DOI QR코드

DOI QR Code

Evaluation of thermal stress of poultry according to stocking densities using mumerical BES model

BES 수치모델을 이용한 사육 밀도별 가금류 고온 스트레스 평가

  • Kwon, Kyeong-seok (Animal Environment Division, National Institute of Animal Science) ;
  • Ha, Tahwan (Rural Systems Engineering, Seoul National University) ;
  • Choi, Hee-chul (Animal Environment Division, National Institute of Animal Science) ;
  • Kim, Jong-bok (Animal Environment Division, National Institute of Animal Science) ;
  • Lee, Jun-yeob (Animal Environment Division, National Institute of Animal Science) ;
  • Jeon, Jung-hwan (Animal Environment Division, National Institute of Animal Science) ;
  • Yang, Ka-young (Animal Environment Division, National Institute of Animal Science) ;
  • Kim, Rack-woo (Rural Systems Engineering, Seoul National University) ;
  • Yeo, Uk-hyeon (Rural Systems Engineering, Seoul National University) ;
  • Lee, Sang-yeon (Rural Systems Engineering, Seoul National University)
  • 권경석 (국립축산과학원 축산환경과) ;
  • 하태환 (서울대학교 생태조경.지역시스템공학부) ;
  • 최희철 (국립축산과학원 축산환경과) ;
  • 김종복 (국립축산과학원 축산환경과) ;
  • 이준엽 (국립축산과학원 축산환경과) ;
  • 전중환 (국립축산과학원 축산환경과) ;
  • 양가영 (국립축산과학원 축산환경과) ;
  • 김락우 (서울대학교 생태조경.지역시스템공학부) ;
  • 여욱현 (서울대학교 생태조경.지역시스템공학부) ;
  • 이상연 (서울대학교 생태조경.지역시스템공학부)
  • Received : 2018.10.25
  • Accepted : 2019.01.04
  • Published : 2019.01.31

Abstract

Micro climatic conditions within the livestock facility are affected by various factors such as ventilation, cooling, heating, insulation and latent and sensible heat generation from animals. In this study, numerical BES method was used to simulate energy flow inside the poultry house. Based on the BES method and THI concept, degree of thermal stress of poultry was evaluated according to the locations in South Korea. Comparison of THI values within the poultry house was also carried out according to the stocking densities to reflect recent animal-welfare issue. Significant decrease in thermal stress of poultry was observed when the stocking density of $30kg/m^2$ was applied in the change of the seasons(p<0.05) however, there was no statistically significant difference in summer season(p>0.05). It meant that installation of proper cooling system is urgently needed. For Iksan city of Jeollabuk-do province, total 252 hours of profit for thermal stress was found according to decrease in the stocking density.

가축 사육 시설 내부의 온도, 습도 등과 같은 미기상 요소는 환기, 냉방, 난방, 단열, 가축의 현열 및 잠열과 같은 에너지 발생 등 다양한 요소의 복합적인 영향을 받는다. 본 연구에서는 위와 같은 다양한 변수에 따른 시설 내부의 에너지 흐름 및 기작을 구현하기 위하여 BES 수치해석 기법을 활용하였다. BES 수치해석 모델 및 THI 지수 개념을 이용하여 국내 주요 지역별 가금 사육 시설 내부의 고온 스트레스 발생 정도를 정량적으로 산정하고자 하였다. 또한, 최근 동물복지 사육이슈에 따라, 현행 기준 및 동물복지를 고려한 사육 밀도 적용 시, 시설 내부의 THI 지수를 비교 분석하였으며, 그 결과, 환절기 시기의 경우 사육밀도 감소에 따른 유의한 고온 스트레스 감소 효과가 도출되었으나(p<0.05), 하절기의 경우 큰 차이를 보이지 않아(p>0.05) 지역별 적정 냉방시설의 설비 마련이 시급한 것으로 나타났다. 전라북도 익산시의 경우, 사육밀도 감소에 따라 고온 스트레스 발생 시간 기준, 총 252시간의 이득이 있는 것으로 산출되었다.

Keywords

SHGSCZ_2019_v20n1_456_f0001.png 이미지

Fig. 1. BES computed THI trends according to stocking densities(2.∼7. Aug., 2017, Iksan, Jeollabuk-do)

SHGSCZ_2019_v20n1_456_f0002.png 이미지

Fig. 2. BES computed hours over THI threshold at (a) Anseong and (b) Jeju according to period

SHGSCZ_2019_v20n1_456_f0003.png 이미지

Fig. 3. BES computed THI according to stocking density at Iksan

Table 1. Designed rearing periods

SHGSCZ_2019_v20n1_456_t0001.png 이미지

Table 2. Designed stocking densities

SHGSCZ_2019_v20n1_456_t0002.png 이미지

Table 3. BES computed Hours and its ratio over THI threshold according to research area and stocking densities

SHGSCZ_2019_v20n1_456_t0003.png 이미지

References

  1. Korea Meteorological Administration. [Internet]. KMA, c2018, Available From : http://www.kma.go.kr. (accessed Sep., 11, 2018)
  2. Korea Meteorological Administration. Report of prediction climate change in Korea [Internet]. KMA, c2016 Available From : http://www.kma.go.kr. (accessed Sep., 11, 2018)
  3. Ministry of Agriculture, Food and Rural Affairs. [Internet]. MAFRA, c2018, Available From : http://www.mafra.go.kr. (accessed Sep., 15, 2018)
  4. National Institute of Animal Science, Livestock Statistics 3.0 [Internet]. NIAS, c2018, Available From : http://www.nias.go.kr/30/1803.pdf. (accessed Sep., 15, 2018)
  5. D. J. Franco-Jimenez, S. E. Scheideler, R. J. Kittok, T. M. Brown-Brandl, L. R. Robeson, H. Taira, M. M. Beck, "Differential effects of heat stress in three strains of laying hens", Poulty Science, Vol.16, No.4, pp628-634, 2007. DOI: https://doi.org/10.3382/japr.2005-00088
  6. E. Tumova, R. M. Gpus, "Interaction of hen production type, age, and temperature on laying pattern and egg quality", Poultry Science, Vol.91, No.5, pp. 1269-1275, 2012. DOI: https://doi.org/10.3382/ps.2011-01951
  7. NRC, A guide to environmental research on animals. National Academy of Science, 1971.
  8. S. Dikmen, P. J. Hansen, "Is the temperature-humidity index the best indicator of heat stress in lactating dairy cows in a subtropical environment?", Journal of Dairy Science, Vol.92, pp. 109-116, 2009. DOI: https://doi.org/10.3168/jds.2008-1370
  9. N. R. St-Pierre, B. Cobanov, G. Schnitkey, "Economic losses from heat stress by US livestock industries", Journal of Dairy Science, Vol.86, pp. 52-77, 2003. https://doi.org/10.3168/jds.S0022-0302(03)73583-8
  10. R. J. Collier, R. B. Zimbelman, R. P. Rhoads, M. L. Rhoads, L. H. Baumgard, "A re-evaluation of the impact of temperature humidity index (THI) and black globe humidity index (BGHI) on milk production in high producing dairy cows", Western Dairy Management Conference, pp. 113-125, 2011.
  11. National Institute of Animal Science. [Internet]. NIAS, c2016, Available From : http://www.nias.go.kr. (accessed Sep., 11, 2018)
  12. T. Ha, K. S. Kwon, S. W. Hong, H. C. Choi, J. Y. Lee, D. H. Lee, S. Woo, K. Y. Yang, R. W. Kim, U. H. Yeo, S. Lee, I. B. Lee, "Estimation of THI index to evaluate thermal stress of animal-occupied zone in a broiler house using BES method", Journal of the Korean Society of Agricultural Engineers, Vol.60, No.2, pp. 75-84, 2018. DOI: https://doi.org/10.5389/KSAE.2018.60.2.075
  13. Statistics Korea, [Internet]. KOSTA, c2018, Available From : http://www.kosta.go.kr. (accessed Sep., 16, 2018)
  14. J. C. Jang, E. C. Kang, E. J. Lee, "Peak cooling and heating load and energy simulation study for a special greenhouse facility", Journal of the Korean Solar Energy Society, Vol.29, No.1, pp. 72-76., 2009.
  15. E. Alvarez-Sanchez, G. Leyva-Retureta, E. Portilla-Flores, A. Lopez-Velazquez, "Evaluation of thermal behavior for an asymmetric greenhouse by means of dynamic simulations", DYNA, Vol.81, No.188, pp. 152-159, 2014. DOI: http://dx.doi.org/10.15446/dyna.v81n188.41338
  16. T. Ha, I. B. Lee, K. S. Kwon, S. W. Hong, "Computational and field experiment validation of greenhouse energy load using building energy simulation model", International Journal of Agricultural and Biological Engineering, Vol.8, No.6, pp. 116-127, 2015. DOI: https://doi.org/10.3965/j.ijabe.20150806.2037
  17. S. Pedersen, K. Sallvik. 4TH Report of Working Group on Climatization of Animal Houses, CIGR, Hoprsens, 2002.
  18. J. S. Yoo. New feeding and management for the production of poultry farming. Kyeheung Publishers, 2009.
  19. Ministry of Agriculture, Food and Rural Affairs. [Internet]. MAFRA, c2018, Available From : http://www.law.go.kr/lsInfoP.do?lsiSeq=188696#0000. (accessed Sep., 1, 2018)
  20. Ministry of Agriculture, Food and Rural Affairs. [Internet]. MAFRA, c2018, Available From : http://www.law.go.kr/lsInfoP.do?lsiSeq=202855&efYd=20180921#0000. (accessed Sep., 1, 2018)