DOI QR코드

DOI QR Code

Evaluation of the Effectiveness of Surveillance on Improving the Detection of Healthcare Associated Infections

의료관련감염에서 감시 개선을 위한 평가

  • Park, Chang-Eun (Department of Biomedical Laboratory Science, Molecular Diagnostics Research Institute, Namseoul University)
  • 박창은 (남서울대학교 임상병리학과.분자진단연구소)
  • Received : 2019.01.12
  • Accepted : 2019.01.29
  • Published : 2019.03.31

Abstract

The development of reliable and objective definitions as well as automated processes for the detection of health care-associated infections (HAIs) is crucial; however, transformation to an automated surveillance system remains a challenge. Early outbreak identification usually requires clinicians who can recognize abnormal events as well as ongoing disease surveillance to determine the baseline rate of cases. The system screens the laboratory information system (LIS) data daily to detect candidates for health care-associated bloodstream infection (HABSI) according to well-defined detection rules. The system detects and reserves professional autonomy by requiring further confirmation. In addition, web-based HABSI surveillance and classification systems use discrete data elements obtained from the LIS, and the LIS-provided data correlates strongly with the conventional infection-control personnel surveillance system. The system was timely, acceptable, useful, and sensitive according to the prevention guidelines. The surveillance system is useful because it can help health care professionals better understand when and where the transmission of a wide range of potential pathogens may be occurring in a hospital. A national plan is needed to strengthen the main structures in HAI prevention, Healthcare Associated Prevention and Control Committee (HAIPCC), sterilization service (SS), microbiology laboratories, and hand hygiene resources, considering their impact on HAI prevention.

감염감시를 위한 신뢰성 있고 객관적인 의료관련 감염의 정의 및 자동화 된 프로세스를 개발하는 것이 중요하다. 그러나 자동화 된 감시 시스템으로의 전환은 여전히 어려운 과제이다. 초기의 발생 확인은 대개 비정상적인 사건과 진행중인 질병 감시를 인식하는 임상 검사자들이 기준선 비율을 결정하도록 요구한다. 이 시스템은 잘 정의 된 감시 규칙에 따라 의료 관련 혈류 감염의 후보를 감시하기 위해 매일 검사정보 시스템 데이터를 검사한다. 시스템은 추가 확인을 요구함으로써 전문적인 자율성을 탐지하고 예약한다. 또한 웹 기반 혈류감염 감시 및 분류 시스템은 검사실 정보 시스템에서 얻은 개별 데이터 요소를 사용할 수 있고 검사정보 시스템은 기존의 감염 제어 인력 감시 시스템과 높은 상관관계가 있는 데이터를 제공한다. 이런 시스템은 예방 지침에 따를 경우 적절하고, 수용 가능하며, 유용하고 민감하다. 감시 시스템은 병원에서 광범위한 병원균의 전파가 언제 어디서 발생하는지에 대한 이해를 획기적으로 향상시키기 때문에 유용하다. 국가적 차원의 계획은 의료관련감염 예방, 보건 관련 예방 통제위원회(HAIPCC), 살균 서비스(SS), 미생물학 실험실, 손 위생 차원의 주요 구조를 강화하기 위해 추진되어야하며 해당 지역은 의료관련 감염 예방에 미치는 영향을 고려하여 선정해야 한다.

Keywords

References

  1. Talbot TR, Bratzler DW, Carrico RM, Diekema DJ, Hayden MK, Huang SS, et al. Public reporting of health care-associated surveillance data: recommendations from the healthcare infection control practices advisory committee. Ann Intern Med. 2013;159:631-635. https://doi.org/10.7326/0003-4819-159-9-201311050-00011.
  2. Singh A, Goering RV, Simjee S, Foley SL, Zervos MJ. Application of molecular techniques to the study of hospital infection. Clin Microbiol Rev. 2006;19:512-530. https://doi.org/10.1128/CMR.00025-05.
  3. van Belkum A, Tassios PT, Dijkshoorn L, Haeggman S, Cookson B, Fry NK, et al. Guidelines for the validation and application of typing methods for use in bacterial epidemiology. Clin Microbiol Infect. 2007;13:1-46. https://doi.org/10.1111/j.1469-0691.2007.01786.x.
  4. Babouee B, Frei R, Schultheiss E, Widmer AF, Goldenberger D. Comparison of the DiversiLab repetitive element PCR system with spa typing and pulsed-field gel electrophoresis for clonal characterization of methicillin-resistant Staphylococcus aureus. J Clin Microbiol. 2011;49:1549-1555. https://doi.org/10.1128/JCM.02254-10.
  5. McDougal LK, Steward CD, Killgore GE, Chaitram JM, McAllister SK, Tenover FC. Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: establishing a national database. J Clin Microbiol. 2003;41:5113-5120. https://doi.org/10.1128/JCM.41.11.5113-5120.2003
  6. Vainio A, Koskela S, Virolainen A, Vuopio J, Salmenlinna S. Adapting spa typing for national laboratory-based surveillance of methicillin-resistant Staphylococcus aureus. Eur J Clin Microbiol Infect Dis. 2011;30:789-797. https://doi.org/10.1007/s10096-011-1158-5.
  7. Chen L, Mediavilla JR, Oliveira DC, Willey BM, de Lencastre H, Kreiswirth BN. Multiplex real-time PCR for rapid Staphylococcal cassette chromosome mec typing. J Clin Microbiol. 2009;47:3692-3706. https://doi.org/10.1128/JCM.00766-09.
  8. Harris SR, Cartwright EJ, Torok ME, Holden MT, Brown NM, Ogilvy-Stuart AL, et al. Whole-genome sequencing for analysis of an outbreak of meticillin-resistant Staphylococcus aureus: a descriptive study. Lancet Infect Dis. 2013;13:130-136. https://doi.org/10.1016/S1473-3099(12)70268-2.
  9. Schonfeld V, Diercke M, Gilsdorf A, Eckmanns T, Walter J. Evaluation of the statutory surveillance system for invasive MRSA infections in Germany, 2016-2017. BMC Public Health. 2018;18:1063. https://doi.org/10.1186/s12889-018-5971-y.
  10. Nigrovic LE, Malley R, Macias CG, Kanegaye JT, Moro-Sutherland DM, Schremmer RD, et al. Effect of antibiotic pretreatment on cerebrospinal fluid profiles of children with bacterial meningitis. Pediatrics. 2008;122:726-730. https://doi.org/10.1542/peds.2007-3275.
  11. Resti M, Micheli A, Moriondo M, Becciolini L, Cortimiglia M, Canessa C, et al. Comparison of the effect of antibiotic treatment on the possibility of diagnosing invasive pneumococcal disease by culture or molecular methods: a prospective, observational study of children and adolescents with proven pneumococcal infection. Clin Ther. 2009;31:1266-1273. https://doi.org/10.1016/j.clinthera.2009.06.010.
  12. Sacchi CT, Fukasawa LO, Goncalves MG, Salgado MM, Shutt KA, Carvalhanas TR, et al. Incorporation of real-time PCR into routine public health surveillance of culture negative bacterial meningitis in Sao Paulo, Brazil. PLoS One. 2011;6:e20675. https://doi.org/10.1371/journal.pone.0020675.
  13. Magomani V, Wolter N, Tempia S, du Plessis M, de Gouveia L, von Gottberg A. Challenges of using molecular serotyping for surveillance of pneumococcal disease. J Clin Microbiol. 2014;52:3271-3276. httsp://doi.org/10.1128/JCM.01061-14.
  14. Montella E, Di Cicco MV, Ferraro A, Centobelli P, Raiola E, Triassi M. The application of Lean Six Sigma methodology to reduce the risk of healthcare-associated infections in surgery departments. J Eval Clin Pract. 2017;23:530-539. https://doi.org/10.1111/jep.12662.
  15. Pimenta FC, Roundtree A, Soysal A, Bakir M, du Plessis M, Wolter N, et al. Sequential triplex real-time PCR assay for detecting 21 pneumococcal capsular serotypes that account for a high global disease burden. J Clin Microbiol. 2013;51:647-652. https://doi.org/10.1128/JCM.02927-12.
  16. Petrini C, Ricciardi W. General principles and practice of the ethics of public health surveillance: comments on the situation in Italy. Commentary. Ann Ist Super Sanita. 2018;54:9-11. https://doi.org/10.4415/ANN_18_01_04.
  17. Okesina AB, Adelekan A. The role of laboratory medicine in addressing migrant health problems. EJIFCC. 2018;29:309-312.
  18. Coronado F, Chen GM, Smith CK, Glynn MK. Communicating science: The role of Centers for Disease Control and prevention's field-based epidemic intelligence service officers, 2009-2014. J Public Health Manag Pract. 2016;22:403-408. https://doi.org/10.1097/PHH.0000000000000326.
  19. Afshinnekoo E, Chou C, Alexander N, Ahsanuddin S, Schuetz AN, Mason CE. Precision metagenomics: rapid metagenomic analyses for infectious disease diagnostics and public health surveillance. J Biomol Tech. 2017;28:40-45. https://doi.org/10.7171/jbt.17-2801-007.
  20. Choi J, Cho Y, Shim E, Woo H. Web-based infectious disease surveillance systems and public health perspectives: a systematic review. BMC Public Health. 2016;16:1238. https://doi.org/10.1186/s12889-016-3893-0.
  21. Gastmeier P, Stamm-Balderjahn S, Hansen S, Nitzschke-Tiemann F, Zuschneid I, Groneberg K, et al. How outbreaks can contribute to prevention of nosocomial infection: analysis of 1,022 outbreaks. Infect Control Hosp Epidemiol. 2005;26:357-361. https://doi.org/10.1086/502552.
  22. Vonberg RP, Weitzel-Kage D, Behnke M, Gastmeier P. Worldwide outbreak database: the largest collection of nosocomial outbreaks. Infection. 2011;39:29-34. https://doi.org/10.1007/s15010-010-0064-6.
  23. Stultz JS, Nahata MC. Computerized clinical decision support for medication prescribing and utilization in pediatrics. J Am Med Inform Assoc. 2012 ;19:942-953. https://doi.org/10.1136/amiajnl-2011-000798.
  24. Blanco N, O'Hara LM, Robinson GL, Brown J, Heil E, Brown CH. Health care worker perceptions toward computerized clinical decision support tools for Clostridium difficile infection reduction: a qualitative study at 2 hospitals. Am J Infect Control. 2018;46:1160-1166. https://doi.org/10.1016/j.ajic.2018.04.204.
  25. Park R, O'Brien TF, Huang SS, Baker MA, Yokoe DS, Kulldorff M, et al. Statistical detection of geographic clusters of resistant Escherichia coli in a regional network with WHONET and SaTScan. Expert Rev Anti Infect Ther. 2016;14:1097-1107. https://doi.org/10.1080/14787210.2016.1220303.
  26. Agarwal A, Kapila K, Kumar S. WHONET Software for the surveillance of antimicrobial susceptibility. Med J Armed Forces India. 2009;65:264-266. https://doi.org/10.1016/S0377-1237(09)80020-8.
  27. Stachel A, Pinto G, Stelling J, Fulmer Y, Shopsin B, Inglima K, et al. Implementation and evaluation of an automated surveillance system to detect hospital outbreak. Am J Infect Control. 2017;45:1372-1377. https://doi.org/10.1016/j.ajic.2017.06.031.
  28. Rea K, Le-Jenkins U, Rutledge C. A technology intervention for nurses engaged in preventing catheter-associated urinary tract infections. Comput Inform Nurs. 2018;36:305-313. https://doi.org/10.1097/CIN.0000000000000429.
  29. Yokoe DS, Anderson DJ, Berenholtz SM, Calfee DP, Dubberke ER, Ellingson K, et al. Introduction to "A compendium of strategies to prevent healthcare-associated infections in acute care hospitals: 2014 updates". Infect Control Hosp Epidemiol. 2014;35:S1-5. https://doi.org/10.1086/678903.
  30. Goto M, Oh ME, Schweizer ML, Perencevich EN. Accuracy of administrative code data for the surveillance of healthcare-associated infections: a systematic review and meta-analy sis. Clin Infect Dis. 2014;58:688-696. https://doi.org/10.1093/cid/cit737.
  31. Du M, Xing Y, Suo J, Liu B, Jia N, Huo R, et al. Real-time automatic hospital-wide surveillance of nosocomial infections and outbreaks in a large Chinese tertiary hospital. BMC Med Inform Decis Mak. 2014;14:9. https://doi.org/10.1186/1472-6947-14-9.
  32. Woeltje KF, McMullen KM, Butler AM, Goris AJ, Doherty JA. Electronic surveillance for healthcare-associated central line-associated bloodstream infections outside the intensive care unit. Infect Control Hosp Epidemiol. 2011;32:1086-1090. https://doi.org/10.1086/662181.
  33. Choudhuri JA, Pergamit RF, Chan JD, Schreuder AB, McNamara E, Lynch JB, et al. An electronic catheter-associated urinary tract infection surveillance tool. Infect Control Hosp Epidemiol. 2011;32:757-762. https://doi.org/10.1086/661103.
  34. Assis DB, Madalosso G, Padoveze MC, Lobo RD, Oliveira MS, Boszczowski I, et al. Implementation of tailored interventions in a statewide programme to reduce central line-associated bloodstream infections. J Hosp Infect. 2018;100:e163-e168. https://doi.org/10.1016/j.jhin.2018.04.020.
  35. Dean CL, Wade J, Roback JD. Transfusion-transmitted infections: an update on product screening, diagnostic techniques, and the path ahead. J Clin Microbiol. 2018;56:pii:e00352-18. https://doi.org/10.1128/JCM.00352-18.
  36. Tseng YJ, Wu JH, Lin HC, Chen MY, Ping XO, Sun CC, et al. A web-based, hospital-wide health care-associated bloodstream infection surveillance and classification system: development and evaluation. JMIR Med Inform. 2015;3:e31. https://doi.org/10.2196/medinform.4171.
  37. Umscheid CA, Mitchell MD, Doshi JA, Agarwal R, Williams K, Brennan PJ. Estimating the proportion of healthcare-associated infections that are reasonably preventable and the related mortality and costs. Infect Control Hosp Epidemiol. 2011;32:101-114. https://doi.org/10.1086/657912.
  38. Gardner A, Mitchell B, Beckingham W, Fasugba O. A point prevalence cross-sectional study of healthcare-associated urinary tract infections in six Australian hospitals. BMJ Open. 2014;4:e005099. https://doi.org/10.1136/bmjopen-2014-005099.
  39. Saint S. Clinical and economic consequences of nosocomial catheter-related bacteriuria. Am J Infect Control 2000;28:68-75. https://doi.org/10.1016/S0196-6553(00)90015-4.
  40. Fasugba O, Cheng AC, Russo PL, Northcote M, Rosebrock H, Mitchell BG. Reducing urinary catheter use: a protocol for a mixed methods evaluation of an electronic reminder system in hospitalised patients in Australia. BMJ Open. 2018;8:e020469. https://doi.org/10.1136/bmjopen-2017-020469.
  41. Jason P. Burnham, John P. Kirby, Marin H. Kollef. Diagnosis and management of skin and soft tissue infections in the intensive care unit: a review. Intensive Care Med. 2016;42:1899-1911. https://doi.org/10.1007/s00134-016-4576-0.
  42. Stevens DL, Bisno AL, Chambers HF, Everett ED, Dellinger P, Goldstein EJ, et al. Practice guidelines for the diagnosis and management of skin and soft-tissue infections. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2005;41:1373-406. https://doi.org/10.1086/497143.
  43. Li X, Chen Y, Gao W, Ouyang W, Wei J, Wen Z. Epidemiology and outcomes of complicated skin and soft tissue infections among inpatients in Southern China from 2008 to 2013. PLoS One. 2016;11:e0149960. https://doi.org/10.1371/journal.pone.0149960.
  44. Octavia S, Wang Q, Tanaka MM, Kaur S, Sintchenko V, Lan R. Delineating community outbreaks of Salmonella enterica serovar Typhimurium by use of whole-genome sequencing: insights into genomic variability within an outbreak. J Clin Microbiol. 2015;53:1063-1071. https://doi.org/10.1128/JCM.03235-14.
  45. Gordon NC, Pichon B, Golubchik T, Wilson DJ, Paul J, Blanc DS, et al. Whole-genome sequencing reveals the contribution of long-term carriers in Staphylococcus aureus outbreak investigation. J Clin Microbiol. 2017;55:2188-2197. https://doi.org/10.1128/JCM.00363-17.
  46. Fujikura Y, Yuki A, Hamamoto T, Ichimura S, Kawana A, Ohkusu K, et al. Evaluation and validity of a polymerase chain reaction-based open reading frame typing method to dissect the molecular epidemiology for Acinetobacter baumannii in an epidemiologic study of a hospital outbreak. Am J Infect Control. 2016;44:e275-e278. https://doi.org/10.1016/j.ajic.2016.03.059.
  47. Merkier AK, Rodriguez MC, Togneri A, Brengi S, Osuna C, Pichel M, et al. Outbreak of a cluster with epidemic behavior due to Serratia marcescens after colistin administration in a hospital setting. J Clin Microbiol. 2013;51:2295-2302. https://doi.org/10.1128/JCM.03280-12.
  48. Hindler JA, Humphries RM. Colistin MIC variability by method for contemporary clinical isolates of multidrug-resistant Gram-negative bacilli. J Clin Microbiol. 2013;51:1678-1684. https://doi.org/10.1128/JCM.03385-12.
  49. Charlton CL, Hindler JA, Turnidge J, Humphries RM. Precision of vancomycin and daptomycin MICs for methicillin-resistant Staphylococcus aureus and effect of subculture and storage. J Clin Microbiol. 2014;52:3898-3905. https://doi.org/10.1128/JCM.01571-14.
  50. Steinman A, Masarwa S, Tirosh-Levy S, Gleser D, Kelmer G, Adler A, et al. Methicillin-Resistant Staphylococcus aureus spa type t002 outbreak in horses and staff at a veterinary teaching hospital after its presumed introduction by a veterinarian. J Clin Microbiol. 2015;53:2827-2831. https://doi.org/10.1128/JCM.00090-15.
  51. Bosch T, Lutgens SPM, Hermans MHA, Wever PC, Schneeberger PM, Renders NHM, et al. Outbreak of NDM-1-Producing Klebsiella pneumoniae in a Dutch hospital, with interspecies transfer of the resistance plasmid and unexpected occurrence in unrelated health care centers. J Clin Microbiol. 2017;55:2380-2390. https://doi.org/10.1128/JCM.00535-17.
  52. Xiao M, Sun ZY, Kang M, Guo DW, Liao K, Chen SC, et al. Five-year national surveillance of invasive candidiasis: Species distribution and azole susceptibility from the China hospital invasive fungal surveillance net (CHIF-NET) study. J Clin Microbiol. 2018;56:e00577-18. https://doi.org/10.1128/JCM.00577-18.
  53. Fukuda K, Limmathurotsakul D, Okeke IN, Shetty N, van Doorn R, Feasey NA, et al. Surveillance and Epidemiology of Drug Resistant Infections Consortium (SEDRIC): supporting the transition from strategy to action. Wellcome Open Res. 2018;3:59. https://doi.org/10.12688/wellcomeopenres.14586.2.
  54. Park CE, Jeong NY, Yang MJ, Kim HW, Joo SI, Kim KH, et al. Study on the Standardization of a surveillance culture laboratory in infection control fields. Korean J Clin Lab Sci. 2018;50:359-369. https://doi.org/10.15324/kjcls.2018.50.3.359.