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TORSION MODULES AND SPECTRAL SPACES

Hajar Roshan-Shekalgourabi

Abstract. In this paper we study certain modules whose prime spec-

trums are Noetherian or/and spectral spaces. In particular, we investi-

gate the relationship between topological properties of prime spectra of
torsion modules and algebraic properties of them.

1. Introduction

Throughout the article, R is a commutative ring with a nonzero identity and
all modules are unitary. We recall some definitions. Let M be an R-module and
N be a submodule of M . Then (N :R M) denotes the ideal {r ∈ R | rM ⊆ N}
and the annihilator of M , denoted by AnnR(M), is the ideal (0M :R M).
If there is no ambiguity, we will write (N : M) (resp. Ann(M)) instead of
(N :R M) (resp. AnnR(M)). N is said to be prime if N 6= M and whenever
rm ∈ N (where r ∈ R and m ∈ M) then r ∈ (N : M) or m ∈ N . If N
is prime, then the ideal p := (N : M) is a prime ideal of R. In this case,
N is said to be p-prime (see [13, 20]). The set of all prime submodules of an
R-module M is called the prime spectrum of M and is denoted by Spec(M).
Similarly, the collection of all p-prime submodules of an R-module M for any
p ∈ Spec(R) is designated by Specp(M). The set of all prime submodules of M
containing N is denoted by V ∗(N) (see [21]). Following [16], we define V (N)
as {P ∈ Spec(M) | (P : M) ⊇ (N : M)}. Set Z(M) = {V (N) : N ≤ M}
and Z∗(M) = {V ∗(N) : N ≤M}. Then, the family composed by the Z(M) is
the family of closed sets of a topology on Spec(M), called the Zariski topology
and denoted by τ . Moreover, if the collection of the sets Z∗(M) is closed
under finite union, then this the Z∗(M) are the closed set of another topology,
denoted by τ∗. When this is the case, we call the topology τ∗ the quasi-Zariski
topology on Spec(M) and M is called a top module (see [21]).

The concept of prime submodule has led to the development of topologies on
the spectrum of modules. Topologies are considered by Duraivel, McCasland,
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Moore, Smith, and Lu in [9, 16, 21]. It is well-known that the Zariski topology
on the spectrum of prime ideals of a ring is one of the main tools in alge-
braic geometry. In the literature, there are many papers devoted to the Zariski
topology on the spectrum of modules [1, 2, 6, 10, 18, 22, 26]. Finding relation-
ship between topological properties of prime spectra of modules and algebraic
properties of those modules is the subject of many articles. In Section 2, we
consider the prime spectrum of modules with different topologies and introduce
some conditions under which these are Noetherian or/and spectral spaces.

In the sequel, we recall briefly definitions and basic properties of certain
topological spaces that we shall use. Let M be an R-module and N be a
submodule of M . Note that Spec(0) = ∅ and that Spec(M) may be empty
for some nonzero R-module M . For example, the Prüfer group Zp∞ = {α ∈
Q/Z |α = (r/pn)+Z, r ∈ Z, n ∈ N0} as a Z-module has no prime submodule for
any prime number p ([15]). Such a module is said to be primeless. In the sequel,
we always assume that M is not primeless. M is called primeful if either M =
(0) or M 6= (0) and the natural map ψ : Spec(M)→ Spec(R/Ann(M)), defined
by ψ(P ) = (P : M)/Ann(M) for every P ∈ Spec(M), is surjective. Finitely
generated modules and free modules are primeful (see [16,17]). The radical of
N , denoted by radM (N) or briefly rad(N), is defined to be the intersection of
all prime submodules of M containing N . In the case where there are no such
prime submodules, rad(N) is defined as M . If rad(N) = N , we say that N is
a radical submodule (see [14, 19] and [11]). For an ideal I of R we recall that
the I-torsion submodule of M is ΓI(M) = {m ∈M | Inm = 0 for some n ∈ N}
and M is said to be I-torsion if M = ΓI(M) (see [8]).

Let H be a proper submodule of an R-module M . We say that H is maximal
if there is no submodule properly between H and M .

For the reader convenience, we collect several basic facts on prime submod-
ules and prime spectra.

Remark 1.1. Let M be an R-module.
(1) If N is a submodule of M whose residual (N : M) by N is a maximal ideal

of R, then N is a prime submodule. In particular, mM is a prime submodule
of an R-module M for every maximal ideal m of R such that mM 6= M (see
[13, Proposition 2]).

(2) Let p be a prime ideal of R and let N be any submodule of M and let
K ∈ Specp(M). Then K ∩N=N or K ∩N ∈Specp(N) (see [21, Lemma 1.6]).

(3) V (N) = V ((N : M)M) = V ∗((N : M)M) for every submodule N of M .
In particular, V (IM) = V ∗(IM) for every ideal I of R (see [16, Result 3]).

(4) If M is a top module, in particular M is a multiplication module, then
Spec(M) is a T0-space for both the Zariski topology and the quasi-Zariski
topology (see [16, Corollary 6.2]).

Remark 1.2. Let M be an R-module. By [16, Theorem 6.1], the following
statements are equivalent:

(1) (Spec(M), τ) is a T0-space;
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(2) |Specp(M)| ≤ 1 for every p ∈ Spec(R).

Remark 1.3. Let X be a topological space.
(1) Let M be an R-module and Y be a subset of Spec(M). We will denote

the intersection of all elements in Y by =(Y ) and the closure of Y in Spec(M)
w.r.t the (quasi-)Zariski topology by Cl(Y ). By [16, Proposition 5.1], we have
V (=(Y )) = Cl(Y ). An element y ∈ Y is called a generic point of Y if Y =
Cl({y}).

(2) Following M. Hochster [12], we say that a topological space Y is a spec-
tral space in the case where Y is homeomorphic to Spec(S), with the Zariski
topology, for some ring S. Spectral spaces have been characterized by Hochster
[12, p. 52, Proposition 4] as the topological spaces Y which satisfy the following
conditions: (1) Y is a T0-space; (2) Y is quasi-compact; (3) the quasi-compact
open subsets of Y are closed under finite intersections and form a basis of open
sets; (4) each irreducible closed subset of Y has a generic point. For examples
of modules whose prime spectrum is spectral, see [1, 16].

(3) A Noetherian space is spectral if and only if it is T0 and every non-
empty irreducible closed subspace has a generic point ([12, pp. 57–58]). We
recall that if M is a top R-module, then (Spec(M), τ∗) is a T0-space and every
irreducible closed subset of Spec(M) has a generic point (see Remark 1.1(4)
and [3, Theorem 3.3]).

2. Main results

We consider the prime spectra of certain torsion modules with different
topologies and introduce some conditions under which these are Noetherian
or/and spectral spaces. For more information about the modules whose prime
spectrums are Noetherian or/and spectral spaces, see [1,16,18]. The following
lemma is quite useful for our purpose.

Lemma 2.1. Let M be an R-module and N be a proper submodule of M .
Then, the following statements hold.

(1) Let P be a p-prime submodule of M for some prime ideal p of R. Then,
for each ideal J of R such that J * p, we have ΓJ(M) ⊆ P .

(2) If M =
⊕

λ∈ΛMλ, where Mλ is an mλ-torsion submodule of M (where
X := {mλ |λ ∈ Λ} is a collection of distinct maximal ideals of R), then
N ∈ Spec(M) if and only if (N : M) ∈ Max(R).

Proof. (1) Let J be an ideal of R such that J * p and let m ∈ ΓJ(M). Then,
there is an integer n ∈ N such that Jnm = 0 ∈ P . By definition of prime
submodule and assumption, we infer that m ∈ P .

(2) (⇐) If N is a proper submodule of M such that (N : M) ∈ Max(R),
then N is a prime submodule of M by Remark 1.1(1). (⇒) Let N be a p-prime
submodule of M . Then N ∩Mh 6= Mh for some h ∈ Λ. By Remark 1.1(2),
N ∩Mh ∈ Specp(Mh). Therefore, (N : M) = (N ∩Mh : Mh) = p. It follows
from (1) that (N : M) = p = mh ∈ Max(R). �
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There are well-known type of modules that satisfy the assumptions of Lemma
2.1(2). For example, if R is a Noetherian ring and M is a nonzero R-module
such that Ass(M) ⊆ Max(R), then M ∼=

⊕
p∈Ass(M) Γp(M). To see this, we

show that M → Mp, where p ∈ Ass(M) is surjective. By [5, Proposition 3.9],
it suffices to prove that for every maximal ideal m, the induced map Mm →
(Mp)m is surjective. If m = p, then Mm → (Mp)m is essentially the identity
map. On the other hand, if m 6= p, then m 6∈ Ass(Mp) = Supp(Mp) so that
(Mp)m = 0 so Mm → (Mp)m is surely surjective. Likewise this shows that
for each maximal ideal m, the obvious map Mm → (⊕p∈Ass(M)Mp)m is an
isomorphism (see [23, Theorem 7.37]), showing that M → ⊕p∈Ass(M)Mp is
an isomorphism. Since R is Noetherian and Ass(M) ⊆ Max(R), for each
q ∈ Ass(M) we have Γq(M) ∼= Γq(⊕p∈Ass(M)Mp) = Γq(Mq) = Mq. This
implies that M ∼=

⊕
p∈Ass(M) Γp(M).

Proposition 2.2. Let {mλ}λ∈Λ be a collection of distinct maximal ideals of
R. Suppose M =

⊕
λ∈ΛMλ, where Mλ is an mλ-torsion submodule of M . If

Λ′ = {λ ∈ Λ |mλM 6= M}
is a finite set, then the topological space (Spec(M), τ) is Noetherian.

Proof. Let V (N1) ⊇ V (N2) ⊇ · · · be a descending chain of closed subsets of
(Spec(M), τ). Then, we have an ascending chain

=(V (N1)) ⊆ =(V (N2)) ⊆ · · ·
of radical submodules of M and so we have an ascending chain of radical ideals

(=(V (N1)) : M) ⊆ (=(V (N2)) : M) ⊆ · · ·(2.1)

of R. By Lemma 2.1(2), each term of Equation (2.1) is (∩αPα : M) = ∩α(Pα :
M) an intersection of maximal ideals of R. Since Λ′ = {λ ∈ Λ |mλM 6= M} is
a finite set, there exists a positive integer k such that

(=(V (Nk)) : M)M = (=(V (Nk+i)) : M)M

for each i = 1, 2, . . .. By Remark 1.1(3),

V (=(V (Nk))) = V (=(V (Nk+i))).

By Remark 1.3(2), V (Nk) = V (Nk+i), and so (Spec(M), τ) is a Noetherian
space. �

The next corollary was proved in [1]. We can use Proposition 2.2 to give a
new proof.

Corollary 2.3. Let M be an Artinian R-module. Then (Spec(M), τ) is a
Noetherian space.

Proof. Since M is Artinian, Ass(M) is finite, and thus there are finitely many
maximal ideals m1, . . . ,mr of R such that M = Γm1

(M) ⊕ · · · ⊕ Γmr
(M) (see

[25, p.166]). Now the result follows from Proposition 2.2. �



TORSION MODULES AND SPECTRAL SPACES 99

In the next corollary, we investigate the spectralness of the prime spectrum
of torsion modules over Dedekind domains.

Proposition 2.4. Let R be a Dedekind domain which is not field and M be a
torsion R-module such that (Spec(M), τ) is a T0-space. Then, (Spec(M), τ) is
spectral if and only if it is finite.

Proof. Obviously, a finite T0 space is always spectral. On the other hand, we
suppose that Spec(M) is infinite. By assumption we have Ass(M) ⊆ Max(R)
and M =

⊕
p∈Ass(M) Γp(M).

We claim that (Spec(M), τ) is an irreducible space. To see this, let Spec(M)
= V1∪V2, where Vi is a closed subset of Spec(M). Then there are submodules N
and L of M such that V1 = V (N) and V2 = V (L). Without loss of generality we
can assume that V2 = V (L) is infinite. This implies that (L : M) is contained
in infinitely many prime ideals because (Spec(M), τ) is a T0-space. Since R is
a Dedekind domain, (L : M) = (0). Therefore, Spec(M) = V (L). This shows
that (Spec(M), τ) is irreducible.

Now, suppose that (Spec(M), τ) is a spectral space. By Remark 1.3(3),
every irreducible closed subset of Spec(M) has a generic point. Thus, there
exists a prime submodule P of M such that Spec(M) = V (P ). Hence, (P : M)
is contained in infinitely many prime ideals. Since R is a Dedekind domain,
(P : M) = (0). This is a contradiction, because M =

⊕
p∈Ass(M) Γp(M) and

(P : M) is a maximal ideal of R by Lemma 2.1(2). �

Example 2.5. Consider M =
⊕

p(Z/pZ) as a Z-module, where p runs through
the set of all prime numbers. It is easy to see that M is a torsion module
and Spec(M) is an infinite set (see [17, Example 1]). By Proposition 2.4,
(Spec(M), τ) is not a spectral space.

It is well-known that if R is an Artinian ring, then every prime ideal of R is
maximal and Spec(R) is a finite set. Now, we generalize this result to Artinian
modules. Note that, for any ring S, (Spec(S), τ) = (Spec(S), τ∗) is a T0-space.

Corollary 2.6. Let M be an Artinian R-module such that (Spec(M), τ) is a
T0-space. Then, every prime submodule of M is maximal and Spec(M) is a
finite set.

Proof. As we mentioned, there exist finitely many maximal ideals m1, . . . ,mr of
R such that M = Γm1(M)⊕ · · · ⊕ Γmr (M). Thus, M satisfies the assumptions
of Lemma 2.1(2). Let P ∈ Spec(M). Then, by Lemma 2.1(2), there is a
maximal ideal mλ of R such that mλ = (P : M). Suppose that L is a proper
submodule of M such that P ⊆ L. Then mλ = (P : M) = (L : M). By
[13, p. 63, Proposition 4], mλM and L are mλ-prime submodules of M . Since
(Spec(M), τ) is a T0-space, P = L = mλM by Remark 1.2. Consequently,
P = mλM ∈ Max(M).

Also, this implies that Spec(M) =
⋃r
i=1 Specmi

(M). Remark 1.2 implies
that Spec(M) must be finite. �
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Corollary 2.7. Let M be an Artinian R-module. Then (Spec(M), τ) is a
T0-space if and only if (Spec(M), τ) is a spectral space.

Proof. If (Spec(M), τ) is a T0-space, then Spec(M) is a finite set, by Corol-
lary 2.6. Hence, [16, Theorem 6.8] yields that (Spec(M), τ) is a spectral space.
Conversely, if (Spec(M), τ) is a spectral space, then (Spec(M), τ) is a T0-space
by Remark 1.3(2). �

Several papers (e.g. [1,3,4,6,7,16,27]) considered the so called top modules.
This class of modules was introduced in [21]. Recall that a submodule S of an
R-module M is said to be semiprime if S is an intersection of prime submodules
of M . Also, recall that a prime submodule P of M is called extraordinary if
whenever N and L are semiprime submodules of M with N ∩ L ⊆ P, then
N ⊆ P or L ⊆ P . By [21, Lemma 2.1], an R-module M is top if and only if
every prime submodule of M is extraordinary.

Theorem 2.8. Let I be an ideal of R such that V (I) is a finite subset of
Max(R) and let M be an I-torsion R-module.

(1) If (Spec(M), τ) is a T0-space, then M is top and (Spec(M), τ∗) is a
spectral space.

(2) (Spec(M), τ) is a Noetherian topological space. Moreover, (Spec(M), τ)
is a spectral space if and only if it is a T0-space.

Proof. (1) Let P be a p-prime submodule of M and also let N and L be two
semiprime submodules of M such that N ∩ L ⊆ P . By Lemma 2.1, I ⊆ p.
We have pM ⊆ P ( M and therefore p = (pM : M) = (P : M) (since p is a
maximal ideal of R) and pM is a p-prime submodule of M by Remark 1.1(1).
By Remark 1.2, P = pM and so

Spec(M) := {qM | q ∈ V (I) and qM 6= M}

is a finite set. Therefore, (N : M) and (L : M) are finite intersections of
maximal ideals with (N : M) ∩ (L : M) ⊆ p. This implies that N ⊆ P or
L ⊆ P . Hence, M is a top module. As a finite space, (Spec(M), τ∗) is a
spectral space.

(2) Let N be a submodule of M and P ∈ V (N). Then by Lemma 2.1 and
the assumptions, {(P : M) |P ∈ V (N)} is a finite set. Let

V (N1) ⊇ V (N2) ⊇ · · ·

be a descending chain of closed subsets of (Spec(M), τ). So, we have an as-
cending chain

=(V (N1)) ⊆ =(V (N2)) ⊆ · · ·
of radical submodules of M and so we have an ascending chain of radical ideals

(=(V (N1)) : M) =
⋂

P∈V (N1)

(P : M) ⊆ (=(V (N2)) : M) ⊆ · · · .
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By the above argument, there exists a positive integer k such that

(=(V (Nk)) : M)M = (=(V (Nk+i)) : M)M

for each i = 1, 2, . . .. According to Remark 1.1(3), we have

V (=(V (Nk))) = V (=(V (Nk+i))).

Now, Remark 1.3(2) implies that V (Nk) = V (Nk+i), and so (Spec(M), τ) is a
Noetherian space.

One implication of the last assertion follows from Remark 1.3(3), and so we
assume that (Spec(M), τ) is a T0-space. Then, by part (1) and Remark 1.2,
(Spec(M), τ) is a finite topological space. Hence, it is a spectral space, by
[16, Theorem 6.8]. �

Example 2.9. Let R be a one-dimensional Noetherian integral domain and I
be a nonzero ideal of R. Let N be an R-module, n be a positive integer and
M = ExtnR(R/I,N), where ExtnR is n-th right derived functor of Hom (see
[24]). Let x ∈ I. Then xM = ExtnR(x(R/I), N) = ExtnR(0, N) = 0, since
ExtnR is an R-linear functor. Therefore, M is I-torsion. If (Spec(M), τ) is a
T0-space, then M is a top R-module and (Spec(M), τ∗) is a spectral space, by
Theorem 2.8.

We recall that a family {Mi}i∈I of R-modules is said to be prime-compatible
if, for all i 6= j in I and every prime ideal p of R, at least one between Specp(Mi)
and Specp(Mj) is empty (see [21]).

Theorem 2.10. Let {Mi}i∈I be R-modules. Then the following statements
are equivalent for the R-module M = ⊕i∈IMi.

(1) M is a top module.
(2) Mi ⊕Mj, is a top module for all i 6= j in I.
(3) {Mi}i∈I are prime-compatible top modules.

Proof. See [21, Theorem 5.1]. �

Corollary 2.11. Let I be a nonzero ideal of R.

(1) If R is a Dedekind domain and M is an I-torsion R-module such that
(Spec(M), τ) is a T0-space, then M is a top module and (Spec(M), τ∗)
is a spectral space.

(2) Let R be a one-dimensional integral domain with Noetherian spectrum
and {qλ}λ∈Λ be a collection of the comaximal ideals of R. For each
λ ∈ Λ, let Mλ be a qλ-torsion R-module such that (Spec(Mλ), τ) is a
T0-space. Then,

⊕
λ∈ΛMλ is a top R-module.

Proof. (1) Since V (I) is a finite subset of Max(R), the result follows from
Theorem 2.8.

(2) By Lemma 2.1, the family {Mλ}λ∈Λ is prime-compatible, and by The-
orem 2.8 Mλ is top, since by assumption V (qλ) is a finite subset of Max(R).
Therefore,

⊕
λ∈ΛMλ is a top R-module by [21, Theorem 5.1]. �
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Example 2.12. Consider M =
⊕

p Z/pZ as a Z-module, where p runs through
the set of all prime numbers. By Corollary 2.11, M is top.
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