Applying First Principles of Instruction to Flipped Classroom in Engineering Education: Model and Instructional Strategies

공학교육에서 교수 으뜸원리를 적용한 플립러닝 모델 및 교수 전략에 관한 연구

  • Lim, JiYoung (Department of Educational Technology, Ewha Womans University) ;
  • Kim, Seyoung (Center for Women in Engineering-Undergraduate Leading Program, Ewha Womans University)
  • 임지영 (이화여자대학교 교육공학과) ;
  • 김세영 (이화여자대학교 여성공학인재 양성(WE-UP) 사업단)
  • Received : 2018.08.13
  • Accepted : 2019.01.22
  • Published : 2019.01.31

Abstract

This study aims to suggest a model and instructional strategies for a flipped classroom using First Principles of Instruction in engineering education in order to organize teaching and learning activities in a flipped classroom. For this purpose, the authors analyzed the literature on the flipped classroom in engineering education and on applying First Principles of Instruction in designing flipped classroom. Then, a framework of flipped classroom employing First Principles of Instruction and instructional strategies were suggested. Two experts examined the validity of the model and of the instructional strategies, and the final version was completed reflecting on those feedback. Since engineering education aims to teach procedural knowledge as well as conceptual knowledge, different instructional strategies upon two types of knowledge were presented. The implication of our work is to illustrate the model and tactics for flipped classroom based on the Merrill's deeply rooted pedagogical approach. This study may contribute to practice in engineering education.

Keywords

References

  1. 김세영, 강민정, 윤성혜 (2017). 대학수업에서 적용된 플립러닝의 만족도에 대한 학업적 자기조절, 자기결정성 동기, 몰입의 예측력. 학습자중심교과교육연구, 17(5), 91-109.
  2. 김연순, 정현미 (2013). Merrill의 수업기본원리를 적용한 면대면 수업의 설계 및 효과. 교육공학연구, 29(3), 599-636.
  3. 김윤영, 정현미 (2017). 수업기본원리를 적용한 플립드 러닝의 설계 및 효과. 교육공학연구, 33(2), 295-326.
  4. 박수홍, 정주영, 류영호 (2008). 창의적 공학교육을 위한 캡스톤 디자인(Capstone Design) 교수활동지원모형 개발. 수산해양교육연구, 20(2), 184-200.
  5. 박신영, 이윤소, 김경언, 강승찬 (2018). 공과대학생의 창의공학설계능력 교육요구도 분석. 공학교육연구, 21(2), 7-16. https://doi.org/10.18108/JEER.2018.21.2.7
  6. 여성공학인재 양성 사업 공통연계기능 (2018). WE Teaching UP: 창의적인 공학인재 양성을 위한 세 가지 교수법. 서울: 여성공학인재 양성 사업 공통연계기능.
  7. 여형석, 박영택 (2017). 플립드 러닝과 마인드 원더링이 아이디어 창출에 미치는 영향: SIT와 BCC의 활용을 중심으로. 공학교육연구, 20(5), 23-33. https://doi.org/10.18108/JEER.2017.20.5.23
  8. 이성혜 (2016). 대학생이 지각하는 Merrill의 제1교수원리가 수업에 적용된 정도가 학습자의 인지적 참여에 미치는 영향. 교육공학연구, 30(1), 77-103.
  9. 이예경, 윤순경 (2017). 학습자의 경험 분석을 통한 플립 러닝의 재해석. 공학교육연구, 20(1), 53-62.
  10. 임경화, 안정현 (2016). 공학생의 문제해결력 향상을 위한 질문생성 전략 활용 플립러닝 수업 설계. 한국실천공학교육학회논문지, 8(2), 75-81.
  11. 정성희, 곽민정 (2017). 이공계형 플립러닝 모델이 학습자 인식, 자율성, 수업 흥미도 향상에 미치는 연구. 학습자중심교과 교육연구, 17(2), 353-376.
  12. 장은정, 최명숙 (2017). 대학 플립드 러닝 수업에 대한 전문대학생의 온라인-오프라인 학습 인식 분석. 교육정보미디어연구, 23(4), 891-917.
  13. 최정빈, 강승찬 (2016). 성공적인 Flipped Learning을 위한 수업컨설팅 요소 및 절차 연구. 공학교육연구, 19(2), 76-82. https://doi.org/10.18108/JEER.2016.19.2.76
  14. 최정빈, 김은경 (2015). 공과대학의 Flipped Learning 교수학습 모형 개발 및 교과운영사례. 공학교육연구, 18(2), 77-88.
  15. 한형종, 임철일, 한송이, 박진우 (2015). 대학 역전학습 온,오프라인 연계 설계전략에 관한 연구. 교육공학연구, 31(1), 1-38.
  16. 허준영, 한수민 (2016). 공학전공기초실습에 플립러닝 적용사례. 한국실천공학교육학회논문지, 8(2), 83-89.
  17. Bates, S. P., & Galloway, R. K. (2012). The inverted classroom: what it is, why we need it and what it might look like. Keynote at the EUSA Inspiring Teaching Conference 25th Jan 2012, University of Edinburgh. [Accessed 6 November 2018] Retrieved from https://prezi.com/nq9s0cxfamkt/the-invertedclassroom-what-it-is-why-we-need-it-and-what-it-might-look-like/
  18. Bhatt, R., Tang, C. P., Lee, L. F., & Krovi, V. (2009). A case for scaffolded virtual prototyping tutorial case-studies in engineering education. International Journal of Engineering Education, 25 (1), 84.
  19. Borrego, M., Newswander, C. B., McNair, L. D., McGinnis, S., & Paretti, M. C. (2009). Using Concept Maps to Assess Interdisciplinary Integration of Green Engineering Knowledge. Advances in Engineering Education, 1 (3). [Electronic source] http://advances.asee.org/wp-content/uploads/vol01/issue03/papers/aee-vol01-issue03-p05.pdf
  20. Clark, R. M., Besterfield-Sacre, M., Budny, D., Bursic, K. M., Clark, W. W., Norman, B. A., Parker, R. S., Patzer ll, J. F., & Slaughter, J. F. (2016a). Flipping engineering courses: a school wide initiative. Advances in Engineering Education, 5 (3). [Electronic source] Retrieved from http://advances.asee.org/wp-content/uploads/vol05/issue03/Papers/AEE-19-Flipping-Clark-2.pdf
  21. Clark, R. M., Kaw, A., & Besterfield-Sacre, M. (2016b). Comparing the effectiveness of blended, semi-flipped, and flipped formats in an engineering numerical methods course. Advances in Engineering Education, 5 (3). [Electronic source] Retrieved from http://advances.asee.org/wp-content/uploads/vol05/issue03/Papers/AEE-19-Flipping-Kaw.pdf
  22. Crawley, E. F., Malmqvist, J., Lucas, W. A., & Brodeur, D. R. (2011, June). The CDIO syllabus v2.0. An updated statement of goals for engineering education. In Proceedings of 7th International CDIO Conference, Copenhagen, Denmark.
  23. Dianna, L. N., Kenneth, A. C., Meghan, M. D., & Jessica, M. L. (2013). Flipping STEM Learning: Impact on Students' Process of Learning and Faculty Instructional Activities. Promoting Active Learning through the Flipped Classroom Model, IGI Global, 113-131.
  24. Fosmire, M., & Radcliffe, D. F. (2013). Integrating information into the engineering design process. Purdue University Press.
  25. Honken, N., Ralston, P. A., & Tretter, T. R. (2016). Self-control and academic performance in engineering. American Journal of Engineering Education, 7 (2). [Electronic source] Retrieved from https://www.cluteinstitute.com/ojs/index.php/AJEE/article/view/9831/9925
  26. Hoffman, E. S. (2014). Beyond the flipped classroom: Redesigning a research methods course for e3 instruction. Contemporary Issues in Education Research (Online), 7 (1), 51. https://doi.org/10.19030/cier.v7i1.8312
  27. Jonassen, D. H. (1997). Instructional design models for well-structured and III-structured problem-solving learning outcomes. Educational Technology Research and Development, 45 (1), 65-94. https://doi.org/10.1007/BF02299613
  28. Kong, S. C. (2014). Developing information literacy and critical thinking skills through domain knowledge learning in digital classrooms: An experience of practicing flipped classroom strategy. Computers & Education, 78, 160-173. https://doi.org/10.1016/j.compedu.2014.05.009
  29. Lo, C. K., & Hew, K. F. (2017). Using "First Principles of Instruction" to designed secondary school mathematics flipped classroom: The findings of two exploratory studies. Educational Technology & Society, 20 (1), 222-236.
  30. Merrill, M. D. (2012). First principles of instruction. San Fransisco: John Wiley & Sons.
  31. Mok, H. N. (2014). Teaching tip: The flipped classroom. Journal of Information Systems Education, 25 (1). [Electronic source] Retrieved from http://ink.library.smu.edu.sg/cgi/viewcontent.cgi?article=3363&context=sis_research
  32. Moreno, R., Reisslein, M., & Ozogul, G. (2009). Optimizing worked‐example instruction in electrical engineering: The role of fading and feedback during problem‐solving practice. Journal of Engineering Education, 98 (1), 83-92. https://doi.org/10.1002/j.2168-9830.2009.tb01007.x
  33. Newman, D. L., Deyoe, M. M., Connor, K. A., & Lamendola, J. M. (2014). Flipping STEM Learning: Impact on Students' Process of Learning and Faculty Instructional Activities In Keengwe, J., Onchwan, G., & Oigara, J. N. (Eds.), Promoting Active Learning through the Flipped Classroom Model (pp. 113-131). IGI Global.
  34. Ozaltin, N. O., Besterfield-Sacre, M., & Clark, R. M. (2015). An Engineering Educator's Decision Support Tool for Improving Innovation in Student Design Projects. Advances in Engineering Education, 4 (4). [Electronic source] Retrieved from http://advances.asee.org/wp-content/uploads/vol04/issue04/Papers/AEE-16-Ozaltin.pdf
  35. Schrlau, M. G., Stevens, R. J., & Schley, S. (2016). Flipping core courses in the undergraduate mechanical engineering curriculum: Heat transfer. Advances in Engineering Education, 5 (3). [Electronic source] Retrieved from http://advances.asee.org/wp-content/uploads/vol05/issue03/Papers/AEE-19-Flipping-Schrlau.pdf
  36. The Royal Academy of Engineering (2006). Educating Engineers for the 21st Century: The Industry View. Retrieved from http://www.raeng.org.uk/news/releases/henley/pdf/henley_report.pdf
  37. Urquiza-Fuentes, J., & Paredes-Velasco, M. (2017). Investigating the effect of realistic projects on students' motivation, the case of Human-Computer interaction course. Computers in Human Behavior, 72, 692-700. https://doi.org/10.1016/j.chb.2016.07.020
  38. World Economic Forum (2016, January, 21). What are the 10 biggest global challenges?. Retrieved from https://www.weforum.org/agenda/2016/01/what-are-the-10-biggest-global-challenges/. [accessed 6 November 2018].