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A VANISHING THEOREM FOR REDUCIBLE SPACE

CURVES AND THE CONSTRUCTION OF SMOOTH SPACE

CURVES IN THE RANGE C

Edoardo Ballico

Abstract. Let Y ⊂ P3 be a degree d reduced curve with only planar
singularities. We prove that hi(IY (t)) = 0, i = 1, 2, for all t ≥ d− 2. We

use this result and linkage to construct some triples (d, g, s), d > s2, with

very large g for which there is a smooth and connected curve of degree d
and genus g, h0(IC(s)) = 1 and describe the Hartshorne-Rao module of

C.

1. Introduction

To construct smooth space curves using liaison we needed the following weak
version of a Castelnuovo-type theorem for curves which are not irreducible (see
[4, 6] for better results for integral curve; [16] in the part concerning space
curves requires that the curve is integral).

Theorem 1. Let Y ⊂ P3 be a reduced curve with only planar singularities
defined over an algebraically closed field of characteristic 0. Set d := deg(Y ).
Then h1(IY (t)) = h2(IY (t)) = 0 for all t ≥ d− 2.

For several classical result on the classification of space curves, see [7,8,10].
We use Theorem 1 to construct (for certain d, g, s) smooth and connected curves
C such that deg(C) = d, pa(C) = g, h0(IC(s− 1)) = 0 and h0(IC(s)) 6= 0. For
all integers d, s such that s > 1 and d > s2 set

G(d, s) := 1 + [d(d+ s2 − 4s)− r(s− r)(s− 1)]/2s,

where r is the only integer such that 0 ≤ r ≤ s − 1 and d + r ≡ 0 (mod s).
We work in the so-called Range C, i.e., we take d > s2. In the Range C, L.
Gruson and Ch. Peskine proved that if X ⊂ P3 is a smooth connected curve
of degree d and genus g with h0(IX(s− 1)) = 0, then g ≤ G(d, s) and equality
holds if and only if X is linked to a plane curve of degree r by the complete
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intersection of a surface of degree s and a surface of degree dd/se ([7, Théorème
3.1], [8, Théorème A]).

See [1], [17], [13, 3.1 and 3.3] for the construction of a huge number of
triples (d, g, s) such that there is a smooth and connected curve T ⊂ P3 with
deg(T ) = d, pa(T ) = g, h0(IT (s− 1)) = 0 and h0(IT (s)) 6= 0.

Fix an integer q such that G(d, s + 1) < q < G(d, s). The triple (d, q, s)
is called an Halphen’s gap if there is no smooth and connected curve T ⊂ P3

with deg(T ) = d, pa(T ) = q and h0(IT (s− 1)) = 0. It is known that Halphen’s
gaps exist ([2,3,5,12,13]). In particular (d,G(d, s)−1, s) is an Halphen’s gap if
either r = 0 and s ≥ 4 ([2, Proposition 3.10] or s ≥ 5 and r /∈ {2, 3, s−3, s−2}
([3, Th. 3.3]). Roughly speaking, with a few exceptions the first genus less than
the maximal one, i.e., G(d, s), gives an Halphen’s gap. Let G1(d, s) denote
the largest integer < G(d, s) obtained as the genus of a projectively normal
curve of degree d not contained in a surface of degree s− 1 (see [5, Definition
VI.1] for its value; we only need that G1(d, s) = G(d, s) − s + 2 if r = 0 and
s ≥ 3 and G1(d, s) = G(d, s) − r + 2 if either 3 ≤ r < s/2 and s ≥ 6 or
r = s− 2, s− 1 and in the other cases it is at least G(d, s)− r + 2). Ph. Ellia
proved (with the weaker assumption d > s(s − 1)) that for all integers g such
that min{G1(d, s), G(d, s+ 1)} < g < G(d, s) the triple (d, g, s) is an Halphen’s
gap, unless either r = 2 or r = s − 2 (see [5, Théorème at page 42]). Here we
prove the following result which shows that in many cases (d,G1(d, s)− 1, s) is
not an Halphen’s gap.

Proposition 1. Take d > s2 with s ≥ 3. Let r be the only integer such that
0 ≤ r < s and d+ r ≡ 0 (mod s).

(a) If r = 0, then G(d, s)− s+ 1 is not an Halphen’s gap.
(b) If r > 0, then G(d, s)− r + 1 is not an Halphen’s gap.

If r = 1, then Proposition 1 is trivial and also the cases r = 2, 3 are well-
known with as a curve a projectively normal curve ([3, Th. 3.3]). If r = 3 we
also prove that (d,G(d, s)− 2, s) is not an Halphen’s gap (see Remark 3). We
use linkage to cover other triples (d, g, s) as being not an Halphen’s gap, but
the main point is to get examples for the same (d, g, s), but with very different
cohomology groups h1(IC(t)), t ∈ Z, (see Proposition 2).

As in [7,8] we work over an algebraically closed field K of characteristic zero.

2. The proofs

Proof of Theorem 1. For any t ∈ Z we have h2(IY (t)) = h1(OY (t)). To prove
that h1(OY (d− 2)) = 0 it is sufficient to do it when Y is connected, i.e., (since
Y is reduced) when h0(OY ) = 1. In this case we have h1(OY (d − 2)) = 0,
because deg(ωY ) ≤ d(d− 3), which is true by Riemann-Roch, duality and the
inequality χ(OY ) ≥ 1 − (d − 2)(d − 3)/2 true by [11, Theorem 3.1]. Now we
prove that h1(IY (d − 2)) = 0. Fix a general q ∈ P3. Let `q : P3 \ {q} −→ P2

denote the linear projection from q. Since Y is reduced and with only planar
singularities and q is general, q is not contained in the union of the Zariski
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tangent spaces of Y . Since we are in characteristic zero and q is general, no
line L with deg(L ∩ Y ) ≥ 3 contains q and only finitely many secant lines of
Y pass though q. Thus `q(Y ) is a plane curve of degree d with only nodal
singularities plus for each a ∈ Sing(Y ) the curve `q(Y ) has a singularity at
`q(a) formally equivalent to the one of Y at a. Call S the union of the singular
points of Y which are not images of a singular point of Y . Choose homogeneous
coordinates x0, x1, x2, x3 on P2 such that q = (1 : 0 : 0 : 0) and use x1, x2, x3
as homogeneous coordinates of P2. So `q(x0 : x1 : x2 : x3) = (x1 : x2 : x3).
For each λ ∈ K \ {0} let hλ : P3 −→ P3 be the automorphism defined by
the formula hλ(x0 : x1 : x2 : x3) = (λx0 : x1 : x2 : x3). For each o ∈ P3

let χ(o) denote the first infinitesimal neighborhood of o in P3, i.e., the closed
subscheme of P3 with (Io)2 as its ideal sheaf. For each λ ∈ K \ {0}, we have
h1(Ihλ(Y )(t)) = h1(IY (t)), because hλ is an automorphism. The flat family

{hλ(Y )}λ∈K\{0}

has as a flat limit the one-dimensional scheme E := `q(Y ) ∪
⋃
o∈S χ(o) ([9,

III.9.8.4 and figure 11 at page 260]). By the semicontinuity theorem for coho-
mology it is sufficient to prove that h1(IE(t)) = 0 for all t ≥ d−2. Let H denote
the plane {x0 = 0}. See `q(Y ) as a subscheme of H. For any scheme W ⊂ P3

let ResH(W ) denote the residual scheme of W with respect to H, i.e., the closed
subscheme of P3 with IW : IH as its ideal sheaf. Since ResH(χ(o)) = {o} for
each o ∈ H and `q(Y ) ⊂ H, we have a residual exact sequence

(1) 0 −→ IS(t− 1) −→ IE(t) −→ I`q(Y ),H(t) −→ 0.

Since `q(Y ) is a plane curve, we have h1(H, I`q(Y ),H(t)) = 0. Since S is a
subset of the set of all singular points of the reduced degree d plane curve,
adjunction theory gives h1(H, IS,H(d − 3)) = 0. Thus h1(H, IS,H(x)) = 0 for
all x ≥ d−3. Thus h1(IS(t−1)) = 0 for all t ≥ d−2. Use the long cohomology
exact sequence of (1). �

The following remark gives the relations between the numerical and coho-
mological invariants of two linked space curves.

Remark 1. Let A,B ⊂ P3 be locally Cohen-Macaulay schemes with pure di-
mension 1. Assume that A and B are linked by a complete intersection X of
a curve of degree s and a curve of degree m. Then for each t ∈ Z we have
([14, Proposition III.1.2]):

(2) h1(IA(t)) = h1(IB(s+m− 4− t));

(3) h0(IA(t)) = h0(IX(t)) = h1(OB(s+m− 4− t));

(4) h0(IB(t)) = h0(IX(t)) = h1(OA(s+m− 4− t));

(5) χ(OB)− χ(OA) = (s+m− 4)(deg(A)− deg(B))/2.

We obviously have deg(A) + deg(B) = sm.
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Lemma 1. Let Y ⊂ P3 be a reduced curve with only planar singularities. Fix
an integer b > 0 and assume h1(IY (b − 1)) = h0(OY (b − 2)) = 0. We have
|IY (b)| 6= ∅, IY (b) is globally generated and a general G ∈ |IY (b)| is smooth.

Proof. Since h2(IY (t)) = h1(OY (t)) for all t ∈ Z, the Castelnuovo-Mumford’s
lemma gives that IY (b) is globally generated and in particular |IY (b)| 6= ∅.
By Bertini’s theorem a general G ∈ |IY (b)| is smooth outside b. Since Y
has only planar singularities, the conormal sheaf A := IY /IY 2 is a rank 2
vector bundle on Y . Since IY (b) is globally generated, the image of the map
H0(IY (b)) −→ H0(Y,A(b)) spans the vector bundle A(b). Since A(b) is a
vector bundle whose rank is > dim(Y ), there is s ∈ H0(IY (b)) whose image
in H0(Y,A(b)) has no zero in Y . The element {s = 0} ∈ |IY (b)| is smooth at
all smooth points of Y . Since Y is reduced, it has only finitely many singular
points. Since H0(IY (b)) (as any vector space) is irreducible, to conclude the
proof of the lemma it is sufficient to prove that for each q ∈ Sing(Y ) the set of
all G ∈ |IY (b)| singular at q is a proper linear subspace of |IY (b)|. Let v ⊂ P3

be a connected zero-dimensional scheme with deg(v) = 2, vred = {q} and v
not contained in the Zariski tangent space to Y at q. Since IY (b) is globally
generated, |IY ∪v(b)| is a hyperplane of |IY (b)|. The projective space |IY ∪v(b)|
is the set of all G ∈ |IY (b)| singular at q. �

Lemma 2. Let Y ⊂ P3 be a reduced curve with only planar singularities. Fix
integers k ≥ b > 0 and assume h1(IY (b− 1)) = h2(IY (b− 2)) = 0. Let C be a
general curve linked to Y by a complete intersection of a surface of degree b by
a surface of degree k. Then C is smooth. If k ≥ 3, then C is connected.

Proof. The linked curve C exists because IY (b) and IY (k) are globally gen-
erated by the Castelnuovo-Mumford’s lemma. Fix a general G ∈ |IY (k)|. By
Lemma 1G is smooth. Thus Y is a Cartier divisor ofG. Since IY (k) is spanned,
the line bundle L := OG(k)(−Y ) is spanned. Apply Bertini’s theorem to L and
get the smoothness part. By (2) we have h1(IC) = h1(IY (b + k − 4)). Since
k ≥ 3 and h1(IY (b − 1)) = h2(IY (b − 2)) = 0, the Castelnuovo-Mumford’s
lemma gives h1(IY (b+ k − 4)) = 0 and so h1(IC) = 0. Since h1(IC) = 0, C is
connected. �

Lemma 3. Fix an integer s ≥ 3. Let Y ⊂ P3 be the union of a smooth plane
curve A and a line L with deg(A) = s− 1 and A∩L = ∅. Then h1(IY (t)) = 0
if either t ≥ s− 1, or t < 0 and h1(IY (t)) = 1 if 0 ≤ t ≤ s− 2.

Proof. Since s− 1 ≥ 2, A spans a plane, M . Set q := M ∩ L. Since q /∈ A, we
have the following exact sequence of coherent sheaves on M :

0 −→ Iq,M (t− s+ 1) −→ IA∪{q},M (t) −→ OA(t) −→ 0.

Thus h0(M, IA∪{q},M (t)) = 0 for all t ≤ s − 1, h1(M, IA∪{q},M (t)) = 0 for all

t ≥ s − 1 and h1(M, IA∪{q},M (t)) = 1 for all t ≤ s − 2. We have the residual
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exact sequence of M in P3:

(6) 0 −→ IL(t− 1) −→ IY (t) −→ IA∪{q},M (t) −→ 0.

Since L is arithmetically normal, (6) gives h1(IY (t)) = 0 for all t ≥ s−1. Since
h2(IL(t − 1)) = h1(OL(t − 1)) = 0 for all t ≥ 2, (6) also gives h1(IY (t)) = 1
if 2 ≤ t ≤ s − 2. Since h0(OY (1)) = 5, h0(OY ) = 2 and h0(OY (t)) = 0 for all
t < 0, we get h1(IY (1)) = h1(IY ) = 1 and h1(IY (t)) = 0 for all t < 0. �

Remark 2. Fix integers k > s ≥ 3. Recall that G(ks, s) = 1 + ks(k + s− 4)/2.
Take Y as in Lemma 3 and let C be the curve linked to Y by the complete
intersection of a general surface of degree s and a general surface of degree
k + 1 containing Y (C exists by Lemma 1 and it is smooth and connected by
Lemma 2). We apply (5) with B := Y , A := C and m := k + 1. Let g be
the genus of C. Since C is smooth and connected, we have χ(OC) = 1 − g.
Since Y is the disjoint union of a line and a plane curve of degree s − 1, we
have χ(OY ) = 2− (s− 2)(s− 3)/2. Thus (5) gives g = (s− 2)(s− 3)/2− 1 +
(s+ k − 3)(sk − s) = (s− 2)(s− 3)/2− 1 + sk(s+ k − 4)/2 + (−s2 + 3s)/2 =
2 − s + ks(k + s − 4)/2 = G(ks, s) − s + 1. By (2) and Lemma 3 we have
h1(IC(t)) = 0 if either t > s + k − 3 or t ≤ k − 2 and h1(IC(t)) = 1 if
k − 1 ≤ t ≤ s + k − 3. For the case 2 ≤ r < s we may apply Lemma 3 with
the integer r instead of the integer s; call Y ′ this curve of degree r. Call X the
curve linked to Y ′ by a smooth surface G of degree g and a curve of degree k.
It has degree sk − r. By (5) it has genus G(sk − r, s)− r + 1.

Proof of Proposition 1. First assume r = 0. Let Y ⊂ P3 be the union of a
smooth plane curve A and a line L with deg(A) = s − 1 and A ∩ L = ∅. By
Lemma 3 (or Theorem 1) we have h1(IY (s − 1)) = 0. Since h2(IY (s − 2)) =
h1(OY (s − 2)) = h1(OA(s − 2)) + h1(OL(s − 2)) = 0. By the Castelnuovo-
Mumford’s lemma IY (s) is globally generated. By Lemmas 3 and 2 a general
curve F linked to Y by a complete intersection of a surface of degree s and
a surface of degrees k + 1 is a smooth and connected curve and to take the
linkage we may take a smooth surface G of degree s. Obviously F has degree
d. By Remark 2 F has genus G(d, s)− s + 1. By construction F ⊂ G with G
an irreducible surface of degree s. Since d > s(s − 1), Bezout’s theorem gives
h0(IE(s − 1)) = 0. The curve F shows that (d,G(d, s) − s + 1, s) is not an
Halphen’s gap.

Now assume 0 < r < s. The case r = 1 is obvious, because G(d, s)− r+ 1 =
G(d, s) in this case. Assume r ≥ 2. Let Y ⊂ P3 be the union of a smooth plane
curve A and a line L with deg(A) = e − 1 and A ∩ L = ∅. By Lemma 3 (or
Theorem 1) we have h1(IY (r−1)) = 0. Since h2(IY (r−2)) = h1(OY (r−2)) =
h1(OA(r − 2)) + h1(OL(r − 2)) = 0. By the Castelnuovo-Mumford’s lemma
for all x ≥ r the sheaf IY (x) is globally generated. By Lemmas 3 and 2 a
general curve F linked to Y by a complete intersection of a surface of degree
s and a surface of degrees k is a smooth and connected curve and to take the
linkage we may take a smooth surface G of degree s. Obviously F has degree
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d. By Remark 2, F has genus G(d, s)− r + 1. By construction F ⊂ G with G
an irreducible surface of degree s. Since d > s(s − 1), Bezout’s theorem gives
h0(IF (s − 1)) = 0. The curve F shows that (d,G(d, s) − r + 1, s) is not an
Halphen’s gap. �

For any positive integer d let E(d) denote the set of all reduced degree
d space curves with only planar singularities. For all positive integers d, s
set E′(d, s) := {E ∈ E(d) | h1(IE(s − 1)) = h2(IE(s − 2)) = 0}. Fix any
E ∈ E′(d, s). By the Castelnuovo-Mumford’s lemma for each integer t ≥ s we
have h1(IE(t)) = h2(IE(t− 1)) = 0 and the sheaf IE(t) is globally generated.
Thus we may use E to do a linkage with respect to two surfaces of degree at
least s.

Proposition 2. Fix integers d, s with d > s2 and let r be the only integer such
that 0 ≤ r < s. Set k := dd/se. Fix an integer x ≥ k and take Y ∈ E′(xs−d, s).
Set q := 1−χ(OY ). Let C be a curve obtained linking Y by a general complete
intersection of a surface of degree s by a surface of degree x. Then C is smooth
and connected, deg(C) = d, g := pa(C) = q+(x+s−4)(2d−xs), h0(IC(s−1)) =
0 and h0(IC(s)) 6= 0. The Hartshorne-Rao module of C is, up to shift by
s+ x− 4, the dual of the one of Y . The curve C shows that (d, g, s) is not an
Halphen’s gap.

Proof. By Lemmas 1 and 2 the smooth curve C exists. Since x ≥ 3, C is
connected by Lemma 2. The genus g follows from (5). The statement about
Hartshorne-Rao modules is a well-known property of linked curves ([15]). �

Remark 3. Take d, s and r as in Proposition 2 with s ≥ 3. Assume r = 2.
Let Y be the disjoint union of 3 lines. This curve is the curve of E(3) with
the larger χ(OY ). Taking a curve C linked to Y by a surface of degree s and
a surface of degree k we get that (d,G(d, s) − 2, s) is not an Halphen’s gap.
Since h1(IY ) = h1(IY (1)) = 2 and h1(IY (t)) = 0 is either t < 0 or t ≥ 2,
we also see that h1(IC(t)) = 0 if either t > s + k − 4 or t ≤ s + k + 2 and
h1(IC(t+ k − 4)) = h1(IC(t+ k − 3)) = 2.
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