참고문헌
- Alves AT, Nobre FF, Waller LA. Exploring spatial patterns in the associations between local AIDS incidence and socioeconomic and demographic variables in the state of Rio de Janeiro, Brazil. Spat Spatiotemporal Epidemiol 2016; 17: 85-93. https://doi.org/10.1016/j.sste.2016.04.008
- Brunsdon C, Fotheringham AS, Charlton ME. Geographically weighted regression: a method for exploring spatial nonstationarity. Geogr Anal 1996; 28: 281-298. https://doi.org/10.1111/j.1538-4632.1996.tb00936.x
- Cahill M, Mulligan G. Using geographically weighted regression to explore local crime patterns. Soc Sci Comput Rev 2007; 25: 174-193. https://doi.org/10.1177/0894439307298925
- Carrel M, Escamilla V, Messina J, Giebultowicz S, Winston J, Yunus M, Streatfield PK, Emch M. Diarrheal disease risk in rural Bangladesh decreases as tubewell density increases: a zero-inflated and geographically weighted analysis. Int J Health Geogr 2011; 10: 41. https://doi.org/10.1186/1476-072X-10-41
- Charlton M, Fotheringham A. Geographically weighted regression white paper. National Centre for Geocomputation, National University of Ireland Maynooth, 2009.
- Chen VY, Yang TC. SAS macro programs for geographically weighted generalized linear modeling with spatial point data: applications to health research. Comput Methods Programs Biomed 2012; 107: 262-273. https://doi.org/10.1016/j.cmpb.2011.10.006
- Chen Q, Mei K, Dahlgren RA, Wang T, Gong J, Zhang M. Impacts of land use and population density on seasonal surface water quality using a modified geographically weighted regression. Sci Total Environ 2016; 572: 450-466. https://doi.org/10.1016/j.scitotenv.2016.08.052
- Diniz-Filho JAF, Bini LM, Hawkins BA. Spatial autocorrelation and red herrings in geographical ecology. Glob Ecol Biogeogr 2003; 12: 53-64. https://doi.org/10.1046/j.1466-822X.2003.00322.x
- Fotheringham AS, Brunsdon C, Charlton M. Geographically weighted regression: The analysis of spatially varying relationships. Chichester: John Wiley & Sons Ltd. 2012.
- Gao J, Li S. Detecting spatially non-stationary and scaledependent relationships between urban landscape fragmentation and related factors using geographically weighted regression. Appl Geogr 2011; 31: 292-302. https://doi.org/10.1016/j.apgeog.2010.06.003
- Graham MH. Confronting multicollinearity in ecological multiple regression. Ecology 2003; 84: 2809-2815. https://doi.org/10.1890/02-3114
- Guo L, Ma Z, Zhang L. Comparison of bandwidth selection in application of geographically weighted regression: a case study. Can J For Res 2008; 38: 2526-2534. https://doi.org/10.1139/X08-091
- Guo C, Du Y, Shen SQ, Lao XQ, Qian J, Ou CQ. Spatiotemporal analysis of tuberculosis incidence and its associated factors in mainland China. Epidemiol Infect 2017; 145: 2510-2519. https://doi.org/10.1017/S0950268817001133
- Jones JP III, Hanham RQ. Contingency, realism and the expansion method. Geogr Anal 1995; 27: 185-207. https://doi.org/10.1111/j.1538-4632.1995.tb00905.x
- Lee G, Pak SI. A GIS-based mapping to identify locations at risk for highly pathogenic avian influenza virus outbreak in Korea. J Vet Clin 2017; 34: 146-151. https://doi.org/10.17555/jvc.2017.04.34.2.146
- Lin CH, Wen TH. Using geographically weighted regression (GWR) to explore spatial varying relationships of immature mosquitoes and human densities with the incidence of dengue. Int J Environ Res Public Health 2011; 8: 2798-2815. https://doi.org/10.3390/ijerph8072798
- Lu J, Zhang L. Geographically local linear mixed models for tree height-diameter relationship. For Sci 2012; 58: 75-84. https://doi.org/10.5849/forsci.09-123
- Ma Z, Zuckerberg B, Porter WF, Zhang L. Use of localized descriptive statistics for exploring the spatial pattern changes of bird species richness at multiple scales. Appl Geogr 2012; 32: 185-194. https://doi.org/10.1016/j.apgeog.2011.05.005
- Matthews SA, Yang TC. Mapping the results of local statistics: Using geographically weighted regression. Demogr Res 2012; 26: 151-166. https://doi.org/10.4054/DemRes.2012.26.6
- Nakaya T, Fotheringham AS, Brunsdon C, Charlton M. Geographically weighted poisson regression for disease association mapping. Stat Med 2005; 24: 2695-2717. https://doi.org/10.1002/sim.2129
- NIBR. 2014-2015 winter waterbird census of Korea. National Institute of Biological Resources. Incheon, 2015.
- Tu J, Xia Z. Examining spatially varying relationships between land use and water quality using geographically weighted regression I: model design and evaluation. Sci Total Environ 2008; 407: 358-378. https://doi.org/10.1016/j.scitotenv.2008.09.031
- Wei W, Yuan-Yuan J, Ci Y, Ahan A, Ming-Qin C. Local spatial variations analysis of smear-positive tuberculosis in Xinjiang using geographically weighted regression model. BMC Public Health 2016; 16: 1058. https://doi.org/10.1186/s12889-016-3723-4
- Yang TC, Shoff C, Matthews SA. Examining the spatially non-stationary associations between the second demographic transition and infant mortality: A poisson GWR approach. Spat Demogr 2013; 1: 17-40. https://doi.org/10.1007/BF03354885
- Yu DL. Spatially varying development mechanisms in the Greater Beijing Area: a geographically weighted regression investigation. Ann Reg Sci 2006; 40: 173-190. https://doi.org/10.1007/s00168-005-0038-2
- Zhang L, Bi H, Cheng P, Davis CJ. Modeling spatial variation in tree diameter-height relationships. For Ecol Manag 2004; 189: 317-329. https://doi.org/10.1016/j.foreco.2003.09.004
- Zhang L, Gove JH. Spatial assessment of model errors from four regression techniques. For Sci 2005; 51: 334-346.
- Zhen Z, Li F, Liu Z, Liu C, Zhao Y, Ma Z, Zhang L. Geographically local modeling of occurrence, count, and volume of downwood in Northeast China. Appl Geogr 2013; 37: 114-126. https://doi.org/10.1016/j.apgeog.2012.11.003
피인용 문헌
- 고병원성 조류인플루엔자(HPAI) 발생농가 입지특성 vol.23, pp.4, 2020, https://doi.org/10.11108/kagis.2020.23.4.140