Commun. Korean Math. Soc. 34 (2019), No. 1, pp. 351-359

https://doi.org/10.4134/CKMS.c170478 pISSN: 1225-1763 / eISSN: 2234-3024

ON EXTREMALLY DISCONNECTED SPACES VIA $m ext{-STRUCTURES}$

Ahmad Al-Omari, Hanan Al-Saadi, and Takashi Noiri

ABSTRACT. In this paper, we introduce a modification of extremally disconnected spaces which is said to be m-extremally disconnected. And we obtain many characterizations of m-extremally disconnected spaces. The concepts of *-extremally disconnected spaces, *-hyperconnected spaces, and generalized hyperconnectedness are as examples for this paper.

1. Introduction

In this paper, we said a topological space (X,τ) with a minimal structure m_X [11] to be m-extremally disconnected if mCl(U) is open for every open set U of (X,τ) . We obtain many characterizations of m-extremally disconnected spaces. It follows from simple examples that m-extremal disconnectedness and extremal disconnectedness are independent. However, if $m_X = SO(X,\tau)$ or $SPO(X,\tau)$, then the mixed space (X,τ,m_X) is m-extremally disconnected for every topological space (X,τ) . Moreover, if $m_X = \alpha(X,\tau)$, $PO(X,\tau)$ or $BO(X,\tau)$, then (X,τ,m_X) is m-extremally disconnected for every extremally disconnected space (X,τ) . The concepts of *-extremally disconnected spaces, *-hyperconnected spaces, and generalized hyperconnectedness are as examples for this paper. Recently papers [2–5] have introduced some new classes of sets via m-structures.

2. Minimal structures

Definition 2.1. Let X be a nonempty set and $\mathcal{P}(X)$ the power set of X. A subfamily m_X of $\mathcal{P}(X)$ is called a *minimal structure* (briefly m-structure) on X [17] if $\emptyset \in m_X$ and $X \in m_X$. Each member of m_X is said to be m_X -open and the complement of an m_X -open set is said to be m_X -closed.

Definition 2.2. Let (X, τ) be a topological space. A subset A of X is said to be

Received December 14, 2017; Revised March 9, 2018; Accepted March 29, 2018. 2010 Mathematics Subject Classification. Primary 54A05.

 $Key\ words\ and\ phrases.\ m\text{-structure},\ \text{mixed}\ \text{space},\ m\text{-hyperconnected},\ m\text{-extremally}$ disconnected.

- (1) α -open [16] if $A \subset Int(Cl(Int(A)))$,
- (2) semi-open [13] if $A \subset Cl(Int(A))$,
- (3) preopen [15] if $A \subset Int(Cl(A))$,
- (4) b-open [7] if $A \subset Int(Cl(A)) \cup Cl(Int(A))$,
- (5) β -open [1] or semi-preopen [6] if $A \subset Cl(Int(Cl(A)))$.

The family of all α -open (resp. semi-open, preopen, b-open, semi-preopen) sets in (X, τ) is denoted by $\alpha(X)$ (resp. SO(X), PO(X), BO(X), SPO(X)).

Definition 2.3. Let X be a nonempty set and m_X an m-structure on X. For a subset A of X, the m_X -closure of A and the m_X -interior of A are defined in [14] as follows:

- $(1) \operatorname{mCl}(A) = \bigcap \{ F : A \subset F, X \setminus F \in m_X \},\$
- $(2) \operatorname{mInt}(A) = \bigcup \{U : U \subset A, U \in m_X\}.$

Remark 2.4. Let (X, τ) be a topological space and A a subset of X. If $m_X = \tau$ (resp. SO(X), PO(X), BO(X), SPO(X)), then we have

- (1) mCl(A) = Cl(A) (resp. sCl(A), pCl(A), bCl(A), spCl(A)),
- (2) mInt(A) = Int(A) (resp. sInt(A), pInt(A), bInt(A), spInt(A)).

Lemma 2.5 (Maki et al. [14]). Let X be a nonempty set and m_X a minimal structure on X. For subsets A and B of X, the following properties hold:

- (1) $\mathrm{mCl}(X \setminus A) = X \setminus \mathrm{mInt}(A)$ and $\mathrm{mInt}(X \setminus A) = X \setminus \mathrm{mCl}(A)$,
- (2) If $(X \setminus A) \in m_X$, then $\mathrm{mCl}(A) = A$ and if $A \in m_X$, then $\mathrm{mInt}(A) = A$,
- (3) $\mathrm{mCl}(\emptyset) = \emptyset$, $\mathrm{mCl}(X) = X$, $\mathrm{mInt}(\emptyset) = \emptyset$ and $\mathrm{mInt}(X) = X$,
- (4) If $A \subset B$, then $\mathrm{mCl}(A) \subset \mathrm{mCl}(B)$ and $\mathrm{mInt}(A) \subset \mathrm{mInt}(B)$,
- (5) $A \subset \mathrm{mCl}(A)$ and $\mathrm{mInt}(A) \subset A$,
- (6) $\operatorname{mCl}(\operatorname{mCl}(A)) = \operatorname{mCl}(A)$ and $\operatorname{mInt}(\operatorname{mInt}(A)) = \operatorname{mInt}(A)$.

Lemma 2.6 (Popa and Noiri [17]). Let X be a nonempty set with an m-structure m_X and A a subset of X. Then $x \in \mathrm{mCl}(A)$ if and only if $U \cap A \neq \emptyset$ for every $U \in m_X$ containing x.

Definition 2.7. An m-structure m_X on a nonempty set X is said to have property \mathcal{B} [14] if the union of any family of subsets belong to m_X belongs to m_X .

Remark 2.8. Let (X, τ) be a topological space. Then the families $\alpha(X)$, SO(X), PO(X), BO(X) and SPO(X) are m-structures on X with property \mathcal{B} .

Lemma 2.9 (Popa and Noiri [17]). Let X be a nonempty set and m_X an m-structure on X satisfying property \mathcal{B} . For a subset A of X, the following properties hold:

- (1) $A \in m_X$ if and only if mInt(A) = A,
- (2) A is m_X -closed if and only if mCl(A) = A,
- (3) $mInt(A) \in m_X$ and mCl(A) is m_X -closed.

A topological space (X, τ) with an m-structure m_X on X is called a mixed space and is denoted by (X, τ, m_X) .

Definition 2.10. A subset A of a mixed space (X, τ, m_X) is said to be:

- (1) m_X -dense if mCl(A) = X.
- (2) m_X -nowhere dense if $Int(mCl(A)) = \phi$.
- (3) α - m_X -open if $A \subseteq Int(mCl(Int(A)))$.
- (4) semi- m_X -open if $A \subseteq mCl(Int(A))$.
- (5) pre- m_X -open if $A \subseteq Int(mCl(A))$.
- (6) β - m_X -open if $A \subseteq Cl(Int(mCl(A)))$.
- (7) semi- m_X^* -open if $A \subseteq Cl(mInt(A))$.
- (8) strongly- βm_X -open if $A \subseteq mCl(Int(mCl(A)))$.

Lemma 2.11. If $\tau \subseteq m_X$, then every semi- m_X -open set is semi- m_X^* -open.

If $\tau \subseteq m_X$, the following diagram holds:

Lemma 2.12. For a subset A of a mixed space (X, τ, m_X) , the following properties hold:

- (1) A is semi- m_X -open if and only if there exists $B \in \tau$ such that $B \subseteq A \subseteq mCl(B)$.
- (2) If there exists $B \in m_X$ such that $B \subseteq A \subseteq Cl(B)$, then A is semi- m_X^* -open.
- (3) A is semi- m_X^* -open if and only if Cl(A) = Cl(mInt(A)).

3. Characterizations of *m*-extremally disconnected spaces

Definition 3.1. A mixed space (X, τ, m_X) is said to be m-extremally disconnected (resp. m-hyperconnected) if $mCl(A) \in \tau$ (resp. mCl(A) = X) for each $A \in \tau$.

Example 3.2. Let $X = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $m_X = \{X, \phi, \{a\}, \{b\}, \{c\}\}$. Then the topological space (X, τ) is not extremally disconnected and the mixed space (X, τ, m_X) is m-extremally disconnected.

Example 3.3. Let $X = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{b, c\}\}$ and $m_X = \{X, \phi, \{a\}, \{b\}, \{a, c\}\}$. Then the topological space (X, τ) is extremally disconnected and the mixed space (X, τ, m_X) is not m-extremally disconnected.

A subfamily \mathcal{I} of the power set $\mathcal{P}(X)$ of a nonempty set X is called an ideal if the following properties are satisfied: (1) $A \in \mathcal{I}$ and $B \subseteq A$ imply $B \in \mathcal{I}$; (2) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ imply $A \cup B \in \mathcal{I}$. A topological space (X, τ) with an ideal \mathcal{I} on X is called an ideal topological space and is denoted by (X, τ, \mathcal{I}) . For an ideal topological space and a subset A of X, $A^*(\mathcal{I})$ is defined as follows: $A^*(\mathcal{I}) = \{x \in X : U \cap A \notin \mathcal{I} \text{ for every open set } U \text{ containing } x\}$. In [12], $A^*(\mathcal{I})$ (briefly A^*) is called the local function of A with respect to \mathcal{I} and τ

and $Cl^*(A) = A^* \cup A$ defines a Kuratowski closure operator for a topology τ^* which is finer than τ . A subset A is \star -closed if and only if $A^* \subseteq A$. Naturally, the complement of a *-closed set is said to be \star -open. A is said to be *-dense if $Cl^*(A) = X$.

By setting $m_X = \tau^*$, as a special case of Definition 3.1 we obtain the following definitions:

Definition 3.4 ([10]). An ideal space (X, τ, \mathcal{I}) is said to be *-extremally disconnected if the *-closure of every open subset A of X is open.

Definition 3.5 ([11]). An ideal space (X, τ, \mathcal{I}) is said to be *-hyperconnected if A is *-dense for every open subset $A \neq \phi$ of X.

Let X be a nonempty set and let $\mathcal{P}(X)$ be the power set of X. Then $\mu \subseteq \mathcal{P}(X)$ is called a generalized topology (briefly GT) [8] on X if $\emptyset \in \mu$ and $G_i \in \mu$ for $i \in I \neq \emptyset$ implies $G = \bigcup_{i \in I} G_i \in \mu$. We call the pair (X, μ) a generalized topological space (briefly GTS) on X.

For a GTS (X, μ) , the elements of μ are called μ -open sets and the complements of μ -open sets are called μ -closed sets. For $A \subseteq X$, we denote by $c_{\mu}(A)$ the intersection of all μ -closed sets containing A, i.e., the smallest μ -closed set containing A.

By setting $m_X = \mu$, where m_X has property \mathcal{B} , as a special case of Definition 3.1 we obtain the following definition:

Definition 3.6 ([9]). Let (X, μ) be a GTS and G is a subset of X.

- (1) G is said to be μ -dense if $c_{\mu}(G) = X$,
- (2) (X, μ) is said to be hyperconnected if G is μ -dense for every μ -open set $G \neq \phi$ of (X, μ) .

Lemma 3.7. Let (X, τ, m_X) be a mixed space. Then, the following properties hold:

- (1) If X is m-hyperconnected, then X is m-extremally disconnected.
- (2) If $m_X = SO(X, \tau)$ or $SPO(X, \tau)$, then (X, τ, m_X) is m-extremally disconnected.
- (3) Let (X, τ) be extremally disconnected. If $m_X = \alpha(X)$, $PO(X, \tau)$ or $BO(X, \tau)$, then (X, τ, m_X) is m-extremally disconnected.

Proof. (1) This is obvious.

- (2) It is known in [3] that $sCl(A) = A \cup Int(Cl(A))$ and $spCl(A) = A \cup Int(Cl(Int(A)))$ for every subset A of X. Therefore, sCl(V) and spCl(V) are open for every open set V and hence (X, τ, m_X) is m-extremally disconnected for $m_X = SO(X, \tau)$ or $SPO(X, \tau)$.
- (3) It is known in [3] and [5] that $\alpha(A) = A \cup Cl(Int(Cl(A)))$, $pCl(A) = A \cup Cl(Int(A))$ and $bCl(A) = sCl(A) \cap pCl(A)$ for every subset A of X. Therefore, $\alpha(V)$, pCl(V) and bCl(V) are open for every open set V of an extremally disconnected space (X, τ) and hence (X, τ, m_X) is m-extremally disconnected for $m_X = \alpha(X, \tau)$, $PO(X, \tau)$, or $BO(X, \tau)$.

The following example shows that the converse of each statement of Lemma 3.7 are not true.

Example 3.8. Consider the mixed space (X, τ, m_X) , where $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{a\}\}$ and $m_X = \{\phi, \{a\}, \{a, c\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}$. If $A = \{a\}$, then A is open and $mCl(A) = \{a\} \neq X$. Hence (X, τ, m_X) is not m-hyperconnected. Since m_X -closure of every open set is open, X is m-extremally disconnected. Moreover, since $\{b, d\}$ is not β -open, m_X is not $SPO(X, \tau)$.

Theorem 3.9. Let (X, τ, m_X) be a mixed space, the following properties are equivalent:

- (1) X is m-extremally disconnected;
- (2) mInt(A) is closed for every closed subset A of X;
- (3) $mCl(Int(A)) \subseteq Int(mCl(A))$ for every subset A of X;
- (4) Every semi- m_X -open set is pre- m_X -open;
- (5) $mCl(A) \in \tau$ for every strongly- βm_X -open set A;
- (6) Every strongly- βm_X -open set is pre- m_X -open;
- (7) A is α -m_X-open if and only if it is semi-m_X-open for every $A \subseteq X$.
- *Proof.* (1) \Rightarrow (2): Let A be a closed set in X. Then X A is open. By (1) mCl(X A) = X mInt(A) is open. Thus, mInt(A) is closed.
- $(2) \Rightarrow (3)$: Let A be any set of X. Then X Int(A) is closed in X and by (2) mInt[X Int(A)] is closed in X. Therefore, mCl(Int(A)) is open in X and hence $mCl(Int(A)) \subseteq Int(mCl(A))$.
- $(3) \Rightarrow (4)$: Let A be semi- m_X -open. By (3), we have $A \subseteq mCl(Int(A)) \subseteq Int(mCl(A))$. Thus, A is pre- m_X -open.
- $(4) \Rightarrow (5)$: Let A be a strongly- βm_X -open set. Then mCl(A) is semi- m_X -open. By (4), mCl(A) is pre- m_X -open. Thus, $mCl(A) \subseteq Int(mCl(A))$ and hence mCl(A) is open.
- $(5) \Rightarrow (6)$: Let A be a strongly- βm_X -open set. By (5), mCl(A) = Int(mCl(A)). Thus, $A \subseteq mCl(A) = Int(mCl(A))$ and hence A is pre- m_X -open.
- $(6) \Rightarrow (7)$: Let A be a semi- m_X -open set. Since a semi- m_X -open set is strongly- βm_X -open, then by (6) it is pre- m_X -open. Since A is semi- m_X -open and pre- m_X -open, it is α - m_X -open.
- $(7)\Rightarrow (1)$: Let A be an open set of X. Then mCl(A) is semi- m_X -open and by (7) mCl(A) is α - m_X -open. Therefore, $mCl(A)\subseteq Int(mCl(Int(mCl(A))))=Int(mCl(A))$ and hence mCl(A)=Int(mCl(A)). Hence mCl(A) is open and X is m-extremally disconnected.

Corollary 3.10. Let (X, τ, m_X) be a mixed space. Then, the following properties are equivalent:

- (1) X is m-extremally disconnected;
- (2) $mCl(A) \in \tau$ for every α - m_X -open set A of X;
- (3) $mCl(A) \in \tau$ for every semi- m_X -open set A of X;

(4) $mCl(A) \in \tau$ for every pre- m_X -open set A of X.

Proof. This follows from Theorem 3.9 and Diagram.

Theorem 3.11. Let (X, τ, m_X) be a mixed space and m_X have property \mathcal{B} . Then, the following properties are equivalent:

- (1) X is m-extremally disconnected;
- (2) For any $A \in \tau$ and $B \in m_X$ such that $A \cap B = \phi$, there exist disjoint a m_X -closed set U and a closed set V such that $A \subseteq U$ and $B \subseteq V$;

- (3) $mCl(U) \cap Cl(V) = \phi$ for every $U \in \tau$ and $V \in m_X$ with $U \cap V = \phi$;
- (4) $mCl[Int(mCl(U))] \cap Cl(V) = \phi$ for every $U \subseteq X$ and $V \in m_X$ with $U \cap V = \phi$.
- *Proof.* (1) \Rightarrow (2): Let X be m-extremally disconnected. Let A and B be two disjoint open and m_X -open sets, respectively. Then mCl(A) and X mCl(A) are disjoint m_X -closed and closed sets containing A and B, respectively.
- (2) \Rightarrow (3): Let $U \in \tau$ and $V \in m_X$ with $U \cap V = \phi$. By (2), there exist disjoint an m_X -closed set F and a closed set G such that $U \subseteq F$ and $V \subseteq G$. Therefore, $mCl(U) \cap Cl(V) \subseteq F \cap G = \phi$. Thus, $mCl(U) \cap Cl(V) = \phi$.
- $(3) \Rightarrow (4)$: Let $U \subseteq X$ and $V \in m_X$ with $U \cap V = \phi$. Since $Int(mCl(U)) \in \tau$ and $Int(mCl(U)) \cap V = \phi$, by $(3) \ mCl[Int(mCl(U))] \cap Cl(V) = \phi$.
- $(4) \Rightarrow (1)$: Let U be any open set. Then $[X mCl(U)] \cap U = \phi$. Since m_X has property $\mathcal{B}, X mCl(U) \in m_X$ and by $(4) \ mCl(Int(mCl(U))) \cap Cl(X mCl(U)) = \phi$. Since $U \in \tau$, we have $mCl(U) \cap [X Int(mCl(U))] = \phi$. Therefore, $mCl(U) \subseteq Int(mCl(U))$ and mCl(U) is open. This shows that X is m-extremally disconnected.

Definition 3.12. A subset A of a mixed space (X, τ, m_X) is called an R_m -open set if A = Int(mCl(A)). The complement of an R_m -open set is said to be R_m -closed.

Theorem 3.13. Let (X, τ, m_X) be a mixed space and m_X have property \mathcal{B} . Then, the following properties are equivalent:

- (1) X is m-extremally disconnected;
- (2) Every R_m -open set of X is m_X -closed in X;
- (3) Every R_m -closed set of X is m_X -open in X.

Proof. (1) \Rightarrow (2): Let X be m-extremally disconnected. Let A be an R_m -open set of X. Then A = Int(mCl(A)). Since A is an open set, then mCl(A) is open. Thus, A = Int(mCl(A)) = mCl(A) and hence A is m_X -closed.

 $(2) \Rightarrow (1)$: Suppose that every R_m -open subset of X is m_X -closed in X. Let A be an open subset of X. Since Int(mCl(A)) is R_m -open, then it is m_X -closed. This implies that $mCl(A) \subseteq mCl(Int(mCl(A))) = Int(mCl(A))$ since $A \subseteq Int(mCl(A))$. Thus, mCl(A) is open and hence X is m-extremally disconnected.

((2)) ((3)):	It	is	obvious.

Theorem 3.14. Let (X, τ, m_X) be a mixed space. Then the following properties are equivalent:

- (1) X is m-extremally disconnected;
- (2) $mCl(A) \in \tau$ for every R_m -open set A of X.
- *Proof.* (1) \Rightarrow (2): Let A be an R_m -open set of X. Then A is open and $mCl(A) \in \tau$.
- $(2) \Rightarrow (1)$: Suppose that $mCl(A) \in \tau$ for every R_m -open set A of X. Let V be any open set of X. Then Int(mCl(V)) is an R_m -open set and $mCl(V) = mCl(Int(mCl(V))) \in \tau$. Thus $mCl(V) \in \tau$ and hence X is m-extremally disconnected.

Theorem 3.15. Let (X, τ, m_X) be a mixed space and m_X have property \mathcal{B} . Then, the following properties are equivalent:

- (1) X is m-extremally disconnected;
- (2) If A is semi- m_X -open, B is semi- m_X^* -open and $A \cap B = \phi$, then $mCl(A) \cap Cl(B) = \phi$.
- Proof. (1) \Rightarrow (2): Let A be semi- m_X -open, B semi- m_X^* -open and $A \cap B = \phi$. Since m_X is property \mathcal{B} , mInt(B) is m_X -open and $mCl(A) \cap mInt(B) = \phi$. By Corollary 3.10, mCl(A) is open and $mCl(A) \cap Cl(mInt(B)) = \phi$. Since B is semi- m_X^* -open, Cl(B) = Cl(mInt(B)) and hence $mCl(A) \cap Cl(B) = \phi$.
- (2) \Rightarrow (1): Let A be a semi- m_X -open set. Since A and X mCl(A) are disjoint semi- m_X -open and semi- m_X^* -open, respectively, by (2) we have $mCl(A) \cap Cl[X mCl(A)] = \phi$. This implies that $mCl(A) \subseteq Int(mCl(A))$. Thus mCl(A) is open. Hence, by Corollary 3.10, X is m-extremally disconnected.
- **Theorem 3.16.** Let (X, τ, m_X) be a mixed space and m_X have property \mathcal{B} . Then X is m-extremally disconnected if and only if for every open set G and every m_X -closed set F with $G \subseteq F$, there exist an open set G_1 and an m_X -closed set F_1 such that $G \subseteq F_1 \subseteq G_1 \subseteq F$.

Proof. Suppose X is m-extremally disconnected. Let G be an open set and F an m_X -closed set in X such that $G \subseteq F$. Then $G \cap (X - F) = \phi$. Then by Theorem 3.11 $mCl(G) \cap Cl(X - F) = \phi$, that is, $mCl(G) \subseteq X - Cl(X - F)$. Using the fact that $X - Cl(X - F) \subseteq F$ and writing $mCl(G) = F_1$, $X - Cl(X - F) = G_1$, we get $G \subseteq F_1 \subseteq G_1 \subseteq F$.

Conversely, let the condition hold. Let U be an open set and V be an m_X -open set in X such that $U \cap V = \phi$. Then, $U \subseteq X - V$ and X - V is m_X -closed. Accordingly, there exist an open set G and an m_X -closed set F such that $U \subseteq F \subseteq G \subseteq X - V$. This implies that $mCl(U) \cap X - [Int(X - V)] = \phi$. But X - [Int(X - V)] = Cl(V). That is, $mCl(U) \cap Cl(V) = \phi$ and by Theorem 3.11 X is m-extremally disconnected.

Definition 3.17. Let (X, τ, m_X) be a mixed space and R be the real line with the usual topology. A mapping $f: X \to R$ is said to be upper semicontinuous

or u.s.c. in brief (resp. lower minimal semi-continuous or l.m.s.c. in brief) if for each $a \in R$, the set $\{x : x \in X, f(x) < a\}$ is open (resp. $\{x : x \in X, f(x) > a\}$ is m_X -open).

Theorem 3.18. Let (X, τ, m_X) be an m-extremally disconnected mixed space and m_X have property \mathcal{B} . Let U be an open set, V be an m_X -open set in X such that $U \cap V = \phi$. Then there exists a real-valued u.s.c. and l.m.s.c. mapping $f: X \to [0,1]$ such that $f(U) = \{0\}$ and $f(V) = \{1\}$.

Proof. Since $U \subseteq X - V$, by Theorem 3.16, there exist an open set $G_{1/2}$ and an m_X -closed set $F_{1/2}$ such that $U \subseteq F_{1/2} \subseteq G_{1/2} \subseteq X - V$. Again, since $U \subseteq F_{1/2}$ and $G_{1/2} \subseteq X - V$, by the same reasoning, there exist open sets $G_{1/4}$, $G_{3/4}$ and m_X -closed sets $F_{1/4}$, $F_{3/4}$ such that

$$U \subseteq F_{1/4} \subseteq G_{1/4} \subseteq F_{1/2} \subseteq G_{1/2} \subseteq F_{3/4} \subseteq G_{3/4} \subseteq X - V.$$

We continue this process for each dyadic rational number of the form $t = \frac{m}{2^n}$ (where $n = 1, 2, 3, \ldots$ and $m = 1, 2, \ldots, 2n - 1$). We find that for $t_1 < t_2$, there exist open sets G_{t_1} and G_{t_2} and m_X -closed sets F_{t_1} and F_{t_2} such that

$$U \subseteq F_{t_1} \subseteq G_{t_1} \subseteq F_{t_2} \subseteq G_{t_2} \subseteq X - V.$$

Now, we define a mapping f on X as follows:

$$f(x) = \begin{cases} 0, & x \in G_t \text{ for some } t; \\ \sup\{t : t \notin G_t\}, & \text{otherwise.} \end{cases}$$

Clearly, the values of f lies in [0,1]. Also, $f(U) = \{0\}$ and $f(V) = \{1\}$.

- (1) f is u.s.c.: We show that $f^{-1}([0,a))$ is open for each a, where 0 < a < 1. Let $x \in f^{-1}([0,a))$. Then f(x) < a, hence there must be some dyadic rational t < a such that $x \in G_t$. Thus $f^{-1}([0,a)) \subseteq \cup_{t < a} G_t$. Again, if $x \in \cup_{t < a} G_t$, then $x \in G_{t_0}$ for some $t_0 < a$, so that $x \in f^{-1}([0,a))$. Thus, $f^{-1}([0,a)) = \cup_{t < a} G_t$, which is open. Hence, f is u.s.c.
- (2) f is l.m.s.c.: We show that $f^{-1}((a,1])$ is m_X -open for each a, where 0 < a < 1. Let $y \in f^{-1}((a,1])$. Then there exists a dyadic rational t > a such that $y \notin G_t$. Then $y \notin F_t$. Thus $f^{-1}((a,1]) \subseteq \bigcup_{t>a} (X-F_t)$. Also $y \in X-F_t$ for some t > a implies that $y \notin G_{t_0}$ for some t_0 with $t > t_0 > a$. Hence f(y) > a, that is, $y \in f^{-1}((a,1])$. Thus we get, $f^{-1}((a,1]) = \bigcup_{t>a} (X-F_t)$, which is m_X -open. Hence f is l.m.s.c.

Acknowledgement. The authors wish to thank the referees for useful comments and suggestions.

References

- M. E. Abd El-Monsef, S. N. El-Deeb, and R. A. Mahmoud, β-open sets and β-continuous mapping, Bull. Fac. Sci. Assiut Univ. A 12 (1983), no. 1, 77–90.
- [2] A. Al-Omari, S. Modak, and T. Noiri, On θ -modifications of generalized topologies via hereditary classes, Commun. Korean Math. Soc. 31 (2016), no. 4, 857–868.
- [3] A. Al-Omari and T. Noiri, Local closure functions in ideal topological spaces, Novi Sad J. Math. 43 (2013), no. 2, 139–149.

- [4] A. Al-Omari, T. Noiri, and S. Modak, Paracompact spaces with m-structures, An. Univ. Oradea Fasc. Mat. 24 (2017), no. 1, 155–162.
- [5] A. Al-Omari, T. Noiri, and Mohd. S. Md. Noorani, Weak and strong forms of sTcontinuous functions, Commun. Korean Math. Soc. 30 (2015), no. 4, 493–504.
- [6] D. Andrijević, Semi-preopen sets, Mat. Vesnik 38 (1986), no. 1, 24-32.
- [7] _____, On b-open sets, Mat. Vesnik 48 (1996), no. 1-2, 59-64.
- [8] Á, Császár, Generalized open sets, Acta Math. Hungar. 75 (1997), no. 1-2, 65–87.
- [9] E. Ekici, Generalized hyperconnectedness, Acta Math. Hungar. 133 (2011), no. 1-2, 140-147.
- [10] E. Ekici and T. Noiri, *-extremally disconnected ideal topological spaces, Acta Math. Hungar. 122 (2009), no. 1-2, 81–90.
- [11] ______, *-hyperconnected ideal topological spaces, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 58 (2012), no. 1, 121–129.
- [12] D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly 97 (1990), no. 4, 295–310.
- [13] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36–41.
- [14] H. Maki, K. C. Rao, and A. Nagoor Gani, On generalizing semi-open sets and preopen sets, Pure Appl. Math. Sci. 49 (1999), no. 1-2, 17-29.
- [15] A. S. Mashhour, M. E. Abd El-Monsef, and S. N. El-Deep, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt No. 53 (1982), 47–53 (1983).
- [16] O. Njåstad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961-970.
- [17] V. Popa and T. Noiri, On M-continuous functions, An. Univ. Dunarea de Jos Galati, Ser. Mat. Fiz. Mec. Teor. (2), 18 (2000), 31–41.

Ahmad Al-Omari

AL AL-BAYT UNIVERSITY

FACULTY OF SCIENCES

DEPARTMENT OF MATHEMATICS

P.O. Box 130095, Mafraq 25113, Jordan

Email address: omarimutah1@yahoo.com

Hanan Al-Saadi

UMM AL-QURA UNIVERSITY

FACULTY OF APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS

P.O. Box 11155, Makkah 21955, Saudi Arabia

Email address: hasa112@hotmail.com

Takashi Noiri

2949-1 Shiokita-cho Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142 Japan

 $Email\ address: {\tt t.noiri@nifty.com}$