DOI QR코드

DOI QR Code

Molecular Characterization of 170 New gDNA-SSR Markers for Genetic Diversity in Button Mushroom (Agaricus bisporus)

  • An, Hyejin (Department of Industrial Plant Science and Technology, Chungbuk National University,) ;
  • Jo, Ick-Hyun (Department of Herbal Crop Research, Rural Development Administration, National Institute of Horticultural and Herbal Science) ;
  • Oh, Youn-Lee (Department of Herbal Crop Research, Rural Development Administration, National Institute of Horticultural and Herbal Science) ;
  • Jang, Kab-Yeul (Department of Herbal Crop Research, Rural Development Administration, National Institute of Horticultural and Herbal Science) ;
  • Kong, Won-Sik (Department of Herbal Crop Research, Rural Development Administration, National Institute of Horticultural and Herbal Science) ;
  • Sung, Jwa-Kyung (Department of Crop Science, Chungbuk National University) ;
  • So, Yoon-Sup (Department of Crop Science, Chungbuk National University) ;
  • Chung, Jong-Wook (Department of Industrial Plant Science and Technology, Chungbuk National University,)
  • Received : 2019.04.16
  • Accepted : 2019.09.03
  • Published : 2019.12.01

Abstract

We designed 170 new simple sequence repeat (SSR) markers based on the whole-genome sequence data of button mushroom (Agaricus bisporus), and selected 121 polymorphic markers. A total of 121 polymorphic markers, the average major allele frequency (MAF) and the average number of alleles (NA) were 0.50 and 5.47, respectively. The average number of genotypes (NG), observed heterozygosity (HO), expected heterozygosity (HE), and polymorphic information content (PIC) were 6.177, 0.227, 0.619, and 0.569, respectively. Pearson's correlation coefficient showed that MAF was negatively correlated with NG (-0.683), NA (-0.600), HO (-0.584), and PIC (-0.941). NG, NA, HO, and PIC were positively correlated with other polymorphic parameters except for MAF. UPGMA clustering showed that 26 A. bisporus accessions were classified into 3 groups, and each accession was differentiated. The 121 SSR markers should facilitate the use of molecular markers in button mushroom breeding and genetic studies.

Keywords

References

  1. Xu Y, Tian Y, Ma R, et al. Effect of plasma activated water on the postharvest quality of button mushrooms, Agaricus bisporus. Food Chem. 2016;197(Pt A):436-444. https://doi.org/10.1016/j.foodchem.2015.10.144
  2. Liu J, Jia L, Kan J, et al. In vitro and in vivo antioxidant activity of ethanolic extract of white button mushroom (Agaricus bisporus). Food Chem Toxicol. 2013;51:310-316. https://doi.org/10.1016/j.fct.2012.10.014
  3. Adams LS, Chen S, Phung S, et al. White button mushroom (Agaricus bisporus) exhibits antiproliferative and proapoptotic properties and inhibits prostate tumor growth in athymic mice. Nutr Cancer. 2008;60(6):744-756. https://doi.org/10.1080/01635580802192866
  4. Jeong SC, Jeong YT, Yang BK, et al. White button mushroom (Agaricus bisporus) lowers blood glucose and cholesterol levels in diabetic and hypercholesterolemic rats. Nutr Res. 2010;30(1):49-56. https://doi.org/10.1016/j.nutres.2009.12.003
  5. Wang Z, Chen L, Yang H, et al. Effect of exogenous glycine betaine on qualities of button mushrooms (Agaricus bisporus) during postharvest storage. Eur Food Res Technol. 2015;240(1):41-48. https://doi.org/10.1007/s00217-014-2305-x
  6. Van Griensven L, Van Roestel A. The cultivation of the button mushroom, Agaricus bisporus, in the Netherlands: a successful industry. Revista Mexicana de Micologia. 2004;19:95-102.
  7. Sonnenberg AS, Gao W, Lavrijssen B, et al. A detailed analysis of the recombination landscape of the button mushroom Agaricus bisporus var. bisporus. Fungal Genet Biol. 2016;93:35-45. https://doi.org/10.1016/j.fgb.2016.06.001
  8. Gao W, Weijn A, Baars JJ, et al. Quantitative trait locus mapping for bruising sensitivity and cap color of Agaricus bisporus (button mushrooms). Fungal Genet Biol. 2015;77:69-81. https://doi.org/10.1016/j.fgb.2015.04.003
  9. Kerrigan RW. Global genetic resources for Agaricus breeding and cultivation. Can J Bot. 1995;73(S1):973-979. https://doi.org/10.1139/b95-347
  10. Loftus MG, Moore D, Elliott TJ. DNA polymorphisms in commercial and wild strains of the cultivated mushroom, Agaricus bisporus. Theor Appl Genet. 1988;76(5):712-718. https://doi.org/10.1007/bf00303517
  11. Singh H, Deshmukh RK, Singh A, et al. Highly variable SSR markers suitable for rice genotyping using agarose gels. Mol Breeding. 2010;25(2):359-364. https://doi.org/10.1007/s11032-009-9328-1
  12. Chiappetta A, Muto A, Muzzalupo R, et al. New rapid procedure for genetic characterization of Italian wild olive (Olea europaea) and traceability of virgin olive oils by means of SSR markers. Sci. Hortic. 2017;226:42-49. https://doi.org/10.1016/j.scienta.2017.08.022
  13. Nakatsuji R, Hashida T, Matsumoto N, et al. Development of genomic and EST-SSR markers in radish (Raphanus sativus L). Breeding Sci. 2011;61(4):413-419. https://doi.org/10.1270/jsbbs.61.413
  14. Dang M, Liu ZX, Chen X, et al. Identification development and application of 12 polymorphic EST-SSR markers for an endemic Chinese walnut (Juglans cathayensis L.) using next-generation sequencing technology. Biochem Syst Ecol. 2015;60:74-80. https://doi.org/10.1016/j.bse.2015.04.004
  15. Liu Q, Song Y, Liu L, et al. Genetic diversity and population structure of pear (Pyrus spp.) collections revealed by a set of core genome-wide SSR markers. Tree Genet Genomes. 2015;11:128. https://doi.org/10.1007/s11295-015-0953-z
  16. Nunome T, Negoro S, Kono I, et al. Development of SSR markers derived from SSR-enriched genomic library of eggplant (Solanum melongena L). Theor Appl Genet. 2009;119(6):1143-1153. https://doi.org/10.1007/s00122-009-1116-0
  17. Watcharawongpaiboon N, Chunwongse J. Development and characterization of microsatellite markers from an enriched genomic library of cucumber (Cucumis sativus). Plant Breed. 2008;127:74-81. https://doi.org/10.1111/j.1439-0523.2007.01425.x
  18. Qi W, Lin F, Liu Y, et al. High-throughput development of simple sequence repeat markers for genetic diversity research in Crambe abyssinica. BMC Plant Biol. 2016;16(1):139. https://doi.org/10.1186/s12870-016-0828-y
  19. Tian Q, Liu J, Huang Y, et al. High-throughput identification and marker development of perfect SSR for cultivated genus of passion fruit (Passiflora edulis). Mol Plant Breed. 2018;9(13):92-96.
  20. Yang T, Fang L, Zhang X, et al. High-throughput development of SSR markers from pea (Pisum sativum L.) based on next generation sequencing of a purified Chinese commercial variety. PLoS One. 2015;10(10):e0139775. https://doi.org/10.1371/journal.pone.0139775
  21. Lee HY, Moon S, Shim D, et al. Development of 44 novel polymorphic SSR markers for determination of shiitake mushroom (Lentinula edodes) cultivars. Genes. 2017;8(4):109. https://doi.org/10.3390/genes8040109
  22. Moon S, Lee HY, Shim D, et al. Development and molecular characterization of novel polymorphic genomic DNA SSR markers in Lentinula edodes. Mycobiology. 2017;45(2):105-109. https://doi.org/10.5941/MYCO.2017.45.2.105
  23. Li JW, Yin X, Zhao YJ, et al. Microsatellite markers for the prized matsutake mushroom (Tricholoma matsutake, Tricholomataceae). Appl Plant Sci. 2018;6:e01202.
  24. Kurokochi H, Zhang S, Takeuchi Y, et al. Locallevel genetic diversity and structure of matsutake mushroom (Tricholoma matsutake) populations in Nagano prefecture Japan revealed by 15 microsatellite markers. J Fungi. 2017;3(2):23. https://doi.org/10.3390/jof3020023
  25. Wang LN, Gao W, Wang QY, Qu JB, et al. Identification of commercial cultivars of Agaricus bisporus in China using genome-wide microsatellite markers. J Integr Agric. 2019;18(3):580-589. https://doi.org/10.1016/S2095-3119(18)62126-4
  26. Foulongne-Oriol M, Spataro C, Savoie JM. Novel microsatellite markers suitable for genetic studies in the white button mushroom Agaricus bisporus. Appl Microbiol Biotechnol. 2009;84(6):1125-1135. https://doi.org/10.1007/s00253-009-2030-8
  27. Foulongne-Oriol M, Spataro C, Cathalot V, et al. An expanded genetic linkage map of an intervarietal Agaricus bisporus var. bisporus x A. bisporus var. burnettii hybrid based on AFLP SSR and CAPS markers sheds light on the recombination behavior of the species. Fungal Genet Biol. 2010;47(3):226-236. https://doi.org/10.1016/j.fgb.2009.12.003
  28. Lee HY, Raveendar S, An H, et al. Development of polymorphic simple sequence repeat markers using high-throughput sequencing in button mushroom (Agaricus bisporus). Mycobiology. 2018;46(4):421-428. https://doi.org/10.1080/12298093.2018.1538072
  29. Liu K, Muse SV. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics. 2005;21(9):2128-2129. https://doi.org/10.1093/bioinformatics/bti282
  30. Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870-1874. https://doi.org/10.1093/molbev/msw054
  31. Fu Y, Wang X, Li D, et al. Identification of resistance to wet bubble disease and genetic diversity in wild and cultivated strains of Agaricus bisporus. Int J Mol Sci. 2016;17(10):1568. https://doi.org/10.3390/ijms17101568
  32. Toth G, Gaspari Z, Jurka J. Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res. 2000;10(7):967-981. https://doi.org/10.1101/gr.10.7.967
  33. Powell W, Morgante M, Andre C, et al. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breeding. 1996;2(3):225-238. https://doi.org/10.1007/BF00564200

Cited by

  1. SSR 마커를 이용한 유럽 양송이 자원의 유전적 다양성 및 집단구조분석 vol.18, pp.4, 2019, https://doi.org/10.14480/jm.2020.18.4.323
  2. Development of CAPS Markers for Evaluation of Genetic Diversity and Population Structure in the Germplasm of Button Mushroom (Agaricus bisporus) vol.7, pp.5, 2019, https://doi.org/10.3390/jof7050375
  3. Evaluation of Genetic Diversity and Population Structure Analysis among Germplasm of Agaricus bisporus by SSR Markers vol.49, pp.4, 2019, https://doi.org/10.1080/12298093.2021.1940746