Fig. 1. Comparison of peak resolutions between DB-5MS (top, 100 µg/kg) and DB-1701 (bottom, 75 µg/kg) columns. Peak resolution was increased by using the DB-1701 column.
Fig. 2. Formation of dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) in fresh-cut vegetables following disinfection with NaClO (100 mg/L Cl2) for 5 min.
Fig. 3. Calibration curves for determination of dichloroacetic acid (DCAA; left) and trichloroaceetic acid (TCAA; right).
Table 1. Operating conditions of gas chromatograph-mass spectrometer
Table 2. Method detection limits (MDL), limits of quantitation(LOQ), repeatability (relative standard deviation; RSD), and recovery for dichloroacetic acid (DCAA) and trichloroaceticacid (TCAA)
Table 3. Ingredient contents and concentrations of dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) in retail packagedready-to-eat salads
References
- Bieber TI, Trehy ML. Dihaloacetonitriles in chlorinated natural waters. Vol. 4, pp. 85-96. In: Water Chlorination-Environmental Impact and Health Effects. Jolley RJ, Brungs WA, Cotruvo JA, Cumming RB, Mattice JS, Jacobs VA (ed.) Ann Arbor Science Publisher, Ann Arbor, MI, USA (1983)
- Cardador MJ, Gallego M. Effect of the chlorinated washing of minimally processed vegetables on the generation of haloacetic acids. J. Agr. Food Chem. 60: 7326-7332 (2012) https://doi.org/10.1021/jf302591u
- Cardador MJ, Gallego M. Static headspace-gas chromatography-mass spectrometry for the simultaneous determination of trihalomethanes and haloacetic acids in canned vegetables. J. Chromatogr. A 1454: 9-14 (2016) https://doi.org/10.1016/j.chroma.2016.05.080
- Coroneo V, Carraro V, Marras B, Marrucci A, Succa S, Meloni B, Pinna A, Angioni A, Sanna A, Schintu M. Presence of trihalomethanes in ready-to-eat vegetables disinfected with chlorine. Food Addit. Contam. Part A 34: 2111-2117 (2017) https://doi.org/10.1080/19440049.2017.1382723
- Huang AT, Batterman S. Sorption of trihalomethanes in foods. Environ. Int. 36: 754-762 (2010) https://doi.org/10.1016/j.envint.2010.05.014
- Jo MJ, Jeong A-R, Kim HJ, Lee N, Oh SW, Kim YJ, Chun HS, Koo M. Microbiological quality of fresh-cut produce and organic salads. Kor. J. Food Sci. Technol. 43: 91-97. (2011) https://doi.org/10.9721/KJFST.2011.43.1.091
- Jung S, Kim D, Lee G, Yun SS, Lim HS, Jung YR, Kim H. Evaluation of measurement uncertainty for quantitative determination of chlorite and chlorate in fresh-cut vegetables using ion chromatography. Korean J. Food Sci. Technol. 49: 591-598 (2017) https://doi.org/10.9721/KJFST.2017.49.6.591
- Kang TM, Cho S-K, Park JY, Song KB, Chung MS, Park JH. Analysis of microbial contamination of sprouts and fresh-cut salads in a market. Korean J. Food Sci. Technol. 43: 490-494 (2011) https://doi.org/10.9721/KJFST.2011.43.4.490
- Kim DS, Jung S, Lee G, Yun SS, Lim HS, Kim H. Ion chromatographic determination of chlorite and chlorate in chlorinated food using a hydroxide eluent. Anal. Sci. Technol. 30: 57-67 (2017) https://doi.org/10.5806/AST.2017.30.2.57
- Kim HY, Oh SW, Chung SY, Choi SH, Lee JW, Yang JW, Seo EC, Kim YH, Park HO, Yang CY, Ha SC, Shin IS. An investigation of microbial contamination of ready-to-eat products in Seoul, Korea. Korean J. Food Sci. Technol. 43: 39-44 (2011) https://doi.org/10.9721/KJFST.2011.43.1.039
- Korea Food & Drug Administration (KFDA). Suggestion of Safety Management for Residual Chlorine Products in Fresh-Cut-Foods. Osong, Korea (2008)
- Korea Food & Drug Administration (KFDA). Guidelines for the Validation of Test Methods for Pharmaceuticals, etc. Osong, Korea (2012)
- Ministry of Environment (MOE). Haloacetic Acids-Gas Chromatograph-Mass Spectrometry. ES05552.1a, Sejong, Korea (2012a)
- Ministry of Environment (MOE). Haloacetic Acids-Gas Chromatography. ES05552.2a, Sejong, Korea (2012b)
- Ministry of Food and Drug Safety (MFDS). Korean Food Additives Codex-5. Usage Criteria by Item. Available from: http://www.foodsafetykorea.go.kr/foodcode/pdf/2/2-5.pdf. Accessed Dec. 11, 2018
- Olmez H, Kretzschmar U. Potential alternative disinfection methods for organic fresh-cut industry for minimizing water consumption and environmental impact. LWT Food Sci. Technol. 42: 686-693 (2009) https://doi.org/10.1016/j.lwt.2008.08.001
- Rivier L. Criteria for the identification of compounds by liquid chromatography-mass spectrometry and liquid chromatography-multiple mass spectrometry in forensic toxicology and doping analysis. Anal. Chim. Acta 492: 69-82 (2003) https://doi.org/10.1016/S0003-2670(03)00889-4
- Sadiq R, Rodriguez MJ. Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: a review. Sci. Total Environ. 321: 21-46 (2004) https://doi.org/10.1016/j.scitotenv.2003.05.001
- Schony R. Disinfection by-products: a question of balance. Environ. Health Persp. 118: A466-467 (2010) https://doi.org/10.1289/ehp.1003053
- Tan H, Sen AC, Wheeler WB, Cornell JA, Wei CI. A kinetic study of the reaction of aqueous chlorine and chlorine dioxide with amino acids, peptides and proteins. J. Food Sci. 52: 1706-1711 (1987) https://doi.org/10.1111/j.1365-2621.1987.tb05910.x
- U.S. Environmental Protection Agency (U.S. EPA). Determination of Haloacetic Acids and Dalapon in Drinking Water by Liquid-Liquid Microextraction, Derivatization, and Gas Chromatography with Electron Capture Detection. EPA 815-B-03-002, Washington DC, USA (2003)
- U.S. Environmental Protection Agency (U.S. EPA). Available from: https://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?substance_nmbr=654. Accessed Dec. 11 (2018a)
- U.S. Environmental Protection Agency (U.S. EPA). Available from: https://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?substance_nmbr=655. Accessed Dec. 11 (2018b)