References
- Xu Y, Tian Y, Ma R, et al. Effect of plasma activated water on the postharvest quality of button mushrooms, Agaricus bisporus. Food Chem. 2016;197(Pt A):436-444. https://doi.org/10.1016/j.foodchem.2015.10.144
- Liu J, Jia L, Kan J, et al. In vitro and in vivo antioxidant activity of ethanolic extract of white button mushroom (Agaricus bisporus). Food Chem Toxicol. 2013;51:310-316. https://doi.org/10.1016/j.fct.2012.10.014
- Adams LS, Chen S, Phung S, et al. White button mushroom (Agaricus bisporus) exhibits antiproliferative and proapoptotic properties and inhibits prostate tumor growth in athymic mice. Nutr Cancer. 2008;60(6):744-756. https://doi.org/10.1080/01635580802192866
- Jeong SC, Jeong YT, Yang BK, et al. White button mushroom (Agaricus bisporus) lowers blood glucose and cholesterol levels in diabetic and hypercholesterolemic rats. Nutr Res. 2010;30(1):49-56. https://doi.org/10.1016/j.nutres.2009.12.003
- Wang Z, Chen L, Yang H, et al. Effect of exogenous glycine betaine on qualities of button mushrooms (Agaricus bisporus) during postharvest storage. Eur Food Res Technol. 2015;240(1):41-48. https://doi.org/10.1007/s00217-014-2305-x
- Van Griensven L, Van Roestel A. The cultivation of the button mushroom, Agaricus bisporus, in the Netherlands: a successful industry. Revista Mexicana de Micologia. 2004;19:95-102.
- Sonnenberg AS, Gao W, Lavrijssen B, et al. A detailed analysis of the recombination landscape of the button mushroom Agaricus bisporus var. bisporus. Fungal Genet Biol. 2016;93:35-45. https://doi.org/10.1016/j.fgb.2016.06.001
- Gao W, Weijn A, Baars JJ, et al. Quantitative trait locus mapping for bruising sensitivity and cap color of Agaricus bisporus (button mushrooms). Fungal Genet Biol. 2015;77:69-81. https://doi.org/10.1016/j.fgb.2015.04.003
- Kerrigan RW. Global genetic resources for Agaricus breeding and cultivation. Can J Bot. 1995;73(S1):973-979. https://doi.org/10.1139/b95-347
- Loftus MG, Moore D, Elliott TJ. DNA polymorphisms in commercial and wild strains of the cultivated mushroom, Agaricus bisporus. Theor Appl Genet. 1988;76(5):712-718. https://doi.org/10.1007/bf00303517
- Singh H, Deshmukh RK, Singh A, et al. Highly variable SSR markers suitable for rice genotyping using agarose gels. Mol Breeding. 2010;25(2):359-364. https://doi.org/10.1007/s11032-009-9328-1
- Chiappetta A, Muto A, Muzzalupo R, et al. New rapid procedure for genetic characterization of Italian wild olive (Olea europaea) and traceability of virgin olive oils by means of SSR markers. Sci. Hortic. 2017;226:42-49. https://doi.org/10.1016/j.scienta.2017.08.022
- Nakatsuji R, Hashida T, Matsumoto N, et al. Development of genomic and EST-SSR markers in radish (Raphanus sativus L). Breeding Sci. 2011;61(4):413-419. https://doi.org/10.1270/jsbbs.61.413
- Dang M, Liu ZX, Chen X, et al. Identification development and application of 12 polymorphic EST-SSR markers for an endemic Chinese walnut (Juglans cathayensis L.) using next-generation sequencing technology. Biochem Syst Ecol. 2015;60:74-80. https://doi.org/10.1016/j.bse.2015.04.004
- Liu Q, Song Y, Liu L, et al. Genetic diversity and population structure of pear (Pyrus spp.) collections revealed by a set of core genome-wide SSR markers. Tree Genet Genomes. 2015;11:128. https://doi.org/10.1007/s11295-015-0953-z
- Nunome T, Negoro S, Kono I, et al. Development of SSR markers derived from SSR-enriched genomic library of eggplant (Solanum melongena L). Theor Appl Genet. 2009;119(6):1143-1153. https://doi.org/10.1007/s00122-009-1116-0
- Watcharawongpaiboon N, Chunwongse J. Development and characterization of microsatellite markers from an enriched genomic library of cucumber (Cucumis sativus). Plant Breed. 2008;127:74-81. https://doi.org/10.1111/j.1439-0523.2007.01425.x
- Qi W, Lin F, Liu Y, et al. High-throughput development of simple sequence repeat markers for genetic diversity research in Crambe abyssinica. BMC Plant Biol. 2016;16(1):139. https://doi.org/10.1186/s12870-016-0828-y
- Tian Q, Liu J, Huang Y, et al. High-throughput identification and marker development of perfect SSR for cultivated genus of passion fruit (Passiflora edulis). Mol Plant Breed. 2018;9(13):92-96.
- Yang T, Fang L, Zhang X, et al. High-throughput development of SSR markers from pea (Pisum sativum L.) based on next generation sequencing of a purified Chinese commercial variety. PLoS One. 2015;10(10):e0139775. https://doi.org/10.1371/journal.pone.0139775
- Lee HY, Moon S, Shim D, et al. Development of 44 novel polymorphic SSR markers for determination of shiitake mushroom (Lentinula edodes) cultivars. Genes. 2017;8(4):109. https://doi.org/10.3390/genes8040109
- Moon S, Lee HY, Shim D, et al. Development and molecular characterization of novel polymorphic genomic DNA SSR markers in Lentinula edodes. Mycobiology. 2017;45(2):105-109. https://doi.org/10.5941/MYCO.2017.45.2.105
- Li JW, Yin X, Zhao YJ, et al. Microsatellite markers for the prized matsutake mushroom (Tricholoma matsutake, Tricholomataceae). Appl Plant Sci. 2018;6:e01202.
- Kurokochi H, Zhang S, Takeuchi Y, et al. Locallevel genetic diversity and structure of matsutake mushroom (Tricholoma matsutake) populations in Nagano prefecture Japan revealed by 15 microsatellite markers. J Fungi. 2017;3(2):23. https://doi.org/10.3390/jof3020023
- Wang LN, Gao W, Wang QY, Qu JB, et al. Identification of commercial cultivars of Agaricus bisporus in China using genome-wide microsatellite markers. J Integr Agric. 2019;18(3):580-589. https://doi.org/10.1016/S2095-3119(18)62126-4
- Foulongne-Oriol M, Spataro C, Savoie JM. Novel microsatellite markers suitable for genetic studies in the white button mushroom Agaricus bisporus. Appl Microbiol Biotechnol. 2009;84(6):1125-1135. https://doi.org/10.1007/s00253-009-2030-8
- Foulongne-Oriol M, Spataro C, Cathalot V, et al. An expanded genetic linkage map of an intervarietal Agaricus bisporus var. bisporus x A. bisporus var. burnettii hybrid based on AFLP SSR and CAPS markers sheds light on the recombination behavior of the species. Fungal Genet Biol. 2010;47(3):226-236. https://doi.org/10.1016/j.fgb.2009.12.003
- Lee HY, Raveendar S, An H, et al. Development of polymorphic simple sequence repeat markers using high-throughput sequencing in button mushroom (Agaricus bisporus). Mycobiology. 2018;46(4):421-428. https://doi.org/10.1080/12298093.2018.1538072
- Liu K, Muse SV. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics. 2005;21(9):2128-2129. https://doi.org/10.1093/bioinformatics/bti282
- Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870-1874. https://doi.org/10.1093/molbev/msw054
- Fu Y, Wang X, Li D, et al. Identification of resistance to wet bubble disease and genetic diversity in wild and cultivated strains of Agaricus bisporus. Int J Mol Sci. 2016;17(10):1568. https://doi.org/10.3390/ijms17101568
- Toth G, Gaspari Z, Jurka J. Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res. 2000;10(7):967-981. https://doi.org/10.1101/gr.10.7.967
- Powell W, Morgante M, Andre C, et al. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breeding. 1996;2(3):225-238. https://doi.org/10.1007/BF00564200
Cited by
- SSR 마커를 이용한 유럽 양송이 자원의 유전적 다양성 및 집단구조분석 vol.18, pp.4, 2019, https://doi.org/10.14480/jm.2020.18.4.323
- Development of CAPS Markers for Evaluation of Genetic Diversity and Population Structure in the Germplasm of Button Mushroom (Agaricus bisporus) vol.7, pp.5, 2019, https://doi.org/10.3390/jof7050375
- Evaluation of Genetic Diversity and Population Structure Analysis among Germplasm of Agaricus bisporus by SSR Markers vol.49, pp.4, 2019, https://doi.org/10.1080/12298093.2021.1940746