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ON EXTREMALLY DISCONNECTED SPACES VIA

m-STRUCTURES

Ahmad Al-Omari, Hanan Al-Saadi, and Takashi Noiri

Abstract. In this paper, we introduce a modification of extremally dis-

connected spaces which is said to be m-extremally disconnected. And we
obtain many characterizations of m-extremally disconnected spaces. The

concepts of ∗-extremally disconnected spaces, ∗-hyperconnected spaces,
and generalized hyperconnectedness are as examples for this paper.

1. Introduction

In this paper, we said a topological space (X, τ) with a minimal structure
mX [11] to be m-extremally disconnected if mCl(U) is open for every open set
U of (X, τ). We obtain many characterizations of m-extremally disconnected
spaces. It follows from simple examples that m-extremal disconnectedness and
extremal disconnectedness are independent. However, if mX = SO(X, τ) or
SPO(X, τ), then the mixed space (X, τ,mX) is m-extremally disconnected
for every topological space (X, τ). Moreover, if mX = α(X, τ), PO(X, τ) or
BO(X, τ), then (X, τ,mX) is m-extremally disconnected for every extremally
disconnected space (X, τ). The concepts of ∗-extremally disconnected spaces,
∗-hyperconnected spaces, and generalized hyperconnectedness are as examples
for this paper. Recently papers [2–5] have introduced some new classes of sets
via m-structures.

2. Minimal structures

Definition 2.1. Let X be a nonempty set and P(X) the power set of X. A
subfamily mX of P(X) is called a minimal structure (briefly m-structure) on
X [17] if ∅ ∈ mX and X ∈ mX . Each member of mX is said to be mX-open
and the complement of an mX -open set is said to be mX-closed.

Definition 2.2. Let (X, τ) be a topological space. A subset A of X is said to
be
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(1) α-open [16] if A ⊂ Int(Cl(Int(A))),
(2) semi-open [13] if A ⊂ Cl(Int(A)),
(3) preopen [15] if A ⊂ Int(Cl(A)),
(4) b-open [7] if A ⊂ Int(Cl(A)) ∪ Cl(Int(A)),
(5) β-open [1] or semi-preopen [6] if A ⊂ Cl(Int(Cl(A))).

The family of all α-open (resp. semi-open, preopen, b-open, semi-preopen)
sets in (X, τ) is denoted by α(X) (resp. SO(X), PO(X), BO(X), SPO(X)).

Definition 2.3. Let X be a nonempty set and mX an m-structure on X. For
a subset A of X, the mX-closure of A and the mX-interior of A are defined in
[14] as follows:

(1) mCl(A) = ∩{F : A ⊂ F,X \ F ∈ mX},
(2) mInt(A) = ∪{U : U ⊂ A,U ∈ mX}.

Remark 2.4. Let (X, τ) be a topological space and A a subset of X. If mX =
τ (resp. SO(X), PO(X), BO(X), SPO(X)), then we have

(1) mCl(A) = Cl(A) (resp. sCl(A), pCl(A), bCl(A), spCl(A)),
(2) mInt(A) = Int(A) (resp. sInt(A), pInt(A), bInt(A), spInt(A)).

Lemma 2.5 (Maki et al. [14]). Let X be a nonempty set and mX a minimal
structure on X. For subsets A and B of X, the following properties hold:

(1) mCl(X \A) = X \mInt(A) and mInt(X \A) = X \mCl(A),
(2) If (X \A) ∈ mX , then mCl(A) = A and if A ∈ mX , then mInt(A) = A,
(3) mCl(∅) = ∅, mCl(X) = X, mInt(∅) = ∅ and mInt(X) = X,
(4) If A ⊂ B, then mCl(A) ⊂ mCl(B) and mInt(A) ⊂ mInt(B),
(5) A ⊂ mCl(A) and mInt(A) ⊂ A,
(6) mCl(mCl(A)) = mCl(A) and mInt(mInt(A)) = mInt(A).

Lemma 2.6 (Popa and Noiri [17]). Let X be a nonempty set with an m-
structure mX and A a subset of X. Then x ∈ mCl(A) if and only if U ∩A 6= ∅
for every U ∈ mX containing x.

Definition 2.7. An m-structure mX on a nonempty set X is said to have
property B [14] if the union of any family of subsets belong to mX belongs to
mX .

Remark 2.8. Let (X, τ) be a topological space. Then the families α(X), SO(X),
PO(X), BO(X) and SPO(X) are m-structures on X with property B.

Lemma 2.9 (Popa and Noiri [17]). Let X be a nonempty set and mX an
m-structure on X satisfying property B. For a subset A of X, the following
properties hold:

(1) A ∈ mX if and only if mInt(A) = A,
(2) A is mX-closed if and only if mCl(A) = A,
(3) mInt(A) ∈ mX and mCl(A) is mX-closed.

A topological space (X, τ) with an m-structure mX on X is called a mixed
space and is denoted by (X, τ,mX).
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Definition 2.10. A subset A of a mixed space (X, τ,mX) is said to be:

(1) mX -dense if mCl(A) = X.
(2) mX -nowhere dense if Int(mCl(A)) = φ.
(3) α-mX -open if A ⊆ Int(mCl(Int(A))).
(4) semi-mX -open if A ⊆ mCl(Int(A)).
(5) pre-mX -open if A ⊆ Int(mCl(A)).
(6) β-mX -open if A ⊆ Cl(Int(mCl(A))).
(7) semi-m∗X -open if A ⊆ Cl(mInt(A)).
(8) strongly-βmX -open if A ⊆ mCl(Int(mCl(A))).

Lemma 2.11. If τ ⊆ mX , then every semi-mX-open set is semi-m∗X-open.

If τ ⊆ mX , the following diagram holds:
mX -open semi-mX -open // strongly-βmX -open // β-mX -open

open //

OO

α-mX -open //

OO

pre-mX -open

OO

Lemma 2.12. For a subset A of a mixed space (X, τ,mX), the following
properties hold:

(1) A is semi-mX-open if and only if there exists B ∈ τ such that B ⊆
A ⊆ mCl(B).

(2) If there exists B ∈ mX such that B ⊆ A ⊆ Cl(B), then A is semi-m∗X-
open.

(3) A is semi-m∗X-open if and only if Cl(A) = Cl(mInt(A)).

3. Characterizations of m-extremally disconnected spaces

Definition 3.1. A mixed space (X, τ,mX) is said to be m-extremally discon-
nected (resp. m-hyperconnected) if mCl(A) ∈ τ (resp. mCl(A) = X) for each
A ∈ τ .

Example 3.2. Let X = {a, b, c}, τ = {X,φ, {a}, {b}, {a, b}} and mX =
{X,φ, {a}, {b}, {c}}. Then the topological space (X, τ) is not extremally dis-
connected and the mixed space (X, τ,mX) is m-extremally disconnected.

Example 3.3. Let X = {a, b, c}, τ = {X,φ, {a}, {b, c}} and mX = {X,φ, {a},
{b}, {a, c}}. Then the topological space (X, τ) is extremally disconnected and
the mixed space (X, τ,mX) is not m-extremally disconnected.

A subfamily I of the power set P(X) of a nonempty set X is called an ideal
if the following properties are satisfied: (1) A ∈ I and B ⊆ A imply B ∈ I;
(2) A ∈ I and B ∈ I imply A ∪ B ∈ I. A topological space (X, τ) with an
ideal I on X is called an ideal topological space and is denoted by (X, τ, I).
For an ideal topological space and a subset A of X, A∗(I) is defined as follows:
A∗(I) = {x ∈ X : U ∩ A /∈ I for every open set U containing x}. In [12],
A∗(I) (briefly A∗) is called the local function of A with respect to I and τ
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and Cl∗(A) = A∗ ∪A defines a Kuratowski closure operator for a topology τ∗

which is finer than τ . A subset A is ?-closed if and only if A∗ ⊆ A. Naturally,
the complement of a ∗-closed set is said to be ?-open. A is said to be ∗-dense
if Cl∗(A) = X.

By setting mX = τ∗, as a special case of Definition 3.1 we obtain the fol-
lowing definitions:

Definition 3.4 ([10]). An ideal space (X, τ, I) is said to be ∗-extremally dis-
connected if the ∗-closure of every open subset A of X is open.

Definition 3.5 ([11]). An ideal space (X, τ, I) is said to be ∗-hyperconnected
if A is ∗-dense for every open subset A 6= φ of X.

Let X be a nonempty set and let P(X) be the power set of X. Then
µ ⊆ P(X) is called a generalized topology (briefly GT) [8] on X if ∅ ∈ µ and
Gi ∈ µ for i ∈ I 6= ∅ implies G = ∪i∈IGi ∈ µ. We call the pair (X,µ) a
generalized topological space (briefly GTS) on X.

For a GTS (X,µ), the elements of µ are called µ-open sets and the comple-
ments of µ-open sets are called µ-closed sets. For A ⊆ X, we denote by cµ(A)
the intersection of all µ-closed sets containing A, i.e., the smallest µ-closed set
containing A.

By setting mX = µ, where mX has property B, as a special case of Defini-
tion 3.1 we obtain the following definition:

Definition 3.6 ([9]). Let (X,µ) be a GTS and G is a subset of X.

(1) G is said to be µ-dense if cµ(G) = X,
(2) (X,µ) is said to be hyperconnected if G is µ-dense for every µ-open set

G 6= φ of (X,µ).

Lemma 3.7. Let (X, τ,mX) be a mixed space. Then, the following properties
hold:

(1) If X is m-hyperconnected, then X is m-extremally disconnected.
(2) If mX = SO(X, τ) or SPO(X, τ), then (X, τ,mX) is m-extremally

disconnected.
(3) Let (X, τ) be extremally disconnected. If mX = α(X), PO(X, τ) or

BO(X, τ), then (X, τ,mX) is m-extremally disconnected.

Proof. (1) This is obvious.
(2) It is known in [3] that sCl(A) = A ∪ Int(Cl(A)) and spCl(A) = A ∪

Int(Cl(Int(A))) for every subset A of X. Therefore, sCl(V ) and spCl(V ) are
open for every open set V and hence (X, τ,mX) is m-extremally disconnected
for mX = SO(X, τ) or SPO(X, τ).

(3) It is known in [3] and [5] that α(A) = A∪Cl(Int(Cl(A))), pCl(A) = A∪
Cl(Int(A)) and bCl(A) = sCl(A)∩pCl(A) for every subset A of X. Therefore,
α(V ), pCl(V ) and bCl(V ) are open for every open set V of an extremally
disconnected space (X, τ) and hence (X, τ,mX) is m-extremally disconnected
for mX = α(X, τ), PO(X, τ), or BO(X, τ). �
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The following example shows that the converse of each statement of Lemma
3.7 are not true.

Example 3.8. Consider the mixed space (X, τ,mX), where X = {a, b, c, d},
τ = {φ,X, {a}} andmX = {φ, {a}, {a, c}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d},
{b, c, d}, X}. If A = {a}, then A is open and mCl(A) = {a} 6= X. Hence
(X, τ,mX) is not m-hyperconnected. Since mX -closure of every open set is
open, X is m-extremally disconnected. Moreover, since {b, d} is not β-open,
mX is not SPO(X, τ).

Theorem 3.9. Let (X, τ,mX) be a mixed space, the following properties are
equivalent:

(1) X is m-extremally disconnected;
(2) mInt(A) is closed for every closed subset A of X;
(3) mCl(Int(A)) ⊆ Int(mCl(A)) for every subset A of X;
(4) Every semi-mX-open set is pre-mX-open;
(5) mCl(A) ∈ τ for every strongly-βmX-open set A;
(6) Every strongly-βmX-open set is pre-mX-open;
(7) A is α-mX-open if and only if it is semi-mX-open for every A ⊆ X.

Proof. (1) ⇒ (2): Let A be a closed set in X. Then X − A is open. By (1)
mCl(X −A) = X −mInt(A) is open. Thus, mInt(A) is closed.

(2) ⇒ (3): Let A be any set of X. Then X − Int(A) is closed in X and by
(2) mInt[X − Int(A)] is closed in X. Therefore, mCl(Int(A)) is open in X
and hence mCl(Int(A)) ⊆ Int(mCl(A)).

(3) ⇒ (4): Let A be semi-mX -open. By (3), we have A ⊆ mCl(Int(A)) ⊆
Int(mCl(A)). Thus, A is pre-mX -open.

(4) ⇒ (5): Let A be a strongly-βmX -open set. Then mCl(A) is semi-mX -
open. By (4), mCl(A) is pre-mX -open. Thus, mCl(A) ⊆ Int(mCl(A)) and
hence mCl(A) is open.

(5)⇒ (6): LetA be a strongly-βmX -open set. By (5), mCl(A)=Int(mCl(A)).
Thus, A ⊆ mCl(A) = Int(mCl(A)) and hence A is pre-mX -open.

(6) ⇒ (7): Let A be a semi-mX -open set. Since a semi-mX -open set is
strongly-βmX -open, then by (6) it is pre-mX -open. Since A is semi-mX -open
and pre-mX -open, it is α-mX -open.

(7)⇒ (1): Let A be an open set of X. ThenmCl(A) is semi-mX -open and by
(7) mCl(A) is α-mX -open. Therefore, mCl(A) ⊆ Int(mCl(Int(mCl(A)))) =
Int(mCl(A)) and hence mCl(A) = Int(mCl(A)). Hence mCl(A) is open and
X is m-extremally disconnected. �

Corollary 3.10. Let (X, τ,mX) be a mixed space. Then, the following prop-
erties are equivalent:

(1) X is m-extremally disconnected;
(2) mCl(A) ∈ τ for every α-mX-open set A of X;
(3) mCl(A) ∈ τ for every semi-mX-open set A of X;
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(4) mCl(A) ∈ τ for every pre-mX-open set A of X.

Proof. This follows from Theorem 3.9 and Diagram. �

Theorem 3.11. Let (X, τ,mX) be a mixed space and mX have property B.
Then, the following properties are equivalent:

(1) X is m-extremally disconnected;
(2) For any A ∈ τ and B ∈ mX such that A ∩ B = φ, there exist disjoint

a mX-closed set U and a closed set V such that A ⊆ U and B ⊆ V ;
(3) mCl(U) ∩ Cl(V ) = φ for every U ∈ τ and V ∈ mX with U ∩ V = φ;
(4) mCl[Int(mCl(U))] ∩ Cl(V ) = φ for every U ⊆ X and V ∈ mX with

U ∩ V = φ.

Proof. (1) ⇒ (2): Let X be m-extremally disconnected. Let A and B be two
disjoint open and mX -open sets, respectively. Then mCl(A) and X −mCl(A)
are disjoint mX -closed and closed sets containing A and B, respectively.

(2) ⇒ (3): Let U ∈ τ and V ∈ mX with U ∩ V = φ. By (2), there exist
disjoint an mX -closed set F and a closed set G such that U ⊆ F and V ⊆ G.
Therefore, mCl(U) ∩ Cl(V ) ⊆ F ∩G = φ. Thus, mCl(U) ∩ Cl(V ) = φ.

(3)⇒ (4): Let U ⊆ X and V ∈ mX with U∩V = φ. Since Int(mCl(U)) ∈ τ
and Int(mCl(U)) ∩ V = φ, by (3) mCl[Int(mCl(U))] ∩ Cl(V ) = φ.

(4) ⇒ (1): Let U be any open set. Then [X −mCl(U)] ∩U = φ. Since mX

has property B, X −mCl(U) ∈ mX and by (4) mCl(Int(mCl(U))) ∩ Cl(X −
mCl(U)) = φ. Since U ∈ τ , we have mCl(U) ∩ [X − Int(mCl(U))] = φ.
Therefore, mCl(U) ⊆ Int(mCl(U)) and mCl(U) is open. This shows that X
is m-extremally disconnected. �

Definition 3.12. A subset A of a mixed space (X, τ,mX) is called an Rm-
open set if A = Int(mCl(A)). The complement of an Rm-open set is said to
be Rm-closed.

Theorem 3.13. Let (X, τ,mX) be a mixed space and mX have property B.
Then, the following properties are equivalent:

(1) X is m-extremally disconnected;
(2) Every Rm-open set of X is mX-closed in X;
(3) Every Rm-closed set of X is mX-open in X.

Proof. (1) ⇒ (2): Let X be m-extremally disconnected. Let A be an Rm-open
set of X. Then A = Int(mCl(A)). Since A is an open set, then mCl(A) is
open. Thus, A = Int(mCl(A)) = mCl(A) and hence A is mX -closed.

(2) ⇒ (1): Suppose that every Rm-open subset of X is mX -closed in X.
Let A be an open subset of X. Since Int(mCl(A)) is Rm-open, then it is
mX -closed. This implies that mCl(A) ⊆ mCl(Int(mCl(A))) = Int(mCl(A))
since A ⊆ Int(mCl(A)). Thus, mCl(A) is open and hence X is m-extremally
disconnected.

(2) ⇔ (3): It is obvious. �
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Theorem 3.14. Let (X, τ,mX) be a mixed space. Then the following properties
are equivalent:

(1) X is m-extremally disconnected;
(2) mCl(A) ∈ τ for every Rm-open set A of X.

Proof. (1) ⇒ (2): Let A be an Rm-open set of X. Then A is open and
mCl(A) ∈ τ .

(2) ⇒ (1): Suppose that mCl(A) ∈ τ for every Rm-open set A of X. Let V
be any open set of X. Then Int(mCl(V )) is an Rm-open set and mCl(V ) =
mCl(Int(mCl(V ))) ∈ τ . Thus mCl(V ) ∈ τ and hence X is m-extremally
disconnected. �

Theorem 3.15. Let (X, τ,mX) be a mixed space and mX have property B.
Then, the following properties are equivalent:

(1) X is m-extremally disconnected;
(2) If A is semi-mX-open, B is semi-m∗X-open and A ∩ B = φ, then

mCl(A) ∩ Cl(B) = φ.

Proof. (1) ⇒ (2): Let A be semi-mX -open, B semi-m∗X -open and A ∩ B = φ.
Since mX is property B, mInt(B) is mX -open and mCl(A) ∩mInt(B) = φ.
By Corollary 3.10, mCl(A) is open and mCl(A) ∩ Cl(mInt(B)) = φ. Since B
is semi-m∗X -open, Cl(B) = Cl(mInt(B)) and hence mCl(A) ∩ Cl(B) = φ.

(2) ⇒ (1): Let A be a semi-mX -open set. Since A and X − mCl(A)
are disjoint semi-mX -open and semi-m∗X -open, respectively, by (2) we have
mCl(A) ∩ Cl[X −mCl(A)] = φ. This implies that mCl(A) ⊆ Int(mCl(A)).
Thus mCl(A) is open. Hence, by Corollary 3.10, X is m-extremally discon-
nected. �

Theorem 3.16. Let (X, τ,mX) be a mixed space and mX have property B.
Then X is m-extremally disconnected if and only if for every open set G and
every mX-closed set F with G ⊆ F , there exist an open set G1 and an mX-
closed set F1 such that G ⊆ F1 ⊆ G1 ⊆ F .
Proof. Suppose X is m-extremally disconnected. Let G be an open set and F
an mX -closed set in X such that G ⊆ F . Then G ∩ (X − F ) = φ. Then by
Theorem 3.11 mCl(G) ∩ Cl(X − F ) = φ, that is, mCl(G) ⊆ X − Cl(X − F ).
Using the fact that X−Cl(X−F ) ⊆ F and writing mCl(G) = F1, X−Cl(X−
F ) = G1, we get G ⊆ F1 ⊆ G1 ⊆ F .

Conversely, let the condition hold. Let U be an open set and V be an
mX -open set in X such that U ∩ V = φ. Then, U ⊆ X − V and X − V is mX -
closed. Accordingly, there exist an open setG and anmX -closed set F such that
U ⊆ F ⊆ G ⊆ X −V . This implies that mCl(U)∩X − [Int(X −V )] = φ. But
X− [Int(X−V )] = Cl(V ). That is, mCl(U)∩Cl(V ) = φ and by Theorem 3.11
X is m-extremally disconnected. �

Definition 3.17. Let (X, τ,mX) be a mixed space and R be the real line with
the usual topology. A mapping f : X → R is said to be upper semicontinuous
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or u.s.c. in brief (resp. lower minimal semi-continuous or l.m.s.c. in brief) if for
each a ∈ R, the set {x : x ∈ X, f(x) < a} is open (resp. {x : x ∈ X, f(x) > a}
is mX -open).

Theorem 3.18. Let (X, τ,mX) be an m-extremally disconnected mixed space
and mX have property B. Let U be an open set, V be an mX-open set in X
such that U∩V = φ. Then there exists a real-valued u.s.c. and l.m.s.c. mapping
f : X → [0, 1] such that f(U) = {0} and f(V ) = {1}.

Proof. Since U ⊆ X − V , by Theorem 3.16, there exist an open set G1/2 and
an mX -closed set F1/2 such that U ⊆ F1/2 ⊆ G1/2 ⊆ X − V . Again, since
U ⊆ F1/2 and G1/2 ⊆ X − V , by the same reasoning, there exist open sets
G1/4, G3/4 and mX -closed sets F1/4, F3/4 such that

U ⊆ F1/4 ⊆ G1/4 ⊆ F1/2 ⊆ G1/2 ⊆ F3/4 ⊆ G3/4 ⊆ X − V.
We continue this process for each dyadic rational number of the form t = m

2n

(where n = 1, 2, 3, . . . and m = 1, 2, . . . , 2n− 1). We find that for t1 < t2, there
exist open sets Gt1 and Gt2 and mX -closed sets Ft1 and Ft2 such that

U ⊆ Ft1 ⊆ Gt1 ⊆ Ft2 ⊆ Gt2 ⊆ X − V.
Now, we define a mapping f on X as follows:

f(x) =

{
0, x ∈ Gt for some t;

sup{t : t /∈ Gt}, otherwise.

Clearly, the values of f lies in [0, 1]. Also, f(U) = {0} and f(V ) = {1}.
(1) f is u.s.c.: We show that f−1 ([0, a)) is open for each a, where 0 < a < 1.

Let x ∈ f−1 ([0, a)). Then f(x) < a, hence there must be some dyadic rational
t < a such that x ∈ Gt. Thus f−1 ([0, a)) ⊆ ∪t<aGt. Again, if x ∈ ∪t<aGt, then
x ∈ Gt0 for some t0 < a, so that x ∈ f−1 ([0, a)) . Thus, f−1 ([0, a)) = ∪t<aGt,
which is open. Hence, f is u.s.c.

(2) f is l.m.s.c.: We show that f−1 ((a, 1]) is mX -open for each a, where
0 < a < 1. Let y ∈ f−1 ((a, 1]). Then there exists a dyadic rational t > a such
that y /∈ Gt. Then y /∈ Ft. Thus f−1 ((a, 1]) ⊆ ∪t>a(X − Ft). Also y ∈ X − Ft
for some t > a implies that y /∈ Gt0 for some t0 with t > t0 > a. Hence
f(y) > a, that is, y ∈ f−1 ((a, 1]). Thus we get, f−1 ((a, 1]) = ∪t>a(X − Ft),
which is mX -open. Hence f is l.m.s.c. �
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