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EIGENVALUE MONOTONICITY OF (p, q)-LAPLACIAN

ALONG THE RICCI-BOURGUIGNON FLOW

Shahroud Azami

Abstract. In this paper we study monotonicity the first eigenvalue for

a class of (p, q)-Laplace operator acting on the space of functions on a
closed Riemannian manifold. We find the first variation formula for the

first eigenvalue of a class of (p, q)-Laplacians on a closed Riemannian
manifold evolving by the Ricci-Bourguignon flow and show that the first

eigenvalue on a closed Riemannian manifold along the Ricci-Bourguignon

flow is increasing provided some conditions. At the end of paper, we find
some applications in 2-dimensional and 3-dimensional manifolds.

1. Introduction

Given an n-dimensional closed Riemannian manifold (M, g0), the Ricci-
Bourguignon flow is the following evolution equation

(1)
d

dt
g(t) = −2Ric(g(t)) + 2ρR(g(t))g(t) = −2(Ric− ρRg),

with the initial condition

g(0) = g0,

where Ric is the Ricci tensor of g(t), R is the scalar curvature and ρ is a real
constant. This evolution equation was introduced by Bourguignon for the first
time in 1981 (see [4]) and it is a system of partial differential equations. Short
time existence and uniqueness for solution to the Ricci-Bourguignon flow on
[0, T ) have been shown by Catino and et al. in [7] for ρ < 1

2(n−1) . When ρ = 0,

the Ricci-Bourguignon flow is the Ricci flow.
At present, studying the eigenvalues of geometric operators is a very power-

ful tool for understanding Riemannian manifolds. In the past few years there
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has been an increasing interest in geometric operators as p-Laplace and (p, q)-
Laplace operators on Riemannain manifolds. There are many interesting prop-
erties about the eigenvalues of the geometric operator and geometrical invari-
ants have been pointed out. In [23], Perelman introduced the energy functional

F =

∫
M

(R+ |∇f |2)e−f dµ

and showed that it is nondecreasing along the Ricci flow coupled to a backward
heat-type equation, where R and dµ denote the scalar curvature and volume
form of the metric g = g(t), respectively. The nondecreasing of the functional
F implies that the lowest eigenvalue of the geometric operator −4∆ + R is
nondecreasing under the Ricci flow. Later, Li [20] and Cao [6] considered a
general geometric operator −∆ + cR, and both of them proved that the first
eigenvalue of the geometric operator −∆ + cR for c ≥ 1

4 is nondecreasing along
the Ricci flow without any curvature assumption. Then Wu [24], investigated
the first eigenvalue monotonicity for the p-Laplace operator under the Ricci
flow. On the other hand, Zeng and et al. [8] studied the monotonicity of
eigenvalues of the operator −∆ + cR along the Ricci-Bourguignon flow. For
the other recent research in this direction, see [9, 10,14,15,19].

Let (Mn, g) be a closed Riemannian manifold. In this paper, we consider
the nonlinear system introduced in [18], that is

(2)


∆pu = −λ|u|α|v|βv in M,

∆qv = −λ|u|α|v|βu in M,

(u, v) ∈W 1,p(M)×W 1,q(M),

where p > 1, q > 1 and α, β are real numbers satisfying

(3) α > 0, β > 0,
α+ 1

p
+
β + 1

q
= 1.

The problem (2) has applications in mathematics and physics, for instance, if
p > 2, then (2) appears in the in the study of non-Newtonian fluids, pseu-
doplastics, if 1 < p < 2, then it applies in reaction-diffusion problems, flows
through porous media and if p = 4

3 it arise in glaciology (see [11], [17]). Also,
the eigenvalue problem for (2) was studied in several works for instance, the
existence of a sequence of variational eigenvalues of problem (2) was proved in
[12] by using the abstract theory developed by Amann in [1], and the existence
of generalized eigenvalues was obtained in [13]. We refer the interested reader
to [2, 3, 16,21].

Motivated by the above works, in this paper we will study the first eigen-
value of a class of (p, q)-Laplace operator whose metric satisfies the Ricci-
Bourguignon flow (1).
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2. Preliminaries

Let M be a closed Riemannian manifold and f : M −→ R be a smooth
function on M or f ∈ W 1,p(M), the Sobolev space. The p-Laplacian of f for
1 < p <∞ is defined as

4pf = div(|∇f |p−2∇f)(4)

= |∇f |p−2∆f + (p− 2)|∇f |p−4(Hessf)(∇f,∇f),

where

(Hessf)(X,Y ) = ∇(∇f)(X,Y ) = Y.(X.f)− (∇YX)f, X, Y ∈ X (M),

and

∆f = gij(
∂2f

∂xi∂xj
− Γkij

∂f

∂xk
).

We say that λ is an eigenvalue of (2), whenever for some u ∈ W 1,p
0 (M) and

v ∈W 1,q
0 (M), ∫

M

|∇u|p−2〈∇u,∇φ〉dµ = λ

∫
M

|u|α|v|βvφdµ,(5) ∫
M

|∇v|q−2〈∇v,∇ψ〉dµ = λ

∫
M

|u|α|v|βuψdµ,(6)

where φ ∈ W 1,p(M), ψ ∈ W 1,q(M) and W 1,p
0 (M) is the closure of C∞0 (M)

in Sobolev space W 1,p(M). The pair (u, v) is called eigenfunctions. A first
positive eigenvalue of (2) obtained as

inf{A(u, v) : (u, v) ∈W 1,p
0 (M)×W 1,q

0 (M), B(u, v) = 1, C(u, v)= D(u, v)= 0},

where

A(u, v) =
α+ 1

p

∫
M

|∇u|pdµ+
β + 1

q

∫
M

|∇v|qdµ,

B(u, v) =

∫
M

|u|α|v|βuvdµ,

C(u, v) =

∫
M

|u|α|v|βvdµ,

D(u, v) =

∫
M

|u|α|v|βudµ.

Let (Mn, g(t)) be a solution of the Ricci-Bourguignon flow on the smooth
closed manifold (Mn, g0) in the interval [0, T ). Then

(7) λ(t) =
α+ 1

p

∫
M

|∇u|pdµt +
β + 1

q

∫
M

|∇v|qdµt

defines the evolution of the first eigenvalue of (2), under the variation of g(t)
where the eigenfunctions associated to λ(t) are normalized that is B(u, v) =



290 S. AZAMI

1, C(u, v) = 0, D(u, v) = 0. We prove some facts about the spectrum vari-
ation under a deformation of the metric given by the Ricci-Bourguignon flow
equation.

3. Variation of λ(t)

In this section, we will give evolution formulas for λ(t) under the Ricci-
Bourguignon flow. Now, we give a useful statement about the variation of the
first eigenvalue of (2) along the Ricci-Bourguignon flow.

Lemma 3.1. If g1 and g2 are two metrics on Riemannian manifold Mn which
satisfy (1 + ε)−1g1 < g2 < (1 + ε)g1, then for any p ≥ q > 1, we have

λ(g2)− λ(g1) ≤
(

(1 + ε)
p+n
2 − (1 + ε)−

n
2

)
λ(g1).

In particular, λ(t) is a continuous function with respect to the t-variable.

Proof. The proof is straightforward. We get

(1 + ε)−
n
2 dµg1 < dµg2 < (1 + ε)

n
2 dµg1 .

Let

G(g, u, v) =
α+ 1

p

∫
M

|∇u|pgdµg +
β + 1

q

∫
M

|∇v|qgdµg,(8)

hence ∫
M

|u|α|v|βuvdµg1G(g2, u, v)−
∫
M

|u|α|v|βuvdµg2G(g1, u, v)

=
α+ 1

p

∫
M

|u|α|v|βuvdµg1
(∫

M

|∇u|pg2dµg2 −
∫
M

|∇u|pg1dµg1
)

+
α+ 1

p

(∫
M

|u|α|v|βuvdµg1 −
∫
M

|u|α|v|βuvdµg2
)∫

M

|∇u|pg1dµg1

+
β + 1

q

∫
M

|u|α|v|βuvdµg1
(∫

M

|∇v|qg2dµg2 −
∫
M

|∇v|qg1dµg1
)

+
β + 1

q

(∫
M

|u|α|v|βuvdµg1 −
∫
M

|u|α|v|βuvdµg2
)∫

M

|∇v|qg1dµg1

≤ α+ 1

p

(
(1 + ε)

p+n
2 − (1 + ε)−

n
2

)∫
M

|u|α|v|βuvdµg1
∫
M

|∇u|pg1dµg1

+
β + 1

q

(
(1 + ε)

q+n
2 − (1 + ε)−

n
2

)∫
M

|u|α|v|βuvdµg1
∫
M

|∇v|qg1dµg1

≤
(

(1 + ε)
p+n
2 − (1 + ε)−

n
2

)
G(g1, u, v)

∫
M

|u|α|v|βuvdµg1 .

Therefore we have

λ(g2)− λ(g1) ≤
(

(1 + ε)
p+n
2 − (1 + ε)−

n
2

)
λ(g1).

This completes the proof of the lemma. �
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Proposition 3.2. Let g(t), t ∈ [0, T ), be a solution of the Ricci-Bourguignon
flow on a closed manifold Mn for ρ < 1

2(n−1) and let λ(t) be the first eigenvalue

of the (p, q)-Laplacian along this flow. For any t1, t2 ∈ [0, T ) and t2 > t1, we
have

(9) λ(t2) ≥ λ(t1) +

∫ t2

t1

G(g(τ), u(τ), v(τ))dτ,

where

G(g(t), u(t), v(t)) = (α+ 1)

∫
M

(Ric(∇u,∇u) + 〈∇u′,∇u〉) |∇u|p−2dµ

+(β + 1)

∫
M

(Ric(∇v,∇v) + 〈∇v′,∇v〉) |∇v|q−2dµ(10)

−(α+ 1)(ρ+
1− ρn
p

)

∫
M

|∇u|pRdµ

−(β + 1)(ρ+
1− ρn
q

)

∫
M

|∇v|qRdµ.

Proof. Assume that

G(g(t), u(t), v(t)) =
α+ 1

p

∫
M

|∇u(t)|pg(t)dµg(t) +
β + 1

q

∫
M

|∇v(t)|qg(t)dµg(t),

and at time t2, let (u2, v2) = (u(t2), v(t2)) be the eigenfunctions for the eigen-
value λ(t2) of (p, q)-Laplacian (2). We consider the following smooth functions

h(t) = u2

[
det[gij(t2)]

det[gij(t)]

] 1
2(α+β+1)

, l(t) = v2

[
det[gij(t2)]

det[gij(t)]

] 1
2(α+β+1)

,

along the Ricci-Bourguignon flow. Let

u(t) =
h(t)(∫

M
|h(t)|α|l(t)|βh(t)l(t)dµ

) 1
p

, u(t) =
l(t)(∫

M
|h(t)|α|l(t)|βh(t)l(t)dµ

) 1
q

which u(t), v(t) are smooth functions under the Ricci-Bourguignon flow, satisfy∫
M

|u|α|v|βuvdµ = 1,

∫
M

|u|α|v|βvdµ = 0,

∫
M

|u|α|v|βudµ = 0,

and at time t2, (u(t2), v(t2)) is the eigenfunctions for λ(t2) of (p, q)-Laplacian
(2), i.e., λ(t2) = G(g(t2), u(t2), v(t2)). Under the Ricci-Bourguignon flow we
have

d

dt
(|∇f |p) = p|∇f |p−2

(
Ric(∇f,∇f)− ρR|∇f |2 + 〈∇f ′,∇f〉

)
,(11)

d

dt
(dµ) = (−1 + ρn)Rdµ.
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Since u(t) and v(t) are smooth functions, thereforeG(g(t), u(t), v(t)) is a smooth
function with respect to t. Suppose that

(12) G(g(t), u(t), v(t)) :=
d

dt
G(g(t), u(t), v(t))

then G(g(t), u(t), v(t)) is as form (10) and taking integration on the both sides
of (12) between t1 and t2, we get

(13) G(g(t2), u(t2), v(t2))−G(g(t1), u(t1), v(t1)) =

∫ t2

t1

G(g(τ), u(τ), v(τ))dτ,

where t1 ∈ [0, T ) and t2 > t1. Noticing that G(g(t1), u(t1), v(t1)) ≥ λ(t1) and
replacing λ(t2) = G(g(t2), u(t2), v(t2)) in (13), yields (9) and G(g(t), u(t), v(t))
satisfies in (10). �

Theorem 3.3. Let (Mn, g(t)) be a solution of the Ricci-Bourguignon flow on
the smooth closed manifold (Mn, g0) for ρ < 1

2(n−1) , n > 1 and λ(t) denotes

the evolution of the first eigenvalue of (p, q)-Laplacian (2) under the Ricci-
Bourguignon flow. If k = min{p, q} and there exists a non-negative constant a
such that

(14) Ric− (
1− nρ
k

+ ρ)Rg ≥ −ag in Mn × [0, T )

and

(15) R >
ak

1− nρ
in Mn × {0},

then λ(t) is strictly increasing and differentiable almost everywhere along the
Ricci-Bourguignon flow on [0, T ).

Proof. At time t2, u(t2) and v(t2) are the eigenfunctions for λ(t2) of (p, q)-
Laplacian (2), then

∫
M
|u(t2)|α|v(t2)|βu(t2)v(t2)dµg(t2) = 1. Therefore

G(g(t2), u(t2), v(t2)) = (α+ 1)

∫
M

(Ric(∇u,∇u) + 〈∇u′,∇u〉) |∇u|p−2dµ

+(β + 1)

∫
M

(Ric(∇v,∇v) + 〈∇v′,∇v〉) |∇v|q−2dµ(16)

−(α+ 1)(ρ+
1− ρn
p

)

∫
M

|∇u|pRdµ

−(β + 1)(ρ+
1− ρn
q

)

∫
M

|∇v|qRdµ.

Now, the time derivative of the condition∫
M

|u|α|v|βuvdµ = 1,



EIGENVALUE MONOTONICITY OF (p, q)-LAPLACIAN 293

yields

(17)

(α+ 1)

∫
M

|u|α|v|βu′vdµ+ (β + 1)

∫
M

|u|α|v|βuv′dµ

= (1− nρ)

∫
M

R|u|α|v|βuvdµ.

(5) and (6) imply that∫
M

〈∇u′,∇u〉|∇u|p−2dµ = λ

∫
M

|u|α|v|βu′vdµ,(18) ∫
M

〈∇v′,∇v〉|∇v|q−2dµ = λ

∫
M

|u|α|v|βuv′dµ.(19)

Therefore from (17), (18) and (19) we have

(20)

(α+ 1)

∫
M

〈∇u′,∇u〉|∇u|p−2dµ+ (β + 1)

∫
M

〈∇v′,∇v〉|∇v|q−2dµ

= (1− nρ)λ

∫
M

R|u|α|v|βuvdµ.

Replacing (20) in (16), results that

G(g(t2), u(t2), v(t2)) = (1− nρ)λ(t2)

∫
M

R|u|α|v|βuvdµ

+ (α+ 1)

∫
M

Ric(∇u,∇u)|∇u|p−2dµ

+ (β + 1)

∫
M

Ric(∇v,∇v)|∇v|q−2dµ(21)

− (α+ 1)(ρ+
1− ρn
p

)

∫
M

|∇u|pRdµ

− (β + 1)(ρ+
1− ρn
q

)

∫
M

|∇v|qRdµ.

From (21) and (14) we have

G(g(t2), u(t2), v(t2)) ≥ (1− nρ)λ(t2)

∫
M

R|u|α|v|βuvdµ

+ (1− nρ)(α+ 1)(
1

k
− 1

p
)

∫
M

|∇u|pRdµ

+ (1− nρ)(β + 1)(
1

k
− 1

q
)

∫
M

|∇v|qRdµ(22)

− (α+ 1)a

∫
M

|∇u|pdµ− (β + 1)a

∫
M

|∇v|qdµ.



294 S. AZAMI

It is well-known that R ≥ ka
1−nρ is preserved by the Ricci-Bourguignon flow.

Also, by the strong maximum principle, we conclude that

R ≥ ka

1− nρ
in Mn × [0, T ).

Plugin this into (22) implies G(g(t2), u(t2), v(t2)) > 0 thus in any small enough
neighborhood of t2 we get G(g(t), u(t), v(t)) > 0. Hence∫ t2

t1

G(g(τ), u(τ), v(τ))dτ > 0

for any t1 < t2 sufficiently close to t1. Since t2 ∈ [0, T ) is arbitrary, Proposition
3.2 completes the proof of the first part of theorem. For the differentiability
for λ(t), since λ(t) is increasing and continuous on the interval [0, T ) by the
classical Lebesgue’s theorem (see [22]), λ(t) is differentiable almost everywhere
on [0, T ). �

Motivated by the works of X.-D. Cao [5, 6] and J. Y. Wu [24], like in the
proof of Proposition 3.2, we first define a new smooth eigenvalue function and
then we give an evolution formula for it. Let M be an n-dimensional closed
Riemannian manifold and g(t) be a smooth solution of the Ricci-Bourguignon
flow. We define a smooth eigenvalue function

λ(u, v, t) :=
α+ 1

p

∫
M

|∇u|pdµ+
β + 1

q

∫
M

|∇v|qdµ,

where u, v are smooth functions and satisfy∫
M

|u|α|v|βuvdµ = 1,

∫
M

|u|α|v|βvdµ = 0,

∫
M

|u|α|v|βudµ = 0.

If (u, v) are the corresponding eigenfunctions of the first eigenvalue λ(t) at t0,
then λ(u, v, t0) = λ(t0). Like in the proof of Proposition 3.2 and Theorem 3.3,
we get the following propositions.

Proposition 3.4. Let (Mn, g(t)) be a solution of the Ricci-Bourguignon flow
on the smooth closed manifold (Mn, g0). If λ(t) denotes the evolution of the
first eigenvalue under the Ricci-Bourguignon flow, then

d

dt
λ(u, v, t)|t=t0 = (1− nρ)λ(t0)

∫
M

R|u|α|v|βuvdµ

+ (α+ 1)

∫
M

Ric(∇u,∇u)|∇u|p−2dµ

+ (β + 1)

∫
M

Ric(∇v,∇v)|∇v|q−2dµ(23)

− (α+ 1)(ρ+
1− ρn
p

)

∫
M

|∇u|pRdµ

− (β + 1)(ρ+
1− ρn
q

)

∫
M

|∇v|qRdµ,
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where (u, v) is the associated normalized evolving eigenfunctions.

Theorem 3.5. Let (Mn, g(t)) be a solution of the Ricci-Bourguignon flow on
the smooth closed manifold (Mn, g0), and let λ(t) denote the evolution of the
first eigenvalue of (p, q)-Laplacian (2) under the Ricci-Bourguignon flow. If
k = min{p, q} and

(24) Ric−
(

1− nρ
k

+ ρ

)
Rg > 0 in Mn × [0, T ),

then λ(t)(b−2(a−ρ)t)
1−nρ
2(a−ρ) is strictly increasing under the Ricci-Bourguignon

flow on [0, T ′), where a :=max{ 1n , n
k2 },

1
b =infM R(0) and T ′ :=min{ b

2(a−ρ) , T}.

Proof. According to (23) and (24), we have

d

dt
λ(u, v, t)|t=t0 > (1− nρ)λ(t0)

∫
M

R|u|α|v|βuvdµ

+ (1− nρ)(α+ 1)(
1

k
− 1

p
)

∫
M

|∇u|pRdµ(25)

+ (1− nρ)(β + 1)(
1

k
− 1

q
)

∫
M

|∇v|qRdµ.

The evolution of the scalar curvature R under the Ricci-Bourguignon flow is

∂R

∂t
= (1− 2(n− 1)ρ)∆R+ 2|Ric|2 − 2ρR2,

and the inequality |Ric|2 ≥ aR2 (a := max{ 1n ,
n
k2 }) implies

(26)
∂R

∂t
≥ (1− 2(n− 1)ρ)∆R+ 2(a− ρ)R2.

Since the solutions to dy(t)
dt = 2(a − ρ)y2(t) are y(t) = 1

b−2(a−ρ)t , t ∈ [0, T ′),

where 1
b = infM R(0) and T ′ := min{ b

2(a−ρ) , T}, using maximum principle to

(26), we get R(x, t) ≥ ρ(t). Therefore (25) becomes

(27)
d

dt
λ(u, v, t)|t=t0 > (1− nρ)λ(t0)y(t0),

and in any sufficiently small neighborhood of t0 as I, we get

d

dt
λ(u, v, t) > (1− nρ)λ(u, v, t)

1

b− 2(a− ρ)t
.

Integrating both sides of the last inequality with respect to t on [t1, t0] ⊂ I, we
have

ln
λ(u(t0), v(t0), t0)

λ(u(t1), v(t1), t1)
≥ ln

(
b− 2(a− ρ)t0
b− 2(a− ρ)t1

)−(1−nρ)
2(a−ρ)

.

Since λ(u(t0), v(t0), t0) = λ(t0) and λ(u(t1), v(t1), t1) ≥ λ(t1), we conclude that

ln
λ(t0)

λ(t1)
≥ ln

(
b− 2(a− ρ)t0
b− 2(a− ρ)t1

)−(1−nρ)
2(a−ρ)

,
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that is, λ(t)(b − 2(a − ρ)t)
1−nρ
2(a−ρ) is strictly increasing closed to t0. But t0 is

arbitrary, therefore λ(t)(b− 2(a−ρ)t)
1

2(a−ρ) is strictly increasing on [0, T ′). �

Remark 3.6. If the function (b − 2(a − ρ)t)
1−nρ
2(a−ρ) is decreasing, Theorem 3.5

also implies that λ(t) is strictly increasing along the Ricci-Bourguignon flow on
[0, T ′).

3.1. Variation of λ(t) on a surface

Now, we write Proposition 3.4 in some remarkable particular cases.

Corollary 3.7. Let (M2, g(t)) be a solution of the Ricci-Bourguignon flow on
a closed surface (M2, g0). If λ(t) denotes the evolution of the first eigenvalue
of (p, q)-Laplacian (2) under the Ricci-Bourguignon flow, then

d

dt
λ(u, v, t)|t=t0 = (1− nρ)λ(t0)

∫
M

R|u|α|v|βuvdµ

+
(p− 2)(1− 2ρ)

2p
(α+ 1)

∫
M

|∇u|pRdµ(28)

+
(q − 2)(1− 2ρ)

2q
(β + 1)

∫
M

|∇v|qRdµ,

where (u, v) is the associated normalized evolving eigenfunctions.

Proof. In dimension n = 2, we have Ric = 1
2Rg. Then (23) implies (28). �

Lemma 3.8. Let (M2, g0) be a closed surface with nonnegative scalar curva-
ture. Then the first eigenvalue of (2) for p ≥ 2 and q ≥ 2 are increasing under
the Ricci-Bourguignon flow for ρ < 1

2 .

Proof. From [7], under the Ricci-Bourguignon flow on a surface, we have

∂

∂t
R = (1− 2ρ)∆R+ (1− 2ρ)R2.

By the scalar maximum principle, the nonnegativity of the scalar curvature is
preserved along the Ricci-Bourguignon flow. (28) implies that dλ

dt (u, v, t)|t=t0 >
0. Since t0 is arbitrary then λ(t) is increasing. �

3.2. Variation of λ(t) on homogeneous manifolds

In this section, we consider the behavior of the spectrum when we evolve an
initial homogeneous metric.

Proposition 3.9. Let (Mn, g(t)) be a solution of the Ricci-Bourguignon flow
on the smooth closed homogeneous manifold (Mn, g0). If λ(t) denote the eval-
uation of the first eigenvalue under the Ricci-Bourguignon flow, then

d

dt
λ(u, v, t)|t=t0 = (α+ 1)

∫
M

Ric(∇u,∇u)|∇u|p−2dµ
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+ (β + 1)

∫
M

Ric(∇v,∇v)|∇v|q−2dµ(29)

− ρ(α+ 1)

∫
M

|∇u|pRdµ− ρ(β + 1)

∫
M

|∇v|qRdµ.

Proof. The evolving metric remains homogeneous and a homogeneous manifold
has constant scalar curvature. Therefore (23) implies (29). �

3.3. Variation of λ(t) on 3-dimensional manifolds

In this section, we consider the behavior of λ(t) on 3-dimensional manifolds.

Proposition 3.10. Let (M3, g(t)) be a solution of the Ricci-Borguignon flow
(1) on a closed manifold M3 whose Ricci curvature is initially positive and
there exists 0 ≤ ε ≤ 1

3 such that

Ric ≥ εRg.

Then the quantity e−
∫ t
0
A(τ)dτλ(t) is nondecreasing along the Ricci-Borguignon

flow (1) for 0 < ρ < 1
4 on closed manifold M3, where

A(t) =
3β(1− 3ρ+ qε)

3− 2(1− 3ρ)βt
+ (3ρ− 1− pρ)

(
−2(1− ρ)t+

1

α

)−1
,

α = max
x∈M

R(0), β = min
x∈M

R(0) and q ≤ p.

Proof. In [7], it has been shown that the pinching inequality Ric ≥ εRg and
nonnegative scalar curvature are preserved along the Ricci-Borguignon flow (1)
on closed manifold M3, then using (23) we obtain

d

dt
λ(u, v, t)|t=t0 ≥ (1− 3ρ)λ(t0)

∫
M

R |u|α|v|βuvdµ+ (α+ 1)ε

∫
M

R|∇u|pdµ

+ (β + 1)ε

∫
M

R|∇v|qdµ− ρ(α+ 1)

∫
M

|∇u|pRdµ

+ (−1 + 3ρ)
α+ 1

p

∫
M

|∇u|pRdµ− ρ(β + 1)

∫
M

|∇v|qRdµ

+ (−1 + 3ρ)
β + 1

q

∫
M

|∇v|qRdµ.

On the other hand, the scalar curvature under the Ricci-Bourguignon flow
evolves by

∂R

∂t
= (1− 4ρ)∆R+ 2|Ric|2 − 2ρR2.

Since |Ric|2 ≤ R2, we have

∂R

∂t
≤ (1− 4ρ)∆R+ 2(1− ρ)R2.
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Let σ(t) be the solution of the ODE y′ = 2(1 − ρ)y2 with initial value α =
max
x∈M

R(0). By the maximum principle, we have

(30) R(t) ≤ σ(t) =

(
−2(1− ρ)t+

1

α

)−1
on [0, T ′), where T ′ = min{T, 1

2(1−ρ)α}. Also, the inequality |Ric|2 ≥ R2

3 implies

that
∂R

∂t
≥ (1− 4ρ)∆R+ 2(

1

3
− ρ)R2.

We assume that γ(t) be the solution to the ODE y′ = 2( 1
3 − ρ)y2 with initial

value β = min
x∈M

R(0). Then the maximum principle implies that

(31) R(t) ≥ γ(t) =
3β

3− 2(1− 3ρ)βt
on [0, T ).

Hence

d

dt
λ(u, v, t)|t=t0 ≥ (1− 3ρ+ qε)λ(t0)

3β

3− 2(1− 3ρ)βt0

+ (3ρ− 1− pρ)λ(t0)

(
−2(1− ρ)t0 +

1

α

)−1
= λ(t0)A(t0).

It follows that in any sufficiently small neighborhood of t0 as I0, we get

d

dt
λ(u, v, t) ≥ λ(u, v, t)A(t).

Integrating the last inequality with respect to t on [t1, t0] ⊂ I0, we have

ln
λ(u(t0), v(t0), t0)

λ(u(t1), v(t1), t1)
>

∫ t0

t1

A(τ)dτ.

Since λ(u(t0), v(t0)), t0) = λ(t0) and λ(u(t1), v(t1), t1) ≥ λ(t1), we conclude
that

ln
λ(t0)

λ(t1)
>

∫ t0

t1

A(τ)dτ ;

that is, the quantity λ(t)e−
∫ t
0
A(τ)dτ is strictly increasing in any sufficiently

small neighborhood of t0. Since t0 is arbitrary, we get that λ(t)e−
∫ t
0
A(τ)dτ is

strictly increasing along the Ricci-Bourguignon flow on [0, T ). �

Remark 3.11. In Proposition 3.10, if we consider ρ < 0 instead of ρ > 0, then

the quantity e−
∫ t
0
B(τ)dτλ(t) is nondecreasing along the Ricci-Borguignon flow

(1) on closed manifold M3, where

B(t) =
3β(1− 3ρ+ qε− qρ)

3− 2(1− 3ρ)βt
+ (3ρ− 1)

(
−2(1− ρ)t+

1

α

)−1
.
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Proposition 3.12. Let (M3, g(t)) be a solution to the Ricci-Bourguignon flow
for ρ < 0 on a closed homogeneous 3-manifold whose Ricci curvature is initially
nonnegative. Then the first eigenvalues of the (p, q)-Laplacian (2) is increasing.

Proof. In dimension three, the nonnegativity of the Ricci curvature is pre-
served under the Ricci-Bourguignon flow [7]. From (29), it follows that λ(t) is
increasing. �

4. Example

In this section, we show that the variational formula is effective to derive
some properties of the evolving the first eigenvalue of the (p, q)-Laplacian (2)
on some of Riemannian manifolds.

Example 4.1. Let (Mn, g0) be an Einstein manifold; i.e., there exists a con-
stant a such that Ric(g0) = ag0. Assume that we have a solution of the
Ricci-Bourguignon flow which is of the form

g(t) = u(t)g0, u(0) = 1,

where u(t) is a positive function. We get

∂g

∂t
= u′(t)g0, Ric(g(t)) = Ric(g0) = ag0 =

a

u(t)
g(t), Rg(t) =

an

u(t)
.

For this to be a solution of the Ricci-Bourguignon flow, we require

u′(t)g0 = −2Ric(g(t)) + 2ρRg(t)g(t) = (−2a+ 2ρan)g0.

This shows that

u′(t) = −2a+ 2ρan,

and u(t) satisfies

u(t) = 2a(−1 + ρn)t+ 1.

So g(t) is an Einstein metric. If p ≥ q, using equation (23), we obtain the
following relation

d

dt
λ(u, v, t)|t=t0 ≥ (1− nρ)

qa

u(t0)
λ(t0).

Thus, in any sufficiently small neighborhood of t0 as I0, we get

d

dt
λ(u, v, t) ≥ (1− nρ)

aq

u(t)
λ(u, v, t).

Integrating the last inequality with respect to t on [t1, t0] ⊂ I0, we have

ln
λ(u(t0), v(t0), t0)

λ(u(t1), v(t1), t1)
≥ ln

(
2a(−1 + ρn)t1 + 1

2a(−1 + ρn)t0 + 1

) q
2

.

Since λ(u(t0), v(t0), t0) = λ(t0) and λ(u(t1), v(t1), t1) > λ(t1), we conclude that

ln
λ(t0)

λ(t1)
> ln

(
2a(−1 + ρn)t1 + 1

2a(−1 + ρn)t0 + 1

) q
2

;
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that is, the quantity λ(t)(2a(−1 + ρn)t + 1)
q
2 is strictly increasing along the

Ricci-Bourguignon flow on [0, T ).
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