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The small ubiquitin-related modification molecule (SUMO), 
one of the post-translational modification molecules, is 
involved in a variety of cellular functions where it regulates 
protein activity and stability, transcription, and cell cycling. 
Modulation of protein SUMOylation or deSUMOylation 
modification has been associated with regulation of 
carcinogenesis in breast cancer. In the dynamic processes of 
SUMOylation and deSUMOylation in a variety of cancers, 
SUMO proteases (SENPs), reverse SUMOylation by 
isopeptidase activity and SENPs are mostly elevated, and are 
related to poor patient prognosis. Although underlying 
mechanisms have been suggested for how SENPs participate in 
breast cancer tumorigenesis, such as through regulation of 
target protein transactivation, cancer cell survival, cell cycle, 
or other post-translational modification-related machinery 
recruitment, the effect of SENP isoform-specific inhibitors on 
the progression of breast cancer have not been well evaluated. 
This review will introduce the functions of SENP1 and SENP2 
and the underlying signaling pathways in breast cancer for use 
in discovery of new biomarkers for diagnosis or therapeutic 
targets for treatment. [BMB Reports 2019; 52(2): 113-118]

INTRODUCTION

Despite recent advances in diagnosis and treatment, breast 
cancer is the second leading cause of cancer-related mortality 
worldwide. In fact, the survival rate of women with breast 
cancer has improved, but the prognosis for patients with 
locally advanced or metastatic disease is still poor.

Most breast cancers are associated with three different 
receptor expressions, including estrogen receptor-alpha (ER), 
progesterone receptor (PR), and overexpression of ERBB2/HER2 
(1, 2). The molecular subtype of breast cancer based on 

receptor expression is helpful for prognosis and therapeutic 
response. Four common molecular subtypes are associated 
with breast cancers, Luminal A (ER＋/PgR＋, HER2−), 
Luminal B (ER＋/PgR＋, HER2＋), HER2 (ER−/PgR−, 
HER2＋), and triple-negative (TN, ER−/PgR−, HER2−) 
(2, 3). The luminal breast cancer subtypes are characterized by 
the expression of a set of ER-related genes and represent 
approximately 75% of breast cancer patients in postmenopausal 
women (1). Among these four subtypes, HER2 and TNBC 
types show a poor prognosis due to p53 gene mutations (4). 
The receptor expression of these subtypes is well established 
and used to predict the prognosis and treatment of breast 
cancer patients, but little is known about the transcriptional 
mechanisms associated with the different breast cancer 
subtypes. This review will introduce the mechanisms of 
post-translational modifications responsible for breast cancer 
subtypes. 

TRANSCRIPTIONAL REGULATION OF ESTROGEN 
RECEPTOR IN BREAST CANCER

Estrogens are important for sexual and reproductive 
development, especially in women. But, estrogens have also 
been directly implicated in hormone-dependent cancers, 
including breast, endometrial, and ovarian cancers (5). ER 
positive breast cancer accounts for about 75% of all breast 
cancer subtypes, and estrogen binds to and activates two 
isoforms, ER and  leading to physiological functions via a 
genomic or a non-genomic pathway (6). Between ER and , 
the ER-mediated signaling pathway is known to be a major 
driver of breast cancer. Ligand binds to ER causing 
ER-dependent transcription, therefore investigating coregulatory 
proteins that inhibit ER-dependent transcription can be an 
important treatment for ER-positive breast cancer. When the 
ligand binds to the receptor, the receptor undergoes a 
conformational change to create a new interface for the 
recruitment of coactivators and corepressors (6). The 
coactivators exist in large multiprotein complexes that regulate 
chromatin remodeling by changing histone-histone or 
histone-DNA interactions (7). Sequentially, these interactions 
mediate addition of histone posttranslational modification (7). 
Indeed, it has been reported that E2 promoted ER-dependent 
transcription of the target genes by employing coactivators 
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Fig. 1. The scheme of SUMOylation and deSUMOylation pathway. (A) Protein SUMOylation is associated with a recycling system 
consisting of conjugation and deconjugation pathways. Both conjugation and deconjugation enzymes mediate the dynamic and reversible 
process of SUMOylation. The protein SUMOylation alters protein activation, transcriptional activity, stability, and localization change. (B) 
SUMO proteins covalently modify certain residues of specific target substrates and change the function of these substrates. The conjugation 
pathway is mediated by SUMO E1, E2, E3 enzymes, whereas the deconjugation pathway is mediated by SUMOisopeptidase, SENPs.

with histone acetyl transferase (8, 9). These coactivator 
interactions cause maximal growth of breast cancer cells via 
ER-dependent expression of genes that promote cell 
proliferation (8, 9). 

On the other hand, one of the corepressors, known as the 
silencing mediator of retinoic acid and thyroid hormone 
receptor (SMRT) mediates both stimulation and repression of 
E2-dependent ER activity in a gene-selective manner (9, 10). 
The dual function of SMRT as a coactivator and a corepressor 
of ER makes it difficult to predict if regulation of SMRT plays 
a role in pro- or anti-tumorigenesis in breast cancer. However, 
the role of SMRT in the regulation of ER has been evaluated 
as that of a coactivator, since elevated nuclear expression of 
SMRT was associated with earlier tumor recurrence and this 
expression correlated with poor prognosis of breast cancer (11, 
12). A recent study reported that SMRT induced E2-dependent 
cell proliferation by cell cycle regulation and apoptosis 
inhibition in ER-positive breast cancer cells, but not in 
ER-negative MDA-MB-231 cells (13). SMRT increased 
E2-dependent cell cycle molecules, including cyclin D1 to 
promote E2-dependent G1/S transition (13). Consistent with 
this data, deletion of coactivators, such as SRC-2 or SRC-3 also 
inhibited E2-dependent cell proliferation of MCF-7 cells from 
G1 to S cell cycle (9, 14). Interestingly, Blackmore et al. 
recently reported that ER signal mediated E2-dependent 
recruitment with the SMRT/SRC-3 complex in the cyclin D1 
gene for the proliferation of breast cancer cells (13). 

Another cell cycle regulatory molecule, histone deacetylase 
3 (HDAC3) has been reported to be a mitotic regulator 
through histone deacetylation and mitotic spindle formation 
with several members of the HDAC3 corepressors, including 
NCoR, TBL1, and TBLR1 (15). Treatment with HDAC3 
inhibitors inhibited cell proliferation via apoptosis (15) and the 
SMRT/NCoR complex was involved in regulation of HDAC3 
activity as a coactivator in breast cancer cells (13). 

Together, the various transcriptional regulators are involved 
in pro- or anti-tumorigenesis of breast cancer cells, so 
understanding the precise role of transcriptional regulators in 
breast cancer cell function is crucial to finding good treatments 
for these cancers. 

SUMOYLATION AND BREAST CANCER

Most transcription factors are functionally regulated by 
post-translational modifications (PTMs), which are important to 
efficiently regulate cell functions in response to multiple 
extracellular stimuli or intracellular signals (16-19). Of PTMs, 
protein modification by a small ubiquitin-like modifier 
(SUMO) peptide on a lysine residue affects many different 
biological processes by regulating protein activity, transcriptional 
activity, protein stability, or localization change (Fig. 1) 
(20-22). The SUMO modification dynamically happens by 
conjugation or deconjugation in a small portion of a substrate 
at a certain time (17). The SUMOylation pathway is similar to 
that of ubiquitination by different set of enzymes. SUMO is 
activated in an ATP-dependent manner by an E1-activating 
enzyme that consists of a SUMO activating enzyme (SAE1) (as 
known as Aos1)-SAE2 (as known as Uba2) heterodimer. 
Activated SUMO is transferred to Ubc9, the E2-conjugating 
enzyme, and is subsequently attached to the ε amino group 
of specific residues in target proteins (18). Finally, studies have 
shown that E3 SUMO ligase-like protein inhibitors of activated 
STAT (PIAS)y conjugates activated SUMO to the target protein 
(18, 23). 

On the other hand, deSUMOylation is mediated by the 
SUMO proteases (SENPs) and six SENPs have been identified 
in humans (17, 24). Each SENP shows different cellular 
location and substrate specificities (24). Among the six SENPs, 
SENP1 and SENP2 process all three SUMO isoforms (SUMO1, 
2, and 3) and deSUMOylate both mono- and polymeric 
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SUMO enzyme Cancer types Cell regulation Tissue expression Ref

SENP1 Thyroid Expressed in mitochondria Up-regulated (28)
Prostate Upregulation of transcriptional activity of androgen receptors (ARs) 

and c-Jun, as well as cyclin D1 expression
Up-regulated (29)

Breast Down-regulates Pin1 to increase oncogenesis Up-regulated (39)
Hepatocyte Development of multidrug resistance (MDR) Up-regulated (19)
Pancreatic Regulates MMP-9 mediated metastasis Up-regulated (59)

SENP2 Hepatocyte Regulates -catenin stability Down-regulated (60)
Bladder Inhibits MMP13 expression Down-regulated (61)
Bladder Suppress EMT of bladder cancer cell Down-regulated (62)
Gastric Acts as a tumor suppressor by inducing deSUMOylation of NDRG2 Down-regulated (63)
Breast Causes failure of hormone-dependent therapy via transcriptional 

repression of ER
Unknown (32)

Breast SENP2 (363-400) fragment is critical for TGF-b-induced cell 
migration

Unknown (64)

Breast Down-regulates FOXM1B through deSUMOylation activity Unknown (65)

Table 1. SENP1 and SENP2-regulated SUMOylation targets associated with various cancer cell function

SUMOylated proteins (Fig. 1A) (25). SUMO3 and SUMO5 
process only SUMO2/3, whereas SENP6 and SENP7 display 
only hydrolase activity (25). 

Interestingly, expression levels of protein SUMOylation 
affect normal cellular physiology and tumor formation (19, 26, 
27). Indeed, hyper levels of SENP1 have been seen in thyroid 
adenocarcinoma and prostate cancer (28, 29), and SENP2 was 
shown to be important for the development of trophoblast 
stem cells through p53/Mdm2 regulation (30). In addition, 
SENP2 regulated activity of transcription factors by controlling 
PR, whereas inhibition of SENP2 activity reduced ER-induced 
gene expression and breast cancer cell proliferation (31, 32). 

These reports suggest that the regulation of target protein 
SUMOylation can be one of the key strategies for the treatment 
of breast cancers. This SUMOylation pathway associated with 
various cancer cell functions is shown in Table 1. 

SENP1 REGULATES PIN1 IN BREAST CANCER

Proline-directed protein phosphorylation (pSer/Thr-Pro) is a 
one of the important signaling pathways in diverse cellular 
processes, including cell proliferation and transformation. Pin1 
is a peptidyl-prolyl cis/trans isomerase (PPIase) and the 
N-terminal WW domain of Pin1 can bind to specific 
pSer/Thr-Pro motifs, and subsequently bind to its substrates to 
induce proteins conformational changes (33-35). These 
Pin-1-induced protein conformational changes following 
phosphorylation regulate various cellular functions, 
particularly in cancer cells, including cell cycle regulation, 
transcription splicing, DNA damage responses, germ cell 
development, and neuronal survival (33, 34, 36, 37). In 
particular, Pin1 was highly detected in human cancers and its 
overexpression levels were correlated with poor clinical 
outcomes, whereas reduced Pin1 expression caused by 

genetic polymorphisms was associated with reduced cancer 
risk in humans (33, 34). 

Pin1 regulates various proteins involved in oncogenes/growth 
enhancers and tumor suppression. Indeed, Pin1 activates 
oncogenes, including cyclin D1, NF-kB, c-Jun, c-fos, Raf-1, 
Stat3, Neu/ErbB2, Notch and Akt, but inactivates tumor 
suppressors, including FOXOs, PML, SMRT, Smad, Pin2/TRF1, 
Rb, and Fbw7 (33, 34). Pin1 and the regulatory signaling 
pathway of Pin1 has, therefore, been considered one of the 
best candidates for treating breast cancer. 

Recently, overexpression of SENP1, one of the SUMO 
proteases, was shown in several human cancers including 
prostate, thyroid cancer, and breast cancer (29, 38, 39). Chen 
et al. reported that increased levels of Pin1 SUMOylation at 
Lys6 in the WW domain downregulated Pin1protein activity, 
whereas SENP1 regulated Pin1 SUMOylation to induce Pin 
activity in centrosome amplification and cell transformation. 
This group also showed correlation between the expression 
level of SENP1 and Pin1 in human breast cancer (39). The 
results suggest that increased levels of SENP1 activity are 
important for regulating Pin1 SUMOylation to increase 
oncogenesis in breast cancer, and this new SENP1-Pin1 module 
can be an attractive alternative target for anti-cancer therapies. 

ROLE OF MEL-18 ON SENP1 FUNCTION IN 
HORMONE-DEPENDENT BREAST CANCER 
TREATMENT 

As mentioned earlier, about 25% of breast cancer patients do 
not express the ER-related genes, and so are resist to 
anti-estrogen therapy and have a poor prognosis (1). Since 
ER-negative breast cancer cells, such as HER2 (ER−/PgR−, 
HER2＋) or TN (ER−/PgR−, HER2−) cells do not derive 
any benefit from conventional hormone therapy, attempts 
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have been made to reverse the estrogen receptor (ESR)1 gene 
in these cells through epigenetic changes (40, 41). 

Recently, Mel-18 was reported to modulate ESR1 gene 
transcription by altering the activity of SENP1 (42). Mel-18 is 
known as a polycomb group ring finger 2 and is structurally 
similar to Bmi-1 (43). In a previous report, Mel-18 was shown 
to function as a key epigenetic modulator of somatic stem cells 
and cancer cells (44). Functionally, Mel-18 binds to the 
promoter region of specific genes presenting a certain 
nucleotide sequence, 5’-GACTNGACT-3’. One of the targets 
was c-myc, and it was transcriptionally repressed by Mel-18 
(43). Mel-18 deficiency showed enhancement of breast cancer 
stem cell activity, tumor angiogenesis, and epithelial- 
mesenchymal transition (45, 46). Therefore, the loss of Mel-18 
is thought to be one of the causes of aggressive breast cancer. 

A recent report demonstrated that Mel-18 deficiency was 
associated with SUMOylation or deSUMOylation-dependent 
ESR1 and prostaglandin receptor (PGR) expression, rather than 
hormone-dependent phenotypes (42). The study showed that 
Mel-1 induced deSUMOylation of p53 and SP1, transcriptional 
factors of the ESR1 gene, by increasing ubiquitin-proteasomal 
degradation of SENP1. It caused the transactivation of ESR1, as 
well as PGR. Together, regulation of the SUMO-mediated 
hormone receptors by Mel-18 is important for breast cancer 
tumorigenesis, and Mel-18 can be used as a prognostic 
indicator in patients with resistance to hormone-therapy or 
triple negative breast cancer. 

SENP2 REGULATES ESTROGEN RECEPTOR 
SIGNALING IN BREAST CANCER

Similar to histone protein-related modifications, other 
posttranslational modifications such as phosphorylation, 
acetylation, and ubiquitination can affect ER activity and 
stability (47). A new covalent protein modification, which is 
another SUMO modification (SUMO1) has been reported, and 
SUMO1 binds ER and regulates ER transcriptional activity 
(48). Sentis et al. reported that SUMO-E3 ligases (PIAS1 and 
PIAS3) mediated ER-SUMO1 interaction in the presence of 
hormone and altered ER SUMOylation-mediated ER 
transcriptional activity (49). Since SUMOylation is reversible 
by SENPs, which cleave the isopeptide bonds between the 
glycine residue of SUMO and the lysine of the substrate 
protein, the role of SENP2 on ER-SUMOylation was recently 
studied in breast cancer cells (32). 

Unexpectedly, SENP2 was found to regulate estrogen 
signaling, independent of deSUMOylase activity. Instead of 
regulating ER-SUMOylation, SENP2 recruits HDAC3 in the 
repressor domain at the amino-terminal region and acts as an 
ER-transcriptional corepressor (32). It has been reported that 
transcriptional regulators of ER are recruited into a variety of 
promoters to alter the function of breast cancer cells (50, 51). 
For example, estrogen-activated ER-receptor recruited the 
SMAR/HDAC3 complex into a PROS1 promoter to induce 

chromatin hypoacetylation (51). 
Therefore, this suggests that ER-mediated transcription of 

target genes is altered by its SUMOylation and regulation of 
ER-SUMOylation may be an important strategy for breast 
cancer treatment. Since SENP2 regulates ER-mediated cellular 
function by transrepression, rather than deSUMOylation 
activity, it may be important to evaluate the function of 
SUMOylation on the cellular function using SUMO mutants in 
breast cancer cells. 

PERSPECTIVE BREAST CANCER TREATMENT 

Since the target protein SUMOylation is involved in regulation 
of carcinogenesis, SUMOylation modulators have been 
developed as promising anti-cancer drugs. In fact, the 
isopeptidase activity of SENPs is critical for the regulation of 
SUMOylation and SENPs expressions have been associated 
with a variety of cancers (28-32). Several inhibitors of SENPs 
have been developed to date, but the effect on cancer has not 
been well evaluated (52-56). Among the SENPs, only SENP1 
inhibitors have been developed through chemical synthesis or 
natural product discovery, and evaluated for their effects on 
cancer. For example, triptolide, extracted from the Chinese 
herb Tripteygium wilfrodii Hook F showed anti-tumor activity 
via down-regulation of SENP1 that inhibited the AR and c-Jun 
mediated transcription in prostate cancer (57). In a recent 
study, Momordin lc, a natural pentacyclic triterpenoid, 
inhibited SENP1 enzyme activity in vitro and suppressed 
tumorigenesis in a xenograft PC3 tumor mouse model (58). 
This suggests that inhibitors of SENP1 may be developed, at 
least as important anti-cancer drugs for prostate cancer, and 
that studies on other cancer types, especially breast cancer, 
should proceed. Together, the discovery of isoform-selective 
potent SENP inhibitors will be important in validating the role 
of SENPs in tumorigenesis as a new therapeutic targets. In 
addition, the patho-physiological role of isoform-selective 
SENP inhibitors in breast cancer should be evaluated for 
therapeutic development.
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