Fig. 1. Experiment equipment: ADV and a spur dike
Fig. 2. Three-dimensional schematic view of the experiment
Fig. 3. Measurement locations
Fig. 4. Time-averaged water elevation profiles along the streamwise direction at y /L = 1.33
Fig. 5. Dimensionless time-averaged streamwise velocity (u /U0) profiles at z /Hd = 0.08 (top) and z /Hd = 0.23 (bottom)
Fig. 6. Dimensionless time-averaged spanwise velocity (v /U0) profiles at z /Hd = 0.08 (top) and z /Hd = 0.23 (bottom)
Fig. 7. Dimensionless time-averaged vertical velocity (w /U0) profiles at z /Hd = 0.08 (top) and z /Hd = 0.23 (bottom)
Fig. 8. Dimensionless time-averaged turbulence kinetic energy (k /U02) profiles at z /Hd = 0.08 (top) and z /Hd = 0.23 (bottom)
Table 1. Experimental and numerical parameters of previous research works for a non-submerged spur dike
Table 2. Experimental parameters of the present experiment at x = 0.15 m (x /L = 0.5)
References
- Dey, S., and Barbhuiya, A. K. (2006). "Velocity and turbulence in a scour hole at a vertical-wall abutment." Flow Measurement and Instrumentation, Vol. 17, No. 1, pp. 13-21. https://doi.org/10.1016/j.flowmeasinst.2005.08.005
- Duan, J. G. (2009). "Mean flow and turbulence around a laboratory spur dike." Journal of Hydraulic Engineering, Vol. 135, No. 10, pp. 803-811. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000077
- Duan, J. G., He, L., Fu, X., and Wang, Q. (2009). "Mean flow and turbulence around experimental spur dike." Advances in Water Resources, Vol. 32, No. 12, pp. 1717-1725. https://doi.org/10.1016/j.advwatres.2009.09.004
- Jeon, J. S., and Kang, S. K. (2016). "Flume experiments for turbulent flow around a spur dike" Journal of Korea Water Resources Association, Vol. 49, No. 8, pp. 707-717. https://doi.org/10.3741/JKWRA.2016.49.8.707
- Jeon, J. S., Lee, J. Y., and Kang, S. K. (2018). "Experimental investigation of three-dimensional flow structure and turbulent flow mechanisms around a nonsubmerged spur dike with a low length-to-depth ratio." Water Resources Research, Vol. 54, No. 5, pp. 3530-3556. https://doi.org/10.1029/2017WR021582
- Kuhnel, R. A., Alonso, C. V., and Shields, F. D. (1999). "Geometry of scour holes associated with 90 degree spur dike." Journal of Hydraulic Engineering, Vol. 125, No. 9, pp. 972-978. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:9(972)
- Kang, J. G., Yeo, H. K., and Kim, S. J. (2005). "An experimental study on tip velocity and downstream recirculation zone of single groyne conditions." Journal of Korea Water Resources Association, Vol. 38, No. 2, pp. 143-153. https://doi.org/10.3741/JKWRA.2005.38.2.143
- Koken, M., and Constantinescu, G. (2008). "An investigation of the flow and scour mechanisms around isolated spur dikes in a shallow open channel: 1. Conditions corresponding to the initiation of the erosion and deposition process." Water Resources Research, Vol. 44, No. 8, pp. 1-19.
- Kang, J. G., Kim, S. J., and Yeo, H. K. (2009). "An experimental study on flow characteristic around inclined crest groyne." Journal of Korea Water Resources Association, Vol. 42, No. 9, pp. 715-724. https://doi.org/10.3741/JKWRA.2009.42.9.715
-
Kim, S. J., Kang, J. G., and Yeo, H. K. (2014). "An experimental study on flow characteristics for optimal spacing suggestion of
$45^{\circ}$ upward groynes." Journal of Korea Water Resources Association, Vol. 47, No. 5, pp. 459-468. https://doi.org/10.3741/JKWRA.2014.47.5.459 - Kara, S., Kara, M. C., Stoesser, T., and Sturm, T. W. (2015). "Freesurface versus rigid-lid LES computations for bridge-abutment flow." Journal of Hydraulic Engineering, Vol. 141, No. 9, 04015019, pp. 1-9.
- Khosronejad, A., Ghazian Arabi, M., Angelidis, D., Bagherizadeh, E., Flora, K., and Farhadzadeh, A. (2018). "Comparative hydrodynamic study of rigid-lid and level-set methods for LES of openchannel flow." Journal of Hydraulic Engineering, Vol. 145, No. 1, 04018077, pp. 1-15.
- Lee, J. Y., Jeon, J. S., Kim, Y. K., and Kang, S. K. (2018). "Flume experiments for studying the effects of submerged-conditions on three-dimensional flow structure around a spur dike." Journal of Korea Water Resources Association, Vol. 51, No. 2, pp. 109-120. https://doi.org/10.3741/JKWRA.2018.51.2.109
- Paik, J., and Sotiropoulos, F. (2005). "Coherent structure dynamics upstream of a long rectangular block at the side of a large aspect ratio channel." Physics of fluids, Vol. 17, No. 11, pp. 1-14 (115104). https://doi.org/10.1063/1.1694570
- Rajaratnam, N., and Nwachukwu, B.A. (1983). "Flow near groinlike structures." Journal of Hydraulic Engineering, Vol. 109, No. 3, pp. 463-480. https://doi.org/10.1061/(ASCE)0733-9429(1983)109:3(463)
- Rajaratnam, N., and Nwachukwu, B.A. (1983). "Erosion near groin-like structures." Journal of Hydraulic Engineering, Vol. 21, No. 4, pp. 277-287.
- Safarzadeh, A., Salehi Neyshabouri, S. A. A., and Zarrati, A. R. (2016). "Experimental investigation on 3D turbulent flow around straight and T-shaped groynes in a flat bed channel." Journal of Hydraulic Engineering, Vol. 142 No. 8, pp. 1-15 (04016021).
- Yeo, H. K., Roh, Y. S., Kang, J. G., and Kim, S. J. (2006). "Variations of flow thalweg alignment and separation region around a groyne." Journal of Korea Water Resources Association, Vol. 39, No. 4, pp. 313-320. https://doi.org/10.3741/JKWRA.2006.39.4.313