βw̃
′

m , if 1 ≤ m ≤ t− 2, t+ 2 ≤ m ≤ `(w) or m = t,

(2) βw̃t−1 = βw̃
′

t+1 and βw̃t+1 = βw̃
′

t−1.

Proof. Our assertion for 1 ≤ m ≤ t− 2 is obvious. For m = t− 1, t and t+ 1,
we have

βw̃t−1 = si1 · · · sit−2
(αi) = si1 · · · sit−2

(sjsi(αj))

= si′1 · · · si′t−2
(si′t−1

si′t(αi′t+1
)) = βw̃

′

t+1,
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βw̃t = si1 · · · sit−2
(si(αj)) = si1 · · · sit−2

(sj(αi))

= si′1 · · · si′t−2
(si′t−1

(αi′t)) = βw̃
′

t ,

βw̃t+1 = si1 · · · sit−2
(sisj(αi)) = si1 · · · sit−2

(αj)

= si′1 · · · si′t−2
(αi′t−1

) = βw̃
′

t−1.

Our assertion for m ≥ t+ 2 follow from the fact that

sit−1
sitsit+1

sit+2
· · · sim−1

= si′t−1
si′tsi′t+1

si′t+2
· · · si′m−1

. �

Example B.2. Let w̃ = (s1, s2, s3, s5, s4, s1, s3, s2, s3, s5, s4, s3, s1) of A5. The
quiver Υ[w̃] is drawn as follows:

(B.1)

1 [3, 5]

**

[2]

**

[1]

2 [2,5]
&&

44

[1, 2]

66

3 [4]
$$

[2,3]

88

[4,5]
&&

[1, 3]

88

4 [2, 4]

88

**

[1, 5]

88

**5 [1, 4]

44

[5]

Consider w̃′ = (s1, s2, s3, s5, s4, s1, s2, s3, s2, s5, s4, s3, s1) of A5. The quiver
Υ[w̃′] is drawn as follows:

(B.2)

1 [3, 5]
&&

[2]

**

[1]

2 [4,5]
&&

[2,3]

**

88

[1, 2]

66

3 [4]

44

$$
[2,5]

**

88

[1, 3]

88

4 [2, 4]

44

**

[1, 5]

88

**5 [1, 4]

44

[5]

Note that, in Υ[w̃′0], there are arrows from [4] to [4, 5] and from [2, 3] to [1, 3].

Example B.3. In Example 2.17, for w̃0 = (s3, s2, s3, s2, s1, s2, s3, s2, s1) of
type C3,

Υ[w̃0] = 1 α1
&&

α1+2α2+α3

))
2 α1+α2

&.
α1+α2+α3

33

α2
#+

α2+α3

"*
3 2α1+2α2+α3

/7

2α2+α3

2:

α3 .

Let us consider w̃′0 = (s3, s2, s3, s1, s2, s1, s3, s2, s1) of type C3. Then, by
Proposition B.1,

Υ[w̃′0] = 1 α1
&&

α2
,,

α1 + α2 + α3
**

2 α1+α2
&.

44

α1 + 2α2 + α3

22

(0
α2+α3

"*
3 2α1+2α2+α3

.6

2α2+α3

08

α3 .
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B.2. Case 2

Suppose ∆ of type Xn (X=B,C,F) has the subdiagram in (Case 2), so that
sisjsisj = sjsisjsi. The analogous argument with Proposition B.1, we can see
the following proposition.

Proposition B.4. Let w̃ = (si1 , si2 , . . . , si`(w)
) and w̃′ = (si′1 , si′2 , . . . , si′`(w)

) be

reduced expressions of w such that w̃′ can be obtained by the relation sisjsisj =
sjsisjsi from w̃. Equivalently, there exists 1 ≤ t ≤ `(w)− 3 such that

(i) im = i′m, if 1 ≤ m < t or t+ 3 < m ≤ `(w),
(ii) (it, it+1, it+2, it+3) = (i, j, i, j),

(iii) (i′t, i
′
t+1, i

′
t+2, i

′
t+3) = (j, i, j, i).

Then we have

(1) βw̃m = βw̃
′

m if 1 ≤ m < t or t+ 3 < m ≤ `(w),

(2) βw̃t = βw̃
′

t+3, βw̃t+1 = βw̃
′

t+2, βw̃t+2 = βw̃
′

t+1 and βw̃t+3 = βw̃
′

t .

Example B.5. In Example 2.17, for w̃0 = (s3, s2, s3, s2, s1, s2, s3, s2, s1) of
type C3,

Υ[w̃0] = 1 α1
&&

α1+2α2+α3

((
2 α1+α2

&.
α1+α2+α3

44

α2
#+

α2+α3

#+
3 2α1+2α2+α3

/7

2α2+α3

19

α3 .

Now, for w̃′0 = (s2, s3, s2, s3, s1, s2, s3, s2, s1) of type C3,

Υ[w̃′0] = 1 α1
&&

α1+2α2+α3
**

2 α1+α2
&.

α1+α2+α3

44

&.
α2+α3

%-
α2 .

3 2α1+2α2+α3

/7

α3

08

2α2+α3

2:
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