DOI QR코드

DOI QR Code

Two Unrecorded Enophytic Fungi Isolated from Root of Ligusticum chuanxiong in Korea: Pithomyces chartarum and Plectosphaerella niemeijerarum

토천궁의 뿌리에서 분리된 2종의 국내 미기록 내생균: Pithomyces chartarum and Plectosphaerella niemeijerarum

  • Park, Hyeok (Department of Biology Education, Korea National University of Education) ;
  • Jung, Chung Ryul (Forest Medicinal Resources Research Center, National Institute of Forest Science) ;
  • Eom, Ahn-Heum (Department of Biology Education, Korea National University of Education)
  • 박혁 (한국교원대학교 생물교육과) ;
  • 정충렬 (국립산림과학원 산림약용자원연구소) ;
  • 엄안흠 (한국교원대학교 생물교육과)
  • Received : 2019.12.16
  • Accepted : 2019.12.18
  • Published : 2019.12.31

Abstract

Endophytic fungal strains were isolated from the sterilized roots of a medicinal plant, Ligusticum chuanxiong and identified based on morphological characteristics and molecular analysis of internal transcribed spacer, large subunit rDNA, and beta-tubulin DNA regions. Our results confirmed the presence of Pithomyces chartarum and Plectosphaerella niemeijerarum in the fungal strains. To the best of our knowledge, the fungal strains have not been reported in Korea. In this report, we describe morphological characteristics and phylogenetic trees of these endophytic fungal strains.

경북 영주의 산림약용자원연구소에서 재배된 토천궁의 뿌리에서 내생균을 분리하였다. 분리된 균주는 형태적 특성의 분석과 internal transcribed spacer, large subunit rDNA, beta-tubulin 영역의 분자 생물학적 계통분석을 이용해 동정하였다. 연구 과정에서 2종의 국내 미기록종 내생균 균주를 확인하였고, 확인된 종은Pithomyces chartarum 과 Plectosphaerella niemeijerarum이다. 미기록종 내생균 균주의 형태적 특성 확인 및 분자계통 분석의 결과에 대해 기술하였다.

Keywords

References

  1. Ran X, Ma L, Peng C, Zhang H, Qin LP. Ligusticum chuanxiong hort: a review of chemistry and pharmacology. Pharm 2011;49:1180-9.
  2. Heo YY, Ha BJ. Effect of Ligusticum chuonxiong Hort extracts on the bioactivity in high-fat diet-fed obese rats. J Food Hyg Saf 2011;26:370-6.
  3. Sim Y, Shin SW. Study on cytotoxic activities of the essential oil compounds from Ligusticum chuanxiong against some human cancer strains. YakhakHoeji 2011;55:398-403.
  4. Carroll G. Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 1988;69:2-9. https://doi.org/10.2307/1943154
  5. Saikkonen K, Faeth SH, Helander M, Sullivan TJ. Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Evol Syst 1998;29:319-43. https://doi.org/10.1146/annurev.ecolsys.29.1.319
  6. Bills GF. Isolation and analysis of endophytic fungal communities from woody plants. Endophytic fungi in grasses and woody plants: systematics, ecology, and evolution. St Paul, Minnesota: APS Press; 1996. p. 31-65.
  7. Sinclair JB, Cerkauskas RF. Latent infection vs. endophytic colonization by fungi. Endophytic fungi in grasses and woody plants: systematics, ecology, and evolution. St Paul, Minnesota: APS Press; 1996. p. 3-29.
  8. Peters S, Dammeyer B, Schulz B. Endophyte-host interactions. I. Plant defense reactions to endophytic and pathogenic fungi. Symbiosis 1998;25:193-211.
  9. Breen JP. Acremonium endophyte interactions with enhanced plant resistance to insects. Annu Rev Entomol 1994;39:401-23. https://doi.org/10.1146/annurev.en.39.010194.002153
  10. Aly AH, Debbab A, Kjer J, Proksch P. Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 2010;41:1-16. https://doi.org/10.1007/s13225-010-0034-4
  11. Pelaez F, Collado J, Arenal F, Basilio A, Cabello A, Matas MD, Garcia J, Del Val AG, Gonzalez V, Gorrochategui J. Endophytic fungi from plants living on gypsum soils as a source of secondary metabolites with antimicrobial activity. Mycol Res 1998;102:755-61. https://doi.org/10.1017/S0953756297005662
  12. Park H, Jung CR, Eom AH. Three novel endophytic fungal species isolated from roots of medicinal crops in Korea. Kor J Mycol 2019;47:113-20. https://doi.org/10.4489/KJM.20190014
  13. Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 1993;2:113-8. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
  14. Moncalvo JM, Lutzoni FM, Rehner SA, Johnson J, Vilgalys R. Phylogenetic relationships of agaric fungi based on nuclear large subunit ribosomal DNA sequences. Syst Biol 2000;49:278-305. https://doi.org/10.1080/10635159950173852
  15. Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 1995;61:1323-30. https://doi.org/10.1128/aem.61.4.1323-1330.1995
  16. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870-4. https://doi.org/10.1093/molbev/msw054
  17. Ellis MB. Dematiaceous hyphomycetes: 1. Mycol Papers 1960;76:1-36.
  18. Dingley JM. Pithomyces chartarum, its occurrence morphology, and taxonomy. New Zeal J Agr Res 1962;5:49-61. https://doi.org/10.1080/00288233.1962.10419976
  19. Tuppad DS, Shishupala S. Endophytic mycobiota of medicinal plant Butea monosperma. Int J Curr Microbiol Appl Sci 2013;2:615-27.
  20. Tuppad DS, Shishupala S. Evaluation of endophytic fungi from Butea monosperma for antimicrobial and enzyme activity. J Med Plants Stud 2014;2:38-45.
  21. Crous PW, Wingfield MJ, Burgess T, Carnegie A, Hardy GSJ, Smith D, Summerell BA, Cano-Lira JF, Guarro J, Houbraken J. Fungal planet description sheets: 625-715. Persoonia 2017;39:270.