References
- Chung CY, Chung IB, Kwon DJ, Chung SK, Yoon HJ, Kim KS. Experiments on swine production: effects of plane of nutrition and market weight on pork quality. In: Annual research reports of National Livestock Research Institute. Korea; 1981. p. 436-76.
- Smith JW, Tokach MD, O'Quinn PR, Nelssen JL, Goodband RD. Effects of dietary energy density and lysine: calorie ratio on growth performance and carcass characteristics of growing-finishing pigs. J Anim Sci. 1999;77:3007-15. https://doi.org/10.2527/1999.77113007x
- De La Llata M, Dritz SS, Langemeier MR, Tokach MD, Goodband RD, Nelssen JL. Economics of increasing lysine:-calorie ratio and adding dietary fat for growing-finishing pigs reared in a commercial environment. J Swine Health Prod. 2001;9:215-23.
- Main RG, Dritz SS, Tokach MD, Goodband RD, Nelssen JL. Determining an optimum lysine:calorie ratio for barrows and gilts in a commercial finishing facility. J Anim Sci. 2008;86:2190-207. https://doi.org/10.2527/jas.2007-0408
- Campbell RG, Taverner MR, Curic DM. Effect of feeding level and dietary protein content on the growth, body composition and rate of protein deposition in pigs growing from 45 to 90 kg. Anim Sci. 1984;38:233-40. https://doi.org/10.1017/S0003356100002221
- Campbell RG, Taverner MR, Curic DM. The influence of feeding level on the protein requirement of pigs between 20 and 45 kg live weight. Anim Sci. 1985;40:489-96. https://doi.org/10.1017/S0003356100040186
- Hill RA, Dunshea FR, Dodson MV. Growth of livestock. In: Scanes CG, editor. Biology of growth of domestic animals. Ames, IA, USA: Iowa State Press; 2003. p. 342-64.
- Noblet J, Van Milgen J. Energy and energy metabolism in swine. In: Chiba LI, editor. Sustainable swine nutrition. Ames, IA, USA: John Wiley & Sons; 2013. p. 23-57.
- Ellis M, Augspurger N. Feed intake in growing-finishing pigs. In: Lewis AJ, Southern LL, editors. Swine nutrition. 2nd ed. Boca Raton, FL, USA: CRC Press LLC; 2001. p. 447-67.
- Ha DM, Park BC, Park MJ, Song YM, Jin SK, Park JH, et al. Effects of plane of nutrition on growth performance and meat quality traits in finishing pigs. J Anim Sci Technol. 2012;54:449-54. https://doi.org/10.5187/JAST.2012.54.6.449
- Reynolds AM, O'Doherty JV. The effect of amino acid restriction during the grower phase on compensatory growth, carcass composition and nitrogen utilisation in grower-finisher pigs. Livest Sci. 2006;104:112-20. https://doi.org/10.1016/j.livsci.2006.03.012
- Cloutier L, Letourneau-Montminy MP, Bernier JF, Pomar J, Pomar C. Effect of a lysine depletion-repletion protocol on the compensatory growth of growing-finishing pigs. J Anim Sci. 2016;94:255-66.
- Bohman VR. Compensatory growth of beef cattle: the effect of hay maturity. J Anim Sci. 1955;14:249-55. https://doi.org/10.2527/jas1955.141249x
- Lawrence TLJ, Fowler VR, Novakofski JE. Growth of farm animals. 3rd ed. Wallingford, UK: CABI; 2012.
- Chiba LI. Effects of dietary amino acid content between 20 and 50 kg and 50 and 100 kg live weight on the subsequent and overall performance of pigs. Livest Prod Sci. 1994;39:213-21. https://doi.org/10.1016/0301-6226(94)90186-4
- Chiba LI. Effects of nutritional history on the subsequent and overall growth performance and carcass traits of pigs. Livest Prod Sci. 1995;41:151-61. https://doi.org/10.1016/0301-6226(94)00050-H
- Whang KY, Donovan SM, Easter RA. Effect of protein deprivation on subsequent efficiency of dietary protein utilization in finishing pigs. Asian-Aust J Anim Sci. 2000;13:659-65. https://doi.org/10.5713/ajas.2000.659
- Fabian J, Chiba LI, Kuhlers DL, Frobish LT, Nadarajah K, Kerth CR, et al. Degree of amino restrictions during the grower phase and compensatory growth in pigs selected for lean growth efficiency. J Anim Sci. 2002;80:2610-18. https://doi.org/10.1093/ansci/80.10.2610
- Fabian J, Chiba LI, Frobish LT, McElhenney WH, Kuhlers DL, Nadarajah K. Compensatory growth and nitrogen balance in grower-finishing pigs. J Anim Sci. 2004;82:2579-87. https://doi.org/10.2527/2004.8292579x
- Ha DM, Jung DY, Park MJ, Park BC, Lee CY. Effects of sires with different weight gain potentials and varying planes of nutrition on growth of growing-finishing pigs. J Anim Sci Technol. 2014;56:22. https://doi.org/10.1186/2055-0391-56-22
- Hyun Y, Ellis M, Riskowski G, Johnson RW. Growth performance of pigs subjected to multiple concurrent environmental stressors. J Anim Sci. 1998;76:721-27. https://doi.org/10.2527/1998.763721x
- NRC. Nutrient requirements of swine. 11th ed. Washington, DC, USA: National Academy Press; 2012.
- CIE. Colorimetry. 2nd ed. CIE Publication No. 15.2. Vienna: Commission Internationale de l'Eclairage; 1986.
- Lee CY, Lee HP, Jeong JH, Baik KH, Jin SK, Lee JH, et al. Effects of restricted feeding, low-energy diet, and implantation of trenbolone acetate plus estradiol on growth, carcass traits, and circulating concentrations of insulin-like growth factor (IGF)-I and IGF-binding protein-3 in finishing barrows. J Anim Sci. 2002;80:84-93. https://doi.org/10.2527/2002.80184x
- Lee CH, Jung DY, Choi JS, Jin SK, Lee CY. Effects of the plane of nutrition on physicochemical characteristics and sensory quality traits of the muscle in finishing pigs. Korean J Food Sci Anim Resour. 2014;34:516-24. https://doi.org/10.5851/kosfa.2014.34.4.516
- Jin SK, Kim IS, Hur SJ, Hah KH, Kim BW. Effects of feeding period on carcass and objective meat quality in crossbred longissimus muscle. J Anim Sci Technol. 2004;46:811-20. https://doi.org/10.5187/JAST.2004.46.5.811
- Park MJ, Ha DM, Shin HW, Lee SH, Kim WK, Ha SH, et al. Growth efficiency, carcass quality characteristics and profitability of ‘high’-market weight pigs. J Anim Sci Technol. 2007;49:459-70. https://doi.org/10.5187/JAST.2007.49.4.459
- MAFRA. Statistics. Korea: Ministry of Agriculture, Food and Rural Affairs. 2018. http://www.mafra.go.kr. Accessed 5 Nov 2018.
- Millet S, Langendries K, Aluwe M, De Brabander DL. Effect of amino acid level in the pig diet during growing and early finishing on growth response during the late finishing phase of lean meat type gilts. J Sci Food Agric. 2011;91:1254-8. https://doi.org/10.1002/jsfa.4307
- Castell AG, Cliplef RL, Poste-Flynn LM, Butler G. Performance, carcass and pork characteristics of castrates and gilts self-fed diets differing in protein content and lysine:energy ratio. Can J Anim Sci. 1994;74:519-28. https://doi.org/10.4141/cjas94-073
- Mitchell AD. Impact of research with cattle, pigs, and sheep on nutritional concepts: body composition and growth. J Nutr. 2007;137:711-714. https://doi.org/10.1093/jn/137.3.711
- De La Llata M, Dritz SS, Tokach MD, Goodband RD, Nelssen JL. Effects of increasing lysine to calorie ratio and added fat for growing-finishing pigs reared in a commercial environment: I. Growth performance and carcass characteristics. Prof Anim Sci. 2007;23:417-28. https://doi.org/10.15232/S1080-7446(15)30997-9
- Seo JT. Suggestions for the improvement of pork quality and case reports on quality pork producers (published in Korean). Kor J Swine Res. 2016;45:84-111.
- Kerr BJ, McKeith FK, Easter RA. Effect on performance and carcass characteristics of nursery to finisher pigs fed reduced crude protein, amino acid-supplemented diets. J Anim Sci. 1995;73:433-40. https://doi.org/10.2527/1995.732433x
- Millet S, Aluwe M. Compensatory growth response and carcass quality after a period of lysine restriction in lean meat type barrows. Arch Anim Nutr. 2014;68:16-28. https://doi.org/10.1080/1745039X.2013.869987
- Watanabe G, Motoyama M, Nakajima I, Sasaki K. Relationship between water-holding capacity and intramuscular fat content in Japanese commercial pork loin. Asian-Aust J Anim Sci. 2018;31:914-8. https://doi.org/10.5713/ajas.17.0640
- Warner RD, Kauffman RG, Greaser ML. Muscle protein changes post mortem in relation to pork quality traits. Meat Sci. 1997;45:339-52. https://doi.org/10.1016/S0309-1740(96)00116-7
- Joo ST, Kim GD. Meat quality traits and control technologies. In: Joo ST, editor. Control of meat quality. Kerala, India: Research Signpost; 2011. p. 1-29.
- Papanagiotou P, Tzimitra-Kalogianni I, Melfou K. Consumers' expected quality and intention to purchase high quality pork meat. Meat Sci. 2013;93:449-54. https://doi.org/10.1016/j.meatsci.2012.11.024
- Channon HA, D'Souza DN, Dunshea FR. Developing a cuts-based system to improve consumer acceptability of pork: Impact of gender, ageing period, endpoint temperature and cooking method. Meat Sci. 2016;121:216-27. https://doi.org/10.1016/j.meatsci.2016.06.011
- Choi JS, Jin SK, Lee CY. Assessment of growth performance and meat quality of finishing pigs raised on the low plane of nutrition. J Anim Sci Technol. 2015;57:37. https://doi.org/10.1186/s40781-015-0070-4
Cited by
- Effects of the plane of nutrition during the latter grower and entire finisher phases on grow-finish pig performance in summer vol.61, pp.1, 2019, https://doi.org/10.5187/jast.2019.61.1.10