DOI QR코드

DOI QR Code

Thermal, electrical and mechanical buckling loads of sandwich nano-beams made of FG-CNTRC resting on Pasternak's foundation based on higher order shear deformation theory

  • Arani, Ali Ghorbanpour (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Pourjamshidian, Mahmoud (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Arefi, Mohammad (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Arani, M.R. Ghorbanpour (Electrical Engineering Faculty, Amirkabir University of Technology)
  • Received : 2018.10.09
  • Accepted : 2019.01.10
  • Published : 2019.02.25

Abstract

This research deals with thermo-electro-mechanical buckling analysis of the sandwich nano-beams with face-sheets made of functionally graded carbon nano-tubes reinforcement composite (FG-CNTRC) based on the nonlocal strain gradient elasticity theory (NSGET) considering various higher-order shear deformation beam theories (HSDBT). The sandwich nano-beam with FG-CNTRC face-sheets is subjected to thermal and electrical loads while is resting on Pasternak's foundation. It is assumed that the material properties of the face-sheets change continuously along the thickness direction according to different patterns for CNTs distribution. In order to include coupling of strain and electrical field in equation of motion, the nonlocal non-classical nano-beam model contains piezoelectric effect. The governing equations of motion are derived using Hamilton principle based on HSDBTs and NSGET. The differential quadrature method (DQM) is used to calculate the mechanical buckling loads of sandwich nano-beam as well as critical voltage and temperature rising. After verification with validated reference, comprehensive numerical results are presented to investigate the influence of important parameters such as various HSDBTs, length scale parameter (strain gradient parameter), the nonlocal parameter, the CNTs volume fraction, Pasternak's foundation coefficients, various boundary conditions, the CNTs efficiency parameter and geometric dimensions on the buckling behaviors of FG sandwich nano-beam. The numerical results indicate that, the amounts of the mechanical critical load calculated by PSDBT and TSDBT approximately have same values as well as ESDBT and ASDBT. Also, it is worthy noted that buckling load calculated by aforementioned theories is nearly smaller than buckling load estimated by FSDBT. Also, similar aforementioned structure is used to building the nano/micro oscillators.

Keywords

References

  1. Allahkarami, F., Nikkhah-Bahrami, M. and Ghassabzadeh Saryazdi, M. (2017), "Damping and vibration analysis of viscoelastic curved microbeam reinforced with FG-CNTs resting on viscoelastic medium using strain gradient theory and DQM", Steel Compos. Struct., 25(2), 141-155. https://doi.org/10.12989/SCS.2017.25.2.141
  2. Ansari, R., Faghih Shojaei, M., Mohammadi, V., Gholami, R. and Sadeghi, S. (2014), "Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams", Compos. Struct., 113, 316-327. https://doi.org/10.1016/j.compstruct.2014.03.015
  3. Ansari, R., Gholami, R., Faghih Shojaei, M., Mohammadi, V. and Darabi, M.A. (2016), "Coupled longitudinal-transverse-rotational free vibration of post-buckled functionally graded first-order shear deformable micro- and nano-beams based on the Mindlin's strain gradient theory", Appl. Math. Modell., 40(23-24), 9872-9891. https://doi.org/10.1016/j.apm.2016.06.042
  4. Ansari, R. and Sahmani, S. (2011), "Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories", Int. J. Eng. Sci., 49(11), 1244-1255. https://doi.org/10.1016/j.ijengsci.2011.01.007
  5. Arefi, M. (2016), "Analysis of wave in a functionally graded magneto-electro-elastic nano-rod using nonlocal elasticity model subjected to electric and magnetic potentials", Acta Mech. 227(9), 2529-2542. https://doi.org/10.1007/s00707-016-1584-7
  6. Arefi, M., Zamani, M.H. and Kiani, M. (2017), "Size-dependent free vibration analysis of three-layered exponentially graded nanoplate with piezomagnetic face-sheets resting on Pasternak's foundation", J. Intel. Mater. Syst. Struct., 29(5), 774-786 https://doi.org/10.1177/1045389X17721039
  7. Arefi, M. and Zenkour, A.M. (2017a), "Employing the coupled stress components and surface elasticity for nonlocal solution of wave propagation of a functionally graded piezoelectric Love nanorod model", J. Intel. Mater. Syst. Struc., 28(17), 2403-2413. https://doi.org/10.1177/1045389X17689930
  8. Arefi, M. and Zenkour, A.M. (2017b), "Transient sinusoidal shear deformation formulation of a size-dependent three-layer piezo-magnetic curved nanobeam", Acta. Mech., 228(10) 3657-3674.
  9. Arefi, M. and Zenkour, A.M. (2017c) "Influence of magneto-electric environments on size-dependent bending results of three-layer piezomagnetic curved nanobeam based on sinusoidal shear deformation theory", J. Sandw. Struct. Mater., In Press.
  10. Arefi, M. and Zenkour, A.M. (2017d), "Electro-magneto-elastic analysis of a three-layer curved beam", Smart Struct. Syst., 19(6), 695-703. https://doi.org/10.12989/SSS.2017.19.6.695
  11. Arefi, M. and Zenkour, A.M. (2017e), "Size-dependent free vibration and dynamic analyses of piezo-electro-magnetic sandwich nanoplates resting on viscoelastic foundation", Phys. B., 521, 188-197. https://doi.org/10.1016/j.physb.2017.06.066
  12. Arefi, M. and Zenkour, A.M. (2017f), "Effect of thermo-magneto-electro-mechanical fields on the bending behaviors of a three-layered nanoplate based on sinusoidal shear-deformation plate theory", J. Sandw. Struct. Mater., In Press.
  13. Arvin, H., Sadighi, M. and Ohadi, A.R. (2010), "A numerical study of free and forced vibration of composite sandwich beam with viscoelastic core", Compos. Struct., 92(4), 996-1008. https://doi.org/10.1016/j.compstruct.2009.09.047
  14. Asghari, M., Kahrobaiyan, M.H. and Ahmadian, M.T. (2010), "A nonlinear Timoshenko beam formulation based on the modified couple stress theory", Int. J. Eng. Sci., 48(12), 1749-1761. https://doi.org/10.1016/j.ijengsci.2010.09.025
  15. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos.: Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  16. El-HakimKhalil, A., E., E., Atta, A. and Essam, M. (2016), "Nonlinear behavior of RC beams strengthened with strain hardening cementitious composites subjected to monotonic and cyclic loads", Alexandr. Eng. J., 55(2), 1483-1496. https://doi.org/10.1016/j.aej.2016.01.032
  17. Eltaher, M.A., Khater, M.E. and Emam, S.A. (2016), "A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams", Appl. Math. Modell., 40(5-6), 4109-4128. https://doi.org/10.1016/j.apm.2015.11.026
  18. Fantuzzi, N., Tornabene, F., Bacciocchi, M. and Dimitri, R. (2017), "Free vibration analysis of arbitrarily shaped functionally graded carbon nanotube-reinforced plates", Compos. Part B: Eng., 115, 384-408. https://doi.org/10.1016/j.compositesb.2016.09.021
  19. Ghasemi, H., Park, H.S. and Rabczuk, T. (2017), "A level-set based IGA formulation for topology optimization of flexoelectric materials", Comput. Met. Appl. Mech. Eng., 313, 239-258. https://doi.org/10.1016/j.cma.2016.09.029
  20. Ghasemi, H., Park, H.S. and Rabczuk, T. (2018), "A multi-material level set-based topology optimization of flexoelectric composites", Comput. Meth. Appl. Mech. Eng., 332, 47-62. https://doi.org/10.1016/j.cma.2017.12.005
  21. Ghorbanpour Arani, A., Kolahchi, R., Mosallaie Barzoki, A.A., Mozdianfard, M.R. and Noudeh Farahani, M. (2012), "Elastic foundation effect on nonlinear thermo-vibration of embedded double-layered orthotropic graphene sheets using differential quadrature method", Proc. IMechE Part C: J. Mech. Eng. Sci., 1-18.
  22. Ghorbanpour Arani, A., Kolahchi, R. and Vossough, H. (2012), "Buckling analysis and smart control of SLGS using elastically coupled PVDF nanoplate based on the nonlocal Mindlin plate theory", Phys. B, 407(22), 4458-4465. https://doi.org/10.1016/j.physb.2012.07.046
  23. Ghorbanpour Arani, A., Vossough, H., Kolahchi, R. and Mosallaie Barzoki, A.A. (2012), "Electro-thermo nonlocal nonlinear vibration in an embedded polymeric piezoelectric micro plate reinforced by DWBNNTs using DQM", J. Mech. Sci. Technol., 26(10), 3047-3057. https://doi.org/10.1007/s12206-012-0816-6
  24. Grygorowicz, M., Magnucki, K. and Malinowski, M. (2015), "Elastic buckling of a sandwich beam with variable mechanical properties of the core", Thin-Wall. Struct., 87, 127-132. https://doi.org/10.1016/j.tws.2014.11.014
  25. Gui-Lin, S., Fuh-Gwo, Y. and Yi-Ru, R. (2017), "Thermal buckling and post-buckling analysis of functionally graded beams based on a general higher-order shear deformation theory", Appl. Math. Modell., 47, 340-357. https://doi.org/10.1016/j.apm.2017.03.014
  26. Hamdi, K.M., Silani, M., Zhuang, X., He, P. and Rabczuk, T. (2017), "Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions", Int. J. Fract., 206(2), 215-227. https://doi.org/10.1007/s10704-017-0210-6
  27. Hamdia, K.M., Silani, M., Zhuang, X., He, P. and Rabczuk, T. (2017), "Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions", Int. J. Fract., 206(2), 215-227. https://doi.org/10.1007/s10704-017-0210-6
  28. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda Bedia, E.A. (2014), "A new quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", ASCE J Eng. Mech., 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  29. Kameswara Raoa, C. and Bhaskara Rao, L. (2017), "Torsional post-buckling of thin-walled open section clamped beam supported on Winkler-Pasternak foundation", Thin-Wall. Struct., 116, 320-325. https://doi.org/10.1016/j.tws.2017.03.017
  30. Kanani, A.S., Niknam, H., Ohadi, A.R. and Aghdam, M.M. (2014), "Effect of nonlinear elastic foundation on large amplitude free and forced vibration of functionally graded beam", Compos. Struct., 115, 60-68. https://doi.org/10.1016/j.compstruct.2014.04.003
  31. Ke, L.L., Yang, J. and Kitipornchai, S. (2010), "Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams", Compos. Struct., 92(3), 676-683. https://doi.org/10.1016/j.compstruct.2009.09.024
  32. Komijani, M., Esfahani, S.E., Reddy, J.N., Liu, Y.P. and Eslami, M.R. (2014), "Nonlinear thermal stability and vibration of pre/post-buckled temperature-and microstructure-dependent functionally graded beams resting on elastic foundation", Compos. Struct., 112, 292-307. https://doi.org/10.1016/j.compstruct.2014.01.041
  33. Li, J., Wu, Z., Kong, X., Li, X. and Wu, W. (2014), "Comparison of various shear deformation theories for free vibration of laminated composite beams with general lay-ups", Compos. Struct., 108, 767-778. https://doi.org/10.1016/j.compstruct.2013.10.011
  34. Li, L. and Hu, Y. (2016), "Wave propagation in fluid-conveying viscoelastic carbon nanotubes based on nonlocal strain gradient theory", Comput. Mater. Sci., 112, 282-288. https://doi.org/10.1016/j.commatsci.2015.10.044
  35. Li, L., Hu, Y. and Ling, L. (2015), "Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory", Phys. E, 75, 118-124. https://doi.org/10.1140/epjc/s10052-015-3335-7
  36. Liew, K.M., Yang, J. and Kitipornchai, S. (2003), "Postbuckling of piezoelectric FGM plates subject to thermo-electro-mechanical loading", Int. J. Sol. Struct., 40(15), 3869-3892. https://doi.org/10.1016/S0020-7683(03)00096-9
  37. Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889
  38. Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Modell., 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  39. Marzbanrad, J., Boreiry, M. and Shaghaghi, G.R. (2017), "Surface effects on vibration analysis of elastically restrained piezoelectric nanobeams subjected to magneto-thermo-electrical field embedded in elastic medium", Appl. Phys. A., 123(4), 246. https://doi.org/10.1007/s00339-017-0768-x
  40. Meiche, N.E., Tounsi, A., Ziane, N., Mechab, I. and Adda Bedia, E.A. (2011), "A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate", Int. J. Mech. Sci., 53(4), 237-247. https://doi.org/10.1016/j.ijmecsci.2011.01.004
  41. Mirzabeigy, A. and Madoliat, R. (2016), "Large amplitude free vibration of axially loaded beams resting on variable elastic foundation", Alexandr. Eng. J., 55(2), 1107-1114. https://doi.org/10.1016/j.aej.2016.03.021
  42. Mohammadi, M., Farajpour, A., Moradi, A. and Ghayour, M. (2014), "Shear buckling of orthotropic rectangular graphene sheet embedded in an elastic medium in thermal environment", Compos.: Part B, 56, 629-637. https://doi.org/10.1016/j.compositesb.2013.08.060
  43. Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2016), "Modified strain gradient Reddy rectangular plate model for biaxial buckling and bending analysis of double-coupled piezoelectric polymeric nanocomposite reinforced by FG-SWNT", Compos. Part B: Eng., 87(15), 132-148. https://doi.org/10.1016/j.compositesb.2015.10.007
  44. Msekh, M.A., Cuong, N.H., Zi, G., Areias, P., Zhuang, X. and Rabczuk, T. (2018), "Fracture properties prediction of clay/epoxy nanocomposites with interphase zones using a phase field model", Eng. Fract. Mech., 188, 287-299. https://doi.org/10.1016/j.engfracmech.2017.08.002
  45. Murmu, T. and Pradhan, S.C. (2009), "Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM", Phys. E, 41(7), 1232-1239. https://doi.org/10.1016/j.physe.2009.02.004
  46. Murmu, T., Sienz, J., Adhikari, S. and Arnold, C. (2013), "Nonlocal buckling of double-nanoplate-systems under biaxial compression", Compos.: Part B, 44(1), 84-94. https://doi.org/10.1016/j.compositesb.2012.07.053
  47. Natarajan, S., Haboussi, M. and Manickam, G. (2014), "Application of higher-order structural theory to bending and free vibration analysis of sandwich plates with CNT reinforced composite", Compos. Struct., 113, 197-207. https://doi.org/10.1016/j.compstruct.2014.03.007
  48. Niknam, H. and Aghdam, M.M. (2015), "A semi analytical approach for large amplitude free vibration and buckling of nonlocal FG beams resting on elastic foundation", Compos. Struct., 119, 452-462. https://doi.org/10.1016/j.compstruct.2014.09.023
  49. Rabani Bidgoli, M., Karimi, M.S. and Ghorbanpour Arani, A. (2015), "Viscous fluid induced vibration and instability of FG-CNT-reinforced cylindrical shells integrated with piezoelectric layers", Steel Compos. Struct., 19(3), 713-733. https://doi.org/10.12989/scs.2015.19.3.713
  50. Rafiee, M., He, X.Q. and Liew, K.M. (2014), "Non-linear dynamic stability of piezoelectric functionally graded carbon nanotube-reinforced composite plates with initial geometric imperfection", Int. J. Non-Lin. Mech., 59, 37-51. https://doi.org/10.1016/j.ijnonlinmec.2013.10.011
  51. Rafiee, M., Yang, J. and Kitipornchai, S. (2013), "Large amplitude vibration of carbon nanotube reinforced functionally graded composite beams with piezoelectric layers", Compos. Struct., 96, 716-725. https://doi.org/10.1016/j.compstruct.2012.10.005
  52. Rahmani, O., Hosseini, S.A.H., Ghoytasi, I. and Golmohammadi, H. (2017), "Buckling and free vibration of shallow curved micro/nano-beam based on strain gradient theory under thermal loading with temperature-dependent properties", Appl. Phys. A., 123(1), 4.
  53. Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
  54. Reddy, J.N. (2011), "Microstructure-dependent couple stress theories of functionally graded beams", J. Mech. Phys. Sol., 59(11), 2382-2399. https://doi.org/10.1016/j.jmps.2011.06.008
  55. Reddy, J.N. and El-Borgi, S. (2014), "Eringen's nonlocal theories of beams accounting for moderate rotations", Int. J. Eng. Sci., 82, 159-177. https://doi.org/10.1016/j.ijengsci.2014.05.006
  56. Shafiei, N. and Kazemi, M. (2017), "Buckling analysis on the bi-dimensional functionally graded porous tapered nano-/micro-scale beams", Aerosp. Sci. Technol., 66, 1-11. https://doi.org/10.1016/j.ast.2017.02.019
  57. Shen, H.S. and Zhang, C.L. (2012), "Non-linear analysis of functionally graded fiber reinforced composite laminated plates, part I: Theory and solutions", Int. J. Non-Lin. Mech., 47(9), 1045-1054. https://doi.org/10.1016/j.ijnonlinmec.2012.05.005
  58. Simsek, M. and Reddy, J.N. (2013), "Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory", Int. J. Eng. Sci., 64, 37-53. https://doi.org/10.1016/j.ijengsci.2012.12.002
  59. Simsek, M. and Reddy, J.N. (2013), "A unified higher order beam theory for buckling of a functionally graded microbeam embedded in elastic medium using modified couple stress theory", Compos. Struct., 101, 47-58. https://doi.org/10.1016/j.compstruct.2013.01.017
  60. Simsek, M. and Yurtcu, H.H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386. https://doi.org/10.1016/j.compstruct.2012.10.038
  61. Talebi, H., Silani, M., Bordas, S.P.A., Kerfriden, P. and Rabczuk, T. (2014), "A computational library for multiscale modeling of material failure", Comput. Mech., 53(5), 1047-1071. https://doi.org/10.1007/s00466-013-0948-2
  62. Tornabene, F., Bacciocchi, M., Fantuzzi, N. and Reddy, J.N. "Multiscale approach for three-phase CNT/polymer/fiber laminated nanocomposite structures", In Press.
  63. Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2014), "The strong formulation finite element method: Stability and accuracy", Frattura ed Integrita Strutturale, 8(29), 251-265. https://doi.org/10.3221/IGF-ESIS.29.22
  64. Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2017), "Linear static response of nanocomposite plates and shells reinforced by agglomerated carbon nanotubes", Compos. Part B: Eng., 115, 449-476. https://doi.org/10.1016/j.compositesb.2016.07.011
  65. Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E. (2016), "Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells", Compos. Part B: Eng., 89, 187-218. https://doi.org/10.1016/j.compositesb.2015.11.016
  66. Tornabene, F., Fantuzzi, N., Ubertini, F. and Viola, E. (2014), "Strong formulation finite element method based on differential quadrature: A survey", Appl. Mech. Rev., 67(2), 020801-020801-020855. https://doi.org/10.1115/1.4028859
  67. Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009
  68. Vu-Bac, N., Duong, T.X., Lahmer, T., Zhuang, X., Sauer, R.A., Park, H.S. and Rabczuk, T. (2018), "A NURBS-based inverse analysis for reconstruction of nonlinear deformations of thin shell structures", Comput. Meth. Appl. Mech. Eng., 332, 47-62. https://doi.org/10.1016/j.cma.2017.12.005
  69. Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Comput. Mater. Sci., 71, 201-208. https://doi.org/10.1016/j.commatsci.2013.01.028
  70. Wu, H. and Kitipornchai, S. (2015), "Free vibration and buckling analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets", Int. J. Struct. Stab. Dyn., 15(7), 1540011
  71. Wu, H., Kitipornchai, S. and Yang, J. (2017), "Imperfection sensitivity of thermal post-buckling behaviour of functionally graded carbon nanotube-reinforced composite beams", Appl. Math. Modell., 42, 735-752. https://doi.org/10.1016/j.apm.2016.10.045
  72. Yas, M.H. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Press. Vess. Pip., 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012
  73. Zhu, X., Wang, Y. and Dai, H.H. (2017), "Buckling analysis of Euler-Bernoulli beams using Eringen's two-phase nonlocal model", Int. J. Eng. Sci., 116, 130-140. https://doi.org/10.1016/j.ijengsci.2017.03.008
  74. Ziaee, S. (2016), "Steady state response of functionally graded nano-beams resting on viscous foundation to super-harmonic excitation", Alexandr. Eng. J., 55(3), 2655-2664. https://doi.org/10.1016/j.aej.2016.06.028

Cited by

  1. Buckling Analysis of CNTRC Curved Sandwich Nanobeams in Thermal Environment vol.11, pp.7, 2019, https://doi.org/10.3390/app11073250
  2. Free vibration analysis of carbon nanotube RC nanobeams with variational approaches vol.11, pp.2, 2021, https://doi.org/10.12989/anr.2021.11.2.157