DOI QR코드

DOI QR Code

ON THE CURVATURE THEORY OF A LINE TRAJECTORY IN SPATIAL KINEMATICS

  • Abdel-Baky, Rashad A. (Department of Mathematics Sciences Faculty for Girls King Abdulaziz University)
  • Received : 2018.03.08
  • Accepted : 2018.07.19
  • Published : 2019.01.31

Abstract

The paper study the curvature theory of a line-trajectory of constant Disteli-axis, according to the invariants of the axodes of moving body in spatial motion. A necessary and sufficient condition for a line-trajectory to be a constant Disteli-axis is derived. From which new proofs of the Disteli's formulae and concise explicit expressions of the inflection line congruence are directly obtained. The obtained explicit equations degenerate into a quadratic form, which can easily give a clear insight into the geometric properties of a line-trajectory of constant Disteli-axis with the theory of line congruence. The degenerated cases of the Burmester lines are discussed according to dual points having specific trajectories.

Keywords

DBSHCJ_2019_v34n1_333_f0001.png 이미지

FIGURE 1

DBSHCJ_2019_v34n1_333_f0002.png 이미지

FIGURE 2

DBSHCJ_2019_v34n1_333_f0003.png 이미지

FIGURE 3

DBSHCJ_2019_v34n1_333_f0004.png 이미지

FIGURE 4

DBSHCJ_2019_v34n1_333_f0005.png 이미지

FIGURE 5

DBSHCJ_2019_v34n1_333_f0007.png 이미지

FIGURE 6

References

  1. R. A. Abdel-Baky, Inflection and torsion line congruences, J. Geom. Graph. 11 (2007), no. 1, 1-14.
  2. R. A. Abdel-Baky and R. A. Al-Ghefari, On the one-parameter dual spherical motions, Computer Aided Geometric Design 28 (2011), 23-37. https://doi.org/10.1016/j.cagd.2010.09.007
  3. R. A. Abdel-Baky and F. R. Al-Solamy, A new geometrical approach to one-parameter spatial motion, J. Eng. Maths 60 (2008), 149-172. https://doi.org/10.1007/s10665-007-9139-5
  4. R. A. Al-Ghefari and R. A. Abdel-Baky, Kinematic geometry of a line trajectory in spatial motion, J. Mechanical Science and Technology 29 (2015), no. 9, 3597-3608. https://doi.org/10.1007/s12206-015-0803-9
  5. O. Bottema and B. Roth, Theoretical Kinematics, North-Holland Press, New York, 1979.
  6. M. Disteli, Uber das Analogon der Savaryschen Formel und Konstruktion in der kinematischen Geometrie des Raumes, Z. Math. Phys. 62 (1914), 261-309.
  7. D. B. Dooner and M. W. Griffis, On spatial Euler-savary equations for envelopes, ASME Journal of Mechanical Design 129 (2006), no. 8, 865-875.
  8. K. H. Hunt, Kinematic Geometry of Mechanisms, The Clarendon Press, Oxford University Press, New York, 1978.
  9. A. Karger and J. Novak, Space Kinematics and Lie Groups, Gordon and Breach Science Publishers, New York, 1985.
  10. J. M. McCarthy, An Introduction to Theoretical Kinematics, MIT Press, Cambridge, MA, 1990.
  11. H. Pottman and J. Wallner, Computational Line Geometry, Springer-Verlag, Berlin, Heidelberg, 2001.
  12. J. A. Schaaf and B. Ravani, Geometric continuity of ruled surfaces, Comput. Aided Geom. Design 15 (1998), no. 3, 289-310. https://doi.org/10.1016/S0167-8396(97)00032-0
  13. H. Stachel, Instantaneous spatial kinematics and the invariants of the axodes, Institute fur Geometrie, TU Wien, Technical Report 34, 1996.
  14. H. Stachel, On Jack Philip's spatial involute gearing, Proc. 11-th International Conference on Geometry and Graphics, Guangzhou, Cuina, August, pp. 1-5, 2004.
  15. H. Stachel, On spatial involute gearing, TU Wien, Geometry Preprint No 119, 2004.
  16. D. Wang, J. Liu, and D. Xiao, A unified curvature theory in kinematic geometry of mechanism, Science in China(Series E) 41 (1998), no. 2, 196-202.
  17. D. Wang, J. Liu, and D. Xiao, Geometrical characteristics of some typical spatial constraints, Mechanism and Machine Theory 35 (2000), no. 10, 1413-1430. https://doi.org/10.1016/S0094-114X(99)00077-4