References
- Bacher A, Rieder C, Eichinger D, Arigoni D, Fuchs G, Eisenreich W (1998) Elucidation of novel biosynthetic pathways and metabolite flux patterns by retrobiosynthetic NMR analysis. FEMS Microbiol Rev 22: 567-598 https://doi.org/10.1016/S0168-6445(98)00034-5
- Baghalian K, Hajirezaei MR, Schreiber F (2014) Plant metabolic modeling: achieving new insight into metabolism and metabolic engineering. Plant Cell 26: 3847-3866 https://doi.org/10.1105/tpc.114.130328
- Kim D, Kim M, Rana G, Han J (2018) Seasonal Variation and Possible Biosynthetic Pathway of Ginsenosides in Korean Ginseng Panax ginseng Meyer. Molecules 23: 1824 https://doi.org/10.3390/molecules23071824
- Ministry of Agriculture, Food and Rural Affairs (2018) 2017 Ginseng Statistics, Sejong
- Mao Q, Bai M, Xu JD, King M, Zhu LY, Zhu H, Wang Q, Li SL (2014) Discrimination of leaves of Panax ginseng and P. quinquefolius by ultra high performance liquid chromatography quadrupole/time-of-flight mass spectrometry based metabolomics approach. J Pharmaceut Biom Anal 97: 129-140 https://doi.org/10.1016/j.jpba.2014.04.032
- Wang H, Peng D, Xie J (2009) Ginseng Leaf-Stem: Bioactive Constituents and Pharmacological Functions. Chin Med 4: 20 https://doi.org/10.1186/1749-8546-4-20
- Zhang Y, Zhang J, Liu C, Yu M, Li S (2017) Extraction, Isolation, and Aromatase Inhibitory Evaluation of Low-Polar Ginsenosides from Panax ginseng Leaves. J Chromatogr A 1483: 20-29 https://doi.org/10.1016/j.chroma.2016.12.068
- Shin BK, Park HY, Han J (2010) Enzymatic Biotransformation of Red Ginseng and the Compositional Change of Ginsenosides. J Korean Soc Appl Biol Chem 53: 533-538 https://doi.org/10.3839/jksabc.2010.082
- Lee J, Choi BR, Kim YC, Choi D, Lee YS, Kim GS, Baek NI, Lee DY (2017) Comprehensive Profiling and Quantification of Ginsenosides in the Root, Stem, Leaf, and Berry of Panax ginseng by UPLC-QTOF/MS. Molecules 22: 2147 https://doi.org/10.3390/molecules22122147
- Yang SO, Lee SW, Kim YO, Sohn SH, Kim YC, Hyun DY, Hong YP, Shin YS (2013) HPLC-based metabolic profiling and quality control of leaves of different Panax species. J Ginseng Res 37: 248-253 https://doi.org/10.5142/jgr.2013.37.248
- Kim YJ, Joo SC, Shi J, Hu J, Sukweenadhi J, Mohanan P, Yang DC, Zhang D (2018) Metabolic dynamics and physiological adaptation of Panax ginseng during development. Plant Cell Rep 37: 393-410 https://doi.org/10.1007/s00299-017-2236-7
- Zhang YC, Li G, Jiang C, Yang B, Yang HJ, Xu HY, Huang LQ (2014) Tissue-specific distribution of ginsenosides in different aged ginseng and antioxidant activity of ginseng leaf. Molecules 19: 17381-17399 https://doi.org/10.3390/molecules191117381
- Liu F, Ma N, He C, Hu Y, Li P, Chen M, Su H, Wan JB (2018) Qualitative and quantitative analysis of the saponins in Panax notoginseng leaves using ultra-performance liquid chromatography coupled with time-of-flight tandem mass spectrometry and high performance liqu id chromatography coupled with UV detector. J Ginseng Res 42: 149-157 https://doi.org/10.1016/j.jgr.2017.01.007
- Kang OJ, Kim JS (2016) Comparison of ginsenoside contents in different parts of Korean ginseng (Panax ginseng C.A. Meyer). Prev Nutr Food Sci 21: 389-392 https://doi.org/10.3746/pnf.2016.21.4.389
- Kim YJ, Jeon JN, Jang MG, Oh JY, Kwon WS, Jung SK, Yang DC (2014) Ginsenoside profiles and related gene expression during foliation in Panax ginseng Meyer. J Ginseng Res 38: 66-72 https://doi.org/10.1016/j.jgr.2013.11.001
- Wang CZ, Wu JA, McEntee E, Yuan CS (2006) Saponins composition in American ginseng leaf and berry assayed by high-performance liquid chromatography. J Agric Food Chem 54: 2261-2266 https://doi.org/10.1021/jf052993w
- Woo HC, Shin BK, Cho I, Koo H, Kim M, Han J (2011) Anti-obesity Effect of Carbon Dioxide Supercritical Fluid Extracts of Panax ginseng C. A. Meyer. J Korean Soc Appl Biol Chem 54: 738-743 https://doi.org/10.1007/BF03253153
- Han JY, Hwang HS, Choi SW, Kim HJ, Choi YE (2012) Cytochrome P450 CYP716A53v2 Catalyzes the Formation of Protopanaxatriol from Protopanaxadiol During Ginsenoside Biosynthesis in Panax Ginseng. Plant Cell Physiol 53: 1535-1545 https://doi.org/10.1093/pcp/pcs106
Cited by
- 토양유기물 함량이 인삼근의 endosulfan 흡수이행에 미치는 영향 vol.63, pp.4, 2019, https://doi.org/10.3839/jabc.2020.052