참고문헌
- 김세영, 강민정, 윤성혜 (2017). 대학수업에서 적용된 플립러닝의 만족도에 대한 학업적 자기조절, 자기결정성 동기, 몰입의 예측력. 학습자중심교과교육연구, 17(5), 91-109.
- 김연순, 정현미 (2013). Merrill의 수업기본원리를 적용한 면대면 수업의 설계 및 효과. 교육공학연구, 29(3), 599-636.
- 김윤영, 정현미 (2017). 수업기본원리를 적용한 플립드 러닝의 설계 및 효과. 교육공학연구, 33(2), 295-326.
- 박수홍, 정주영, 류영호 (2008). 창의적 공학교육을 위한 캡스톤 디자인(Capstone Design) 교수활동지원모형 개발. 수산해양교육연구, 20(2), 184-200.
- 박신영, 이윤소, 김경언, 강승찬 (2018). 공과대학생의 창의공학설계능력 교육요구도 분석. 공학교육연구, 21(2), 7-16. https://doi.org/10.18108/JEER.2018.21.2.7
- 여성공학인재 양성 사업 공통연계기능 (2018). WE Teaching UP: 창의적인 공학인재 양성을 위한 세 가지 교수법. 서울: 여성공학인재 양성 사업 공통연계기능.
- 여형석, 박영택 (2017). 플립드 러닝과 마인드 원더링이 아이디어 창출에 미치는 영향: SIT와 BCC의 활용을 중심으로. 공학교육연구, 20(5), 23-33. https://doi.org/10.18108/JEER.2017.20.5.23
- 이성혜 (2016). 대학생이 지각하는 Merrill의 제1교수원리가 수업에 적용된 정도가 학습자의 인지적 참여에 미치는 영향. 교육공학연구, 30(1), 77-103.
- 이예경, 윤순경 (2017). 학습자의 경험 분석을 통한 플립 러닝의 재해석. 공학교육연구, 20(1), 53-62.
- 임경화, 안정현 (2016). 공학생의 문제해결력 향상을 위한 질문생성 전략 활용 플립러닝 수업 설계. 한국실천공학교육학회논문지, 8(2), 75-81.
- 정성희, 곽민정 (2017). 이공계형 플립러닝 모델이 학습자 인식, 자율성, 수업 흥미도 향상에 미치는 연구. 학습자중심교과 교육연구, 17(2), 353-376.
- 장은정, 최명숙 (2017). 대학 플립드 러닝 수업에 대한 전문대학생의 온라인-오프라인 학습 인식 분석. 교육정보미디어연구, 23(4), 891-917.
- 최정빈, 강승찬 (2016). 성공적인 Flipped Learning을 위한 수업컨설팅 요소 및 절차 연구. 공학교육연구, 19(2), 76-82. https://doi.org/10.18108/JEER.2016.19.2.76
- 최정빈, 김은경 (2015). 공과대학의 Flipped Learning 교수학습 모형 개발 및 교과운영사례. 공학교육연구, 18(2), 77-88.
- 한형종, 임철일, 한송이, 박진우 (2015). 대학 역전학습 온,오프라인 연계 설계전략에 관한 연구. 교육공학연구, 31(1), 1-38.
- 허준영, 한수민 (2016). 공학전공기초실습에 플립러닝 적용사례. 한국실천공학교육학회논문지, 8(2), 83-89.
- Bates, S. P., & Galloway, R. K. (2012). The inverted classroom: what it is, why we need it and what it might look like. Keynote at the EUSA Inspiring Teaching Conference 25th Jan 2012, University of Edinburgh. [Accessed 6 November 2018] Retrieved from https://prezi.com/nq9s0cxfamkt/the-invertedclassroom-what-it-is-why-we-need-it-and-what-it-might-look-like/
- Bhatt, R., Tang, C. P., Lee, L. F., & Krovi, V. (2009). A case for scaffolded virtual prototyping tutorial case-studies in engineering education. International Journal of Engineering Education, 25 (1), 84.
- Borrego, M., Newswander, C. B., McNair, L. D., McGinnis, S., & Paretti, M. C. (2009). Using Concept Maps to Assess Interdisciplinary Integration of Green Engineering Knowledge. Advances in Engineering Education, 1 (3). [Electronic source] http://advances.asee.org/wp-content/uploads/vol01/issue03/papers/aee-vol01-issue03-p05.pdf
- Clark, R. M., Besterfield-Sacre, M., Budny, D., Bursic, K. M., Clark, W. W., Norman, B. A., Parker, R. S., Patzer ll, J. F., & Slaughter, J. F. (2016a). Flipping engineering courses: a school wide initiative. Advances in Engineering Education, 5 (3). [Electronic source] Retrieved from http://advances.asee.org/wp-content/uploads/vol05/issue03/Papers/AEE-19-Flipping-Clark-2.pdf
- Clark, R. M., Kaw, A., & Besterfield-Sacre, M. (2016b). Comparing the effectiveness of blended, semi-flipped, and flipped formats in an engineering numerical methods course. Advances in Engineering Education, 5 (3). [Electronic source] Retrieved from http://advances.asee.org/wp-content/uploads/vol05/issue03/Papers/AEE-19-Flipping-Kaw.pdf
- Crawley, E. F., Malmqvist, J., Lucas, W. A., & Brodeur, D. R. (2011, June). The CDIO syllabus v2.0. An updated statement of goals for engineering education. In Proceedings of 7th International CDIO Conference, Copenhagen, Denmark.
- Dianna, L. N., Kenneth, A. C., Meghan, M. D., & Jessica, M. L. (2013). Flipping STEM Learning: Impact on Students' Process of Learning and Faculty Instructional Activities. Promoting Active Learning through the Flipped Classroom Model, IGI Global, 113-131.
- Fosmire, M., & Radcliffe, D. F. (2013). Integrating information into the engineering design process. Purdue University Press.
- Honken, N., Ralston, P. A., & Tretter, T. R. (2016). Self-control and academic performance in engineering. American Journal of Engineering Education, 7 (2). [Electronic source] Retrieved from https://www.cluteinstitute.com/ojs/index.php/AJEE/article/view/9831/9925
- Hoffman, E. S. (2014). Beyond the flipped classroom: Redesigning a research methods course for e3 instruction. Contemporary Issues in Education Research (Online), 7 (1), 51. https://doi.org/10.19030/cier.v7i1.8312
- Jonassen, D. H. (1997). Instructional design models for well-structured and III-structured problem-solving learning outcomes. Educational Technology Research and Development, 45 (1), 65-94. https://doi.org/10.1007/BF02299613
- Kong, S. C. (2014). Developing information literacy and critical thinking skills through domain knowledge learning in digital classrooms: An experience of practicing flipped classroom strategy. Computers & Education, 78, 160-173. https://doi.org/10.1016/j.compedu.2014.05.009
- Lo, C. K., & Hew, K. F. (2017). Using "First Principles of Instruction" to designed secondary school mathematics flipped classroom: The findings of two exploratory studies. Educational Technology & Society, 20 (1), 222-236.
- Merrill, M. D. (2012). First principles of instruction. San Fransisco: John Wiley & Sons.
- Mok, H. N. (2014). Teaching tip: The flipped classroom. Journal of Information Systems Education, 25 (1). [Electronic source] Retrieved from http://ink.library.smu.edu.sg/cgi/viewcontent.cgi?article=3363&context=sis_research
- Moreno, R., Reisslein, M., & Ozogul, G. (2009). Optimizing worked‐example instruction in electrical engineering: The role of fading and feedback during problem‐solving practice. Journal of Engineering Education, 98 (1), 83-92. https://doi.org/10.1002/j.2168-9830.2009.tb01007.x
- Newman, D. L., Deyoe, M. M., Connor, K. A., & Lamendola, J. M. (2014). Flipping STEM Learning: Impact on Students' Process of Learning and Faculty Instructional Activities In Keengwe, J., Onchwan, G., & Oigara, J. N. (Eds.), Promoting Active Learning through the Flipped Classroom Model (pp. 113-131). IGI Global.
- Ozaltin, N. O., Besterfield-Sacre, M., & Clark, R. M. (2015). An Engineering Educator's Decision Support Tool for Improving Innovation in Student Design Projects. Advances in Engineering Education, 4 (4). [Electronic source] Retrieved from http://advances.asee.org/wp-content/uploads/vol04/issue04/Papers/AEE-16-Ozaltin.pdf
- Schrlau, M. G., Stevens, R. J., & Schley, S. (2016). Flipping core courses in the undergraduate mechanical engineering curriculum: Heat transfer. Advances in Engineering Education, 5 (3). [Electronic source] Retrieved from http://advances.asee.org/wp-content/uploads/vol05/issue03/Papers/AEE-19-Flipping-Schrlau.pdf
- The Royal Academy of Engineering (2006). Educating Engineers for the 21st Century: The Industry View. Retrieved from http://www.raeng.org.uk/news/releases/henley/pdf/henley_report.pdf
- Urquiza-Fuentes, J., & Paredes-Velasco, M. (2017). Investigating the effect of realistic projects on students' motivation, the case of Human-Computer interaction course. Computers in Human Behavior, 72, 692-700. https://doi.org/10.1016/j.chb.2016.07.020
- World Economic Forum (2016, January, 21). What are the 10 biggest global challenges?. Retrieved from https://www.weforum.org/agenda/2016/01/what-are-the-10-biggest-global-challenges/. [accessed 6 November 2018].