
International Journal of Internet, Broadcasting and Communication Vol.11 No.1 69-74 (2019)

http://dx.doi.org/10.7236/IJIBC.2019.11.1.69

Development of a Prototyping Tool for New Memory Subsystem

Jungseok Cho, Doosan Cho*

Sunchon National University, EE

dscho@scnu.ac.kr

Abstract

The compiler is the key of the prototyping framework for the new memory system. These compiler-centric 

prototyping tools have several components, including compiler, linker, assembler, and standard libraries. It 

takes a lot of cost and man power to develop it all at zero base. Therefore, developer usually use a 

development framework to develop these prototyping tools efficiently. These development frameworks should 

be free of licensing issues when considering the commercialization of development results. Thus, developer 

should investigate the development framework, which is free from licensing issues and that provides all of 

the development environment to enable actual execution. There are three representative compiler-centric 

development frameworks: GCC, Clang (LLVM), and MS visual studio. There are some differences depending 

on the release version among them. And, there are some limitations to the freeware and commercial use. We 

chose LLVM here to explain the development of prototyping tools. This information will help accelerate the 

development of prototyping tools and will help reduce system development costs.

Keywords: memory system, cache memory, low power design, optimizing compiler, embedded system, prototyping 

tool

1. Introduction

The situation in which the system speed does not improve at the same rate as CPU speed develops is 

called memory wall [1]. Memory system related researches are continuing as technology to improve the 

system speed. Prototyping tools for evaluating new memory structures are also becoming important

continuously. The development of these prototyping tools is also time consuming. In this paper, based on the 

experience of developing prototyping tool, we present the experience of compiler development which is a 

core part.

A compiler is the key of the prototyping technology for the new memory system. A compiler is developed, 

targeted to a new memory system, and executed using the generated code to evaluate the completed system. 

These compiler-centric prototyping tools have several components, including the linker, assembler, and 

standard libraries. It takes a lot of cost to develop it all from zero base. Therefore, developer will usually use 

IJIBC 19-1-9

Manuscript Received: Jan. 15, 2019 / Revised: Jan. 19, 2019 / Accepted: Jan. 27, 2019
Corresponding Author: dscho@scnu.ac.kr
Tel: +82-61-750-3577, Fax: +82-61-750-3570
Sunchon National University, EE



70                          International Journal of Internet, Broadcasting and Communication Vol.11 No.1 69-74 (2019)

such framework to develop these tools. These development frameworks should be free of licensing issues 

when considering the commercialization of development results. You should first investigate the 

development framework, which is free from licensing issues and that provides all of the development 

environment to enable actual execution. There are three compiler platforms: GCC [2], Clang (LLVM) [3], 

and MS visual C ++ [4]. There are some differences depending on the version. However, there are some 

limitations to the freeware and commercial use. The following are the licensing and support operating 

systems and whether they support C ++ grammar standards (which is generally used to build system 

program).

Table 1. Comparison of compiler frameworks

Compiler windows Unix-like license C++11 C++14 C++17

GCC MinGW YES UoI/NCSA YES YES YES

Clang YES YES GPLv3 YES YES Partial

Visual C++ YES YES Partial free YES YES Partial

The table shows representative compiler development frameworks, supports both Windows and Linux 

operating systems, and supports most grammar standards. Licenses can be freely distributed by default, but 

there are some restrictions on commercialization. The most popular open source license is the GNU GPL [5], 

which allows commercial modification and distribution patents. However, GCC is an ancestor of the 

compiler system and it is very difficult and time-consuming to develop based on it. 

Clang (LLVM) has both Illinois State University open source licenses and NCSA licenses [6]. It is simply 

a more relaxed version than the GPL license. The name LLVM is called the compiler platform brand, not the 

abbreviation. LLVM is a brand that applies to LLVM-related projects, LLVM intermediate representation 

(LL), LLVM debugger, and C ++ standard library implementation of LLVM. LLVM is managed by LLVM 

Foundation. The company's president is the compiler engineer Tanya Lattner. LLVM is a very powerful 

compiler infrastructure framework designed for compile-time, link-time, and run-time optimization of 

programs written in your favorite programming language. LLVM works on multiple platforms, and its main 

purpose is to generate fast-running code. LLVM is basically the core of the intermediate language 

representation (IR) generator, which simplifies the creation of custom compilers with the full flow of the 

compiler development (front end analyzer + IR generator + LLVM backend), along with a front end to 

connect the desired language. The LLVM compiler framework is straightforward compared to GCC, which 

consists of C ++ code and has reuse and development in C. 

Visual C ++ also recently released the source code of the old version compiler and released it for free. 

Modifications are commercially available for distribution, but should not be specified as an MS asset. Given 

the licensing issues and compiler development costs, we developed a C ++ compiler with the LLVM 

compiler platform. The uniqueness of LLVM is that it provides only the compiler backend, so the 

components needed to configure a real software development environment, such as the front end and 

libraries / linkers, should use other packages together. To begin with, the compiler is software that translates 

advanced programming languages such as C ++ into machine code that computers can execute.



Development of a Prototyping Tool for New Memory Subsystem                                                  71

Figure 1. Compiler Construction [7]

As shown in the figure, when the source code is input, the front end parses and parses the intermediate 

language expression generated as a result of optimization, and the optimized intermediate language 

expression is mapped to the machine code to be generated as the final machine code is completed. Normally, 

the front-end parser uses the existing parser by parsing languages that do not change in a grammar such as C 

++ or C, and we use Clang for this. Clang is a compiler front-end that interacts with LLVM to generate 

intermediate language expressions used as input to LLVM. In addition, the GCC front end can also be used 

with LLVM, and research has shown that Clang performance is superior to GCC, and LLVM mainly uses 

Clang.

Even Visual C ++ can use Clang as a front end. It is also supported by Microsoft with outstanding 

performance. LLVM is a set of libraries for building compilers, allowing you to make optimizers and 

backends more sophisticated. This part allows each of them to build their own compiler by implementing 

their own features for commercial purposes. Actual compiler tools require C ++ standard libraries, linkers, 

and loaders in addition to these three. Libraries are essential when using basic functions such as vector, cout, 

etc., and machine code generated in the backend requires tools such as a linker / loader to integrate with the 

library. Developing all of this within a period of about 10 months is virtually impossible at a time / cost level, 

so I have configured it to work with the free distributed standard C ++ libraries and the MinGW linker / 

loader [8]. Details will be discussed in the next chapter.

Figure 2. Compiler, library and linker flow for generating executable code

2. Components of LLVM

LLVM can take the intermediate representation (IR) code from the front end (another name is a 

programming language parser) to provide the intermediate code of the complete compiler system, generating 

an optimized IR. This new IR can then be transformed to generate machine-dependent assembly language

code for the target platform (Intel, AMD, MIPS, etc.). LLVM accepts IR from the GNU compiler collection 



72                          International Journal of Internet, Broadcasting and Communication Vol.11 No.1 69-74 (2019)

(GCC front-end) toolchain (or clang) so it can be used with a variety of existing compilers written for this 

project. LLVM can generate machine code that can be relocated in binary machine code at compile time, link 

time, or runtime.

LLVM supports language-independent instruction set and type systems. Each instruction is created as a

Static Single Assignment. That is, each variable, called a data type specified register, is allocated once and 

then fixed. This helps to simplify the analysis of dependencies between variables. With LLVM, you can 

compile code statically, as in an existing GCC system, or compile it later from the IR to machine code via 

just-in-time compilation (JIT) [9]. The data type system consists of five basic types, such as integer or 

floating-point numbers, and five derived types, such as pointers, arrays, vectors, structures, and functions. A 

class in C ++ can represent an array of structures, functions, and function pointers.

- Front End

LLVM was originally written to replace the existing code generator in the GCC stack, and many GCC 

frontends have been modified and used. LLVM now supports compilation of Ada, C, C ++, D, Delphi, 

Fortran, Haskell, Objective-C, and Swift using a variety of front ends. Some are derived from the GNU 

Compiler Collection (GCC) versions 4.0.1 and 4.2.

As interest in LLVM increased, efforts were made to develop new front ends for various languages. Most 

notable is Clang, a new compiler that supports C, C ++, and Objective-C. Clang, primarily supported by 

Apple, aims to replace the C / Objective-C compiler in the GCC system with a system that is more easily 

integrated with the integrated development environment (IDE) and supports multithreading more widely. 

Support for the OpenMP directive has been included in Clang since release 3.8.

- Intermediate representation

At the heart of LLVM is intermediate representation (IR), a low-level programming language similar to 

assembly. IR is a robust set of reduced instruction set computing (RISC) instructions that abstract the 

subject's details. For example, a calling convention is abstracted through the call and ret commands using 

explicit arguments. Also, instead of a fixed set of registers, IR uses a temporary set of types such as %0, %1, 

and so on. LLVM supports 3-address format IR, a human-readable assembly format.

A simple "Hello, world!" Example program in IR format:

@.str = internal constant [14 x i8] c "hello, world¥0A¥00"

declare i32 @printf(i8*, ...)

define i32 @main(i32 %argc, i8** %argv) nounwind {

entry:

    %tmp1 = getelementptr [14 x i8]* @.str, i32 0, i32 0

    %tmp2 = call i32 (i8*, ...)* @printf( i8* %tmp1 ) nounwind

    ret i32 0

}

Figure 3. Intermediate language expression example generated by LLVM



Development of a Prototyping Tool for New Memory Subsystem                                                  73

The LLVM Machine Code Project is a framework of LLVM for machine instruction translation between 

text format and machine code. Previously, LLVM converted assemblies to machine code using assemblies 

provided by the system assembler or toolchain. The integrated assembler for the LLVM Machine Code 

project supports most LLVMs, including x86, x86-64, ARM, and ARM64 [10].

- Linker

The lld subproject is an attempt to develop a platform-independent linker for LLVM. lld aims to remove 

dependencies on third-party linkers. Current lld supports ELF, PE / COFF and Mach-O in order of 

completion [11]. If lld is insufficient, you can use another linker such as GNU ld. Link-time optimization is 

possible using lld. When link-time optimization is enabled, the compiler generates the LLVM bit code 

instead of the source code, and the linker performs the source code generation.

- C ++ Standard Library

The LLVM project includes a dual-licensed C ++ standard library under the MIT license and the Illinois 

State University license. If you cannot use lld because you need to work with the linker, use the distribution 

provided by the linker toolchain.

- Developed LLVM Compiler backend

How to configure the compiler with the LLVM framework is described in detail in the LLVM document. 

Using the LLVM application programming interface (API) [12], the LLVM tools llc and lli llvm-gcc can be 

used to generate LLVM IRs. Here is a brief overview of the overall compiler overall configuration.

LLVM IR  set  IntRegs:$dst, (shl IntRegs:$lhs, IntRegs:$rhs)

SYNTAX [opcode~” “dst”,”src1”,”src2~””mode~””src3]  

SEMANTICS (BEHAVIOR) dst = src1 (op) (src2 (shift) src3)

MACHINE CODE “and $dst, $lhs, $lhs lsl $rhs”  

Figure 4. Code generation example

Compiler is usually divided into parts that convert the code written in programming languages such as C / 

C ++ / Java into Intermediate Representation (IR) that is independent of the target architecture, and convert 

the IR into machine code of the target architecture. To create a compiler for the processor we want to 

develop, you can implement the part that converts LLVM IR to machine code. To do this, it is necessary to 

map each instruction of LLVM IR to appropriate instruction of target architecture as shown in Figure 4. It is 

necessary to understand the meaning of LLVM IR command, to compare the meaning and syntax of each 

instruction of target architecture, and to select appropriate command and perform mapping.

- Frame Lowering

When a function call is made in a program, memory is allocated in memory for the purpose of storing the 

local variables of the function and the arguments of the function. This is called the frame of the 

corresponding function. When the function is called, a frame is allocated. When the function is finished and 

returned to the original function, the frame must be released. The compiler must generate these sequences at 

the beginning and end of the function using the appropriate commands in the target architecture.

- Expand Pseudo Instructions



74                          International Journal of Internet, Broadcasting and Communication Vol.11 No.1 69-74 (2019)

When mapping from LLVM IR to Machine code, all commands are not generated as actual commands. 

For example, a command that assigns a large immediate value to a register is generated as a pseudo code 

called LOAD_IMMEDIATE, and then converted to an actual instruction at the end of the compiler. Since 

the size of immediate that can be encoded in a command is limited, in order to allocate a larger immediate to 

a register, the upper bit and the lower bit must be allocated twice. This is not done in the mapping phase, but 

instead, the LOAD_IMMEDIATE command is replaced with the appropriate target architecture command at 

the end.

3. Conclusion

The compiler is one of the most sophisticated system software. It usually takes two to three years or more 

to develop, and development costs are also high. Using the LLVM based development method presented in 

this paper will help to save development period and development cost. The development of compiler-centric 

prototyping tools can be accelerated because the compiler development takes most of the time.

In this paper, we describe the compiler development process in developing prototyping tool using LLVM. 

Rapid development of prototyping tools can shorten overall system development time, which has a direct 

impact on cost savings. In the prototype tool, the compiler is a particularly time-consuming tool. Shortening 

the development time of the compiler is essential for system development. The results of this study will help 

to shorten compiler development time. In the next work, we will explain the development process of the 

compiler's optimization pass.

Acknowledgement

This work was supported by Basic Science Research Program through the National Research Foundation 

of Korea(NRF) funded by the Ministry of Education (NRF - 2018R1D1A1 B07050054).

References

[1] Philip Machanick, "Approaches to Addressing the Memory Wall," Technical Report, School of IT and 

Electrical Engineering, University of Queensland, 22p, November, 2002.

[2] GCC, the GNU Compiler Collection, online: https://gcc.gnu.org/

[3] Clang: a C language family frontend for LLVM, online: https://clang.llvm.org/

[4] Visual Studio 2017, online: https://visualstudio.microsoft.com/ko/vs/features/cplusplus/

[5] GNU Operating System, online: https://www.gnu.org/licenses/gpl-3.0.html

[6] University of Illinois/NCSA Open Source License, 

online: https://en.wikipedia.org/wiki/University_of_Illinois/NCSA_Open_Source_License

[7] Compiler, online: https://en.wikipedia.org/wiki/Compiler

[8] Home of the MinGW and MSYS Projects, online: http://www.mingw.org/

[9] Just-in-time compilation, online: https://en.wikipedia.org/wiki/Just-in-time_compilation

[10] ARM architecture, online: https://en.wikipedia.org/wiki/ARM_architecture

[11] Portable Executable, online: https://en.wikipedia.org/wiki/Portable_Executable

[12] Application programming interface,

online: https://en.wikipedia.org/wiki/Application_programming_interface


