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Abstract

We study the effect of detrending on the coherency between two time series processes. Many economic and
financial time series variables include nonstationary components; however, we analyze the two most popular
cases of stochastic and deterministic trends. We analyze the asymptotic behavior of coherency under incorrect
detrending, which includes the cases of first-differencing the deterministic trend process and, conversely, the
time trend removal of the unit root process. A simulation study is performed to investigate the finite sample
performance of the sample coherency due to incorrect detrending. Our work is expected to draw attention to
the possible distortion of coherency when the series are incorrectly detrended. Further, our results can extend to
various specification of trends in aggregate time series variables.
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1. Introduction

Specifications of trends in nonstationary time series processes have been an issue in wide areas of eco-
nomics literature since the early 1980s (Nelson and Kang, 1981; Nelson and Plosser, 1982; Murray
and Nelson, 2000; Perron and Wada, 2009). In an economics context, stochastic trends and deter-
ministic trends are the two most popular types. Therefore, detrending methods typically include time
trend removal and first-differencing. Early literature focused on the effects of the misspecification of
trends on the behavior of spectral densities (e.g., Harvey and Jaeger, 1993; Canova, 1998; Fleissig
and Strauss, 1999; Aadland, 2005). We also note that Dagum and Giannerini (2006) investigate the
effects of the misspecification of trends on various hypothesis tests that include tests for stationarity
and tests for linearity. Ashley and Verbrugge (2006) study how parameter estimates are vulnerable
to detrending methods. These works have drawn attention to studies on the distortions of various
statistics due to incorrect detrending.

In this work, we consider coherency, which is a correlation measure in the frequency domain.
Pearson type correlations defined in time domain compute the comovement between the series at dif-
ferent lags; however, coherency measures comovement between the time series at different frequency,
as it is based on the spectral representation of time series. Thus, one can obtain long-run, medium-
run or short-run correlations between the series, which generate complementary implications from
standard auto-correlations in time domain.

We study how coherence measures are affected by detrending methods. In addition, we pay at-
tention to stochastic and deterministic trends as well as analyze the effect of incorrect detrending on
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the behavior of coherency, both theoretically and numerically. First, the limiting form of coherency
under correct and incorrect detrending is studied. Next, some simulation works are presented to see
the effect of detrending on the finite sample performance of sample coherency. We also present a brief
empirical work using foreign exchange rate data. Section 5 concludes the study.

2. Effects of false detrending on asymptotics of coherency

We consider a modified coherency (MC), proposed by Croux et al. (2001), which is the real part of
the coherency measures. Write
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where f,,(1) is the cospectrum, which equals the real part of the cross spectral density; additionally,
and f,(4) and f,(12) are the auto-spectral densities of covariance-stationary x and y, respectively (e.g.,
Priestley, 1981).

We call this a MC when the usual coherency is complex-valued. In order for the MC to be well-
defined, the underlying processes need to be second-order stationary. If the data contains nonstation-
ary components, appropriate detrending is required. We therefore consider two types of nonstationary
cases of stochastic trends (or unit roots) and deterministic trends. Below, we consider two cases of
false detrending.

First we consider the case that true processes consist of stationary components around the deter-
ministic time trend. In addition, stationary innovations are assumed to have a linear structures as in
Phillips and Solo (1992). It helps construct the limiting forms of MC under correct and incorrect
detrending. We formally introduce the following assumption,

Assumption 1. Bivariate series q, = (x;,y;) follows trend stationary processes,
g =a+Tt+e, 2.2)

where @ = (a1, @3), T = (T1,T2) , and e; = (e, €x) is a linear process given by

e =9(L)e = ) i = ), (‘C”k‘ 2,’;) (;:’k‘), (23)
k=0 k=0

where & = (e1,€) is iid(0,02h), T2 Kl < oo, for 6 > 1 with |lgell = [Se I8y P12, for
G np=0,1,...,2,2).

The linear structure of innovations given in the assumption is standard where long-run and short-
run components are compactly expressed through Beveridge-Nelson decomposition techniques (Phi-
1lips and Solo, 1992).

In relation to the variance and covariance structures of linear processes given above, we define the
following quantities.

00

=Y aa il Ry =) L,
k=0

k=0



Effects of incorrect detrending on the coherency 29

A=Y aastt, AL =) ddil,
k=0 k=0
gi(L) = Z axcr LK, hj(L) = Z bidy_ ;L. (2.4)
k=0 k=0

Under the linear structure of the innovations, we can derive the explicit form of the MC, as follows.
The following theorem states the effects of correct and incorrect detrending on the asymptotics of MC.

Theorem 1. Under the Assumption 1,
(i) The MC for time-detrended q, equals
(D
s

where fi(1) = E2_o(f/' (1) + f2(1) cos(jA), f;() = TR _(f7' (D) + f72(1) cos(jd), and
Tia() = X5 _o(g(1) + hj(1)) cos(jd).

(ii) The MC of first-differenced Aq, equals

Py = : 2.5)

mi2(4)
[y ()my(2)]7

where mi(1) = X52_, fic0s(jA), ma(d) = X2 majcos(jd), and mip(d) = X2, fiajcos(jd),
with

ny(ﬂ) = (2.6)

A =2(F W+ £20) = £ = FLO = A - FA),
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The part (i) refers to the correct specification of trend, where the superscript * refers to the correct
quantity. However, the part (ii) arises from misspecification of trend. We only prove part(ii).

Proof of Theorem 1: The proof is based on Phillips and Solo (1992, eq.28) and Maynard and Shi-

motsu (2009). For the differenced processes, the auto-covariances are written as E(Ag,Ag,_,) = —072,

for r # 0, and for |r| > 1, E(Ag;Ag;_,) = 0. We then obtain
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Similarly, we get
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For the cross covariance and the cospectrum, we use the results in Maynard and Shimotsu (2009,
Lemma 13) to get E(Aej,Aey—j) = o-z[gj(l) +hi(1) +2(gj-1(1) + hj_ (1))].

The results of the part (ii) come from the case that trend stationary processes are first-differenced,
which entail over-differenced series. This type of misspecification is also known as the moving aver-
age (MA) unit root. Since over-differenced series generate additional correlations, the forms of auto-
spectrum and cospectrum become more complicated than a correctly detrended case. Consequently,
the modified MC due to incorrect detrending of generated inaccurate values. (]

Remark 1. To further get an insight for the MA unit root problem, we consider a simple example
that ag = by = 1 and gy = by = 0 for k > 0 in the process of ¢,. It then follows that E(Ae?,) = 2072,
and E(Aey,Aey—1) = E(AejAeyyr1) = —o2. Then, the auto-spectral density of e;, becomes

J1() = 2(1 = cos(A)). (2.8)

It is then noted that degeneracy arises at the zero frequency, i.e., f1(0) = 0. Thus, false detrending
invalidates the MC at the zero frequency.

We next analyze the converse case of misspecification of trend, where stochastic trends are mistak-
enly treated as a time trend process. In this case, the coherency is not well defined, since nonstationary
components remain in the underlying process. Thus, we treat this case with less weight, compared to
the previous case. We formally consider the assumptions for unit root processes.

Assumption 2. Bivariate series ¢, = (x;,y,) follow unit root processes with a drift, ¢, = a +q,_1 +e;,
where innovations e; are specified as in part(ii) in Assumption 1.

The Assumptions 2 is one of the most popular unit root specification in economics context, though
rather simplistic. Under unit root assumption, g, = at+ Z;:I e;. Then, the g; is still nonstationary (i.e.,
the second moments do not exist) after time trend removal and as a result, spectral densities as well
as the coherency are not defined. Below, we consider the case that deterministic terms are completely
removed for heuristic purpose. Given this, we use /(1) asymptotic theories to verify the asymptotic
behavior of the quantity given by

fr =07 Y RG), (2.9)

j=—00

where R((j) = T™! Zthljl-H hithyeoyy for by = q; — at = (hy, hay) . By invariance principle (Phillips and

Solo, 1992), we obtain
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for r € [0, 1], where U(r) = (U1(r), U>(r)) denotes bivariate Brownian motions with E(ei) = o1,

E(e3,) = 03, and E(ey,ey,) = 1. We then obtain the limit,
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thereby, we get T2 fr — (2m)~'[ fol U, (rdrl?.
The same reasoning applies to

hr=Co YIRG),  for =07 Y Ryl (2.12)
j=—00 j=—00
where
T T
RD=T" Y huhoyye  Ro()=T"" D My,
r=ji+1 r=]ji+1

Thus, both numerator and denominator are divergent with the order of OP(TZ). These results are
summarized as follows.

Lemma 1. Suppose the Assumption 2 holds and the deterministic trends are completely detrended.
Then, the following ratio converges to limit, as T — oo,

for 1 Ui U(dr
ke [{fo1 Ul(r)dr}2 (h Uz(r)dr}z]z

Remark 2. The Lemma 1 only provides a heuristic inference. If the deterministic trend @ in the
Assumption 2 is not completely removed, then the trends dominate the partial sum of errors. Then,
the resulting inferences become complicated and unrelated with coherency measures. Thus, we do not
extend further analysis. However, more complicated forms of unit root processes (e.g., local-to-unity)
than the simple form in Assumption 1 could be considered in subsequent research.

) (2.13)

3. Simulation studies

In this section, we conduct a small set of simulation studies to see the effect of correct and incorrect
detrending on coherency. For coherency estimates, we use kernel-based nonparametric estimators
for auto-spectral density and cospectrum. The auto-spectral densities of the covariance-stationary
variable x is given by

T-1 .
F) =RA0)+2 >k (ﬁ)Rx( J)cos(2nd), 3.1)
=1

where A € (0,2n) is a frequency, k is a kernel function, M is the lag truncation number (bandwidth).
The sample variances are given by R (j) = T~! ZrT=| a1 (X = D)Xy — %), with X is the sample mean
of x.

Also, the cospectrum estimator is given by

T-1

J .
Fo = " k(L) Ry(j) cos@m), (3.2)
j—zllT (M) ’

where the sample cross covariance equals to R, (j) = T-! Zszl i1 X = OG- =), and it is noted that
the cross covariance is not symmetric in j.
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Table 1: Bias and MSE of coherency estimates: true DGP = linear time trend

AR Frequency Bias(MSE)-first differencing Bias(MSE)-time removal
0.01 0.1407(0.0325) 0.0003(0.0203)
0.05 0.1018(0.0157) 0.0006(0.0159)
B=00 0.1 0.0362(0.0127) 0.0017(0.0110)
0.5 —0.0048(0.0208) —0.0050(0.0184)
1.0 0.1414(0.0329) 0.0003(0.0203)
0.01 0.1120(0.0244) 0.0004(0.0264)
0.05 0.0788(0.0153) 0.0005(0.0224)
B=05 0.1 0.0279(0.0125) 0.0010(0.0142)
0.5 —0.0033(0.0195) —-0.0036(0.0149)
1.0 0.1117(0.0246) 0.0004(0.0264)

MSE = mean squared errors; DGP = data generating process; AR = auto-regressive.

The bandwidth M is required to satisfy the condition that M — oo and M/T — 0, which guar-
antees consistency of the estimators (e.g., Priestley, 1981; Andrews 1991). In our simulation, we set
M = [4(T/100)*°], as used in Kwiatkowski e al. (1992). One can use parametric or nonparametric
bandwidth choice rules in line with the context of heteroskedasticity and autocorrelation consistent
(HAC) covariance matrix estimation. Alternatively, we use a simple rule for the bandwidth to reduce
the computational burden.

First, we consider a linear time trend process as the data generating process (DGP). Let ¢, =
(x;,y:) be generated by

DGP1: g =u+6t+e, 3.3)

where y = (u1,i2), 6 = (6,,68,). Error terms e, = (ey;, ex), where ¢, = Bej; + €i;, and &;; are
iidd N(0, 1), with E(g;) = 0, E(sl%) =1,fori=1,2, and E(gj,&5) = 0 for all ¢, s.

The parameters are set as y; = yp = 0,01 =0, =0.1,and 8 = 0 or 0.5.

Given the above setup, one can obtain the theoretical expressions for the auto, cross spectrum of
correctly detrended series, i.e.,

£ = /() = Qo) (1= 2pcos() +47) (3.4)

and fy,(1) = 0. It follows that the true value of MC at the origin, p,,(1) = 0.

We conduct 1,000 iterations and compute the bias and the mean squared errors (MSE), where
MSE is computed as (1/B) 251:1 [Om,xy (D) — pxy(/l)]z, for the true coherency p,,(4) and the number of
iterations B. The pre-specified frequencies are set from A = 0.01 to 1. In the economic context, small
values of frequencies draw attention as they are related to the long-run information.

Table 1 shows the results when the true DGP is a linear time trend process. Two different auto-
regressive (AR) processes for innovations with § = 0 and 0.5 are included. The first differencing,
with a very few exceptions, yields a larger bias than the case of time trend removal. Incorrect de-
trending cause notable bias particularly at frequencies of 0.01, 0.05, and 1. Such pattern of the bias
remains unchanged when the AR parameter increases to 0.5. However, unlike the bias properties,
two different MSEs do not dominate each other as they vary with frequency. Theorem 1 indicates
that over-differenced series cause smaller variances than the correctly detrended series. Therefore, we
only note that the bias problems are a distortion due to false detrending.

Next, we consider unit root with a drift processes for ¢;,

DGP2:¢q;=a+ g, +e;, 3.5)
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Table 2: Bias and MSE of coherency estimates: True DGP = unit root with a drift

AR Frequency Bias(MSE)-first differencing Bias(MSE)-time removal
0.01 0.0517(0.0238) —0.0068(0.2048)
0.05 0.0437(0.0186) -0.0068(0.2017)
=0 0.1 0.0227(0.0117) —0.0063(0.1853)
0.5 —-0.0017(0.0185) —0.0066(0.2016)
1.0 0.0518(0.0238) -0.0068(0.2048)
0.01 0.0165(0.0269) -0.0070(0.2099)
0.05 0.0149(0.0229) —0.0070(0.2076)
B=05 0.1 0.0097(0.0144) -0.0067(0.1955)
0.5 0.0019(0.0159) —0.0070(0.2247)
1.0 0.0166(0.0269) -0.0070(0.2099)

MSE = mean squared errors; DGP = data generating process; AR = auto-regressive.

where @ = (@, a») and e, = (ey;, ez , as in the DGP 1. The drift terms are set as &; = @, = 0.1.

Therefore, it is known that unit roots with a drift behave as a linear time trend process. Table 2
shows that correct first-differencing clearly dominates the incorrect time removal in terms of MSEs.
Time removal yields nearly eight to ten times larger MSEs than first-differencing. In terms of bias
property, time removal generates a smaller bias, even though it is an incorrect detrending. The bias
properties may require more extensive simulations. Therefore, it is inferred that a significant increase
of MSE in incorrect detrending comes from the inflated variance of the coherency estimates. The
MSE:s by correct detrending remain stable when the AR coefficient increases.

Other choices of AR parameters and correlation parameters between innovations yield qualita-
tively analogous results, which are omitted to save space. In addition, alternative DGP specifications
are left for future research.

4. Empirical studies

We perform an empirical study using real data and investigate the effect of detrending on coherency
measures between two variables. In doing so, we consider two foreign exchange rates-euro/dollar
exchange rate and dollar/pound exchange rate. The data has 284 monthly observations, which range
from January, 1995 to August, 2018. The data is available from the Bank of Korea dataset.

First, we conduct unit root tests for exchange rates. Two testing procedures of Dickey-Fuller (DF)
and variance ratio (VR) by Breitung (2002) are been applied. For the DF test, the 5% critical value
equals to —2.88 in the presence of intercept and a linear trend. The test values are —2.0029 and —-2.01
for euro/dollar rate and dollar/pound rate, respectively. Thus, the null hypothesis of unit roots are not
rejected at the 5% significance level. As for the VR test, we compute the test values of 0.0223 and
0.017 for euro/dollar and dollar/pound rates, respectively. As the 5% left-tailed critical value is given
as 0.01, the null hypothesis of unit roots are not rejected. Therefore, both test results indicate that the
these exchange rates are highly likely to follow unit root processes.

The test results allow us to compute the coherency based on two different detrending methods-
first differencing and trend removal. First differenced series yield the estimated coherency between
the two exchange rates as 0.6718, 0.6559, 0.6053, and 0.672, at frequencies of 0.01, 0.05, 0.1, and
1, respectively. However, by trend removal, coherency is estimated as 0.9799, 0.9798, 0.9791, and
0.9799 at frequencies of 0.01, 0.05, 0.1, and 1, respectively. Thus, it shows that two detrending
methods generate a sharp contrast for the correlations in the frequency domain. Our empirical results
imply a need to observe detrending the series in practical studies, even though the true trends are
unknown. Data and computing coeds are available from the author by request.
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5. Conclusion

We analyze the effect of detrending on the coherency between two trending time series processes.
Two popular types of trends of stochastic and deterministic trends are considered, and we study the
behavior of coherency under incorrect detrending. A set of simulation studies are conducted to inves-
tigate the finite sample performance of the sample coherency due to correct and incorrect detrending.
We also present a real data analysis using foreign exchange rates and show a significant difference by
the two detrending methods. Correct detrending cannot be emphasized enough in practical research;
therefore, our work is expected to draw attention to the possible distortion of coherency when the
series are incorrectly detrended.
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