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The Dynamic Vehicle Routing Problem (DVRP) involves a combinatorial optimization problem where new customer demands 
become known over time, and old routes must be reconfigured to generate new routes while executing the current solution. 
We consider the high level of dynamism problem. An application of highly dynamic DVRP is the ambulance service where 
a patient contacts the service center, followed by an evaluation of case severity, and a visit by a practitioner/ ambulance is 
scheduled accordingly. This paper considers a variant of the DVRP and proposes a decentralized algorithm in which collaborators 
(Depot and Vehicle), both have only partial information about the entire system. The DVRP is modeled as a periodic re optimization 
of VRP using the proposed decentralized algorithm where collaborators exchange local information to achieve the best global 
objective for the current state of the system. We assume the existence of a dispatcher e.g., headquarter of the company who 
can communicate to vehicles in order to gather information and assigns the new visits to them. The effectiveness of the proposed 
decentralized coordination algorithm is further evaluated using benchmark data given in literature. The results show that the proposed 
method performed better than the compared algorithms which utilize the centralized coordination in 12 out of 21 benchmark 
problems.
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1. Introduction1)

The vehicle routing problem (VRP) involves the assign-
ment a fleet of capacitated vehicles to serve a set of custom-
ers in order to minimize the service cost by minimizing the 
number of vehicles and the total travel distance. The vast 
majority of VRP research addresses a static problem in which 
all of the relevant data is known in advance. Typically, ser-
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vice vehicles commence at some initial location and all cus-
tomer demands and constraints are known such as the dis-
tance and travel times between each pair of customers and 
between each customer and the depot. The dynamic VRP 
(DVRP) can be described as follows : A daily service sched-
ule is predetermined before the start of the working day and 
drivers start visiting customer with planned routes. During 
the service, if new customers call for service, routes must 
be revised. The revised planning must be done such that ap-
propriate vehicles can visit the new customers in efficient 
ways. <Figure 1> shows an example of a DVRP with 7 known 
orders and 1 new order. As shown, some customer orders 
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are already known and an initial route is generated to service 
these customers. On receipt of new customer order, the existing 
routes are reconfigured to accommodate the new order. DVRP 
was first introduced by Kilby et al. [21] and Montemanni et al. 
[23] introduced some benchmark instances for DVRP.

<Figure 1> DVRP Example

Practical applications of DVRP can be classified depend-
ing on the degree of dynamism proposed by [22]. Let   
be the length of the planning horizon; the total number of 
dynamic orders ; Ʀ the set of dynamic orders, and   
the disclosure time of request ∈Ʀ. Time window is the 
interval [start (), end ()] within which a customer must 
be serviced. The effective degree of dynamism,   is de-
fined as follows :


 



∈Ʀ

 

If all the orders are extremely urgent such that    , 
then the effective degree of dynamism becomes 1. On the 
other hand, if all the orders are not urgent such that   
and   ,   becomes 0. Larsen et al. [22] developed 
three-category framework for DVRP classification namely 
weakly (low level), moderately (medium level), and strongly 
dynamic (high level) based on the value of the effective de-
gree of dynamism. The values of   according to the levels 
above are as follows : < 0.3, between 0.3 and 0.8, and > 
0.8 respectively. The cable/ telephone repair service or di-
al-a-ride/ taxi-cab service that includes door-to-door services 
with a great number of dynamic customer requests are some-
typical examples of low level dynamism problems. A second 
application is the appliance repair and courier services which 
involve single/multiple insertions into a planned day’s tour 
with time windows are examples of medium level dynamism 
problems. A third application is the ambulance service where 
a patient contacts the service center, followed by an evalua-

tion of case severity, and a visit by a practitioner/ ambulance 
is scheduled accordingly. This we consider as the high level 
of dynamism problem. 

A typical centralized algorithm for DVRP assumes the ex-
istence of a dispatcher e.g., headquarter of the company 
where the tours are recalculated. The dispatcher can commu-
nicate to vehicles in order to gather information and assigns 
the new visits to them. The decision problem faced by a 
dispatcher is more complicated than the static VRP which 
is NP-hard. In addition, due to the uncertain and dynamically 
changing information at routes and vehicles, such a central-
ized problem-solving approach is not appropriate to quickly 
find a high-quality solution for strongly dynamic DVRP. 
Another barrier for the application of the centralized ap-
proach for strongly dynamic DVRP is the applicability of 
information sharing among the dispatcher and vehicles. In 
the US, the ambulance service providers are private compa-
nies and they are reluctant to reveal the private information 
of their companies while generating a visiting tour plan with 
dispatcher (i.e., 911 call center in this case) for urgent 
patients.

Each entity in the DVRP instance is treated as a collabo-
rator. Each vehicle collaborator knows the information on 
the customers in its route and exchange information with 
the depot. A depot collaborator (i.e., dispatcher) is in charge 
of all the vehicles and knows all the information of old and 
new customers it is going to serve. Each of these entities 
has its own objective. The objective of each vehicle collabo-
rator is the traditional minimization of travel time. The ob-
jectives of vehicle collaborators are often in competition with 
each other since the operations of a vehicle collaborator tend 
to be local based on its local view of the current state. 
Therefore, there is a need for the depot collaborator who 
has the global picture of the current state to be able to coor-
dinate the operations of the vehicles. In addition, the objective 
of the depot collaborator is to minimize the total distance 
traveled in all the routes.

This paper focuses on developing decentralized coopera-
tion mechanism among vehicle collaborators and the depot 
collaborator such that the total traveling distance is mini-
mized while the information sharing among collaborators are 
minimal in a strongly dynamic DVRP environment. The 
work is organized as follows : in Section 2, we survey pre-
vious studies on DVRP. The problem considered in this pa-
per is described in Section 3. The proposed decentralized 
architecture is described in Section 4. We validate the pro-



Evans Sowah Okpoti․In-Jae Jeong118

posed model via comparison with existing centralized algo-
rithms in Section 5. Finally, some concluding remarks are 
given in Section 6.

2. Literature Review

In this section, we survey the traditional centralized ap-
proaches for DVRP. The model for the dynamic and de-
terministic VRP can be categorized into two : periodic re-
optimization and continuous reoptimization.

The periodic reoptimization models consider initial routes 
at start of a working day with subsequent reoptimization, 
either on update of the available data, or at fixed time intervals 
referred to as time slices [21] or decision epochs [15]. Kilby 
et al. [21] introduced the specific DVRP model investigated 
in this research discussing some of the issues created by dy-
namic problems. They derived benchmark DVRP problems 
from well-known classic VRP benchmarks. Montemanni et al. 
[23] refined the benchmarks introduced by [21] and solved 
the DVRP using a centralized Ant Colony System (ACS). 
They considered a DVRP as a periodic standard VRP by 
decomposing a DVRP into a sequence of static VRPs over 
time slices. Chen and Xu [5] developed a dynamic column 
generation (DYCOL) approach for the DVRP with time win-
dow (DVRPTW) and introduced the concept of decision ep-
ochs over a planning period, i.e. dates to run the optimization 
process. Hanshar and Ombuki-Berman [15] addressed the 
DVRP using genetic algorithm (GA) and further compared 
it to a Tabu Search (TS) algorithm. Like [21, 23], they adopted 
the concept of time slice and evaluated their algorithm based 
on the benchmark data suggested by [21, 23]. The results 
showed that the GA outperforms the ACS and TS.

Most recent studies based on the periodic optimization 
(time slices) scheme that also considered the benchmark data 
provided by [21. 23] include : Khouadjia et al. [20] applied 
a dynamic adaptive Particle Swarm Optimization (DAPSO) 
to the DVRP and further compared the performance of 
DAPSO to a Variable Neighborhood Search (VNS) algo-
rithm they implemented. Elhassania et al. [10] developed a 
hybrid algorithm by combining an Ant Colony Optimization 
(ACO) with a Large Neighborhood Search (LNS) algorithm 
to solve the DVRP. In their study, a pure ACO was initially 
adopted as a “control experiment” to the hybrid algorithm 
(ACOLNS). Demirtas et al. [9] proposed a Particle Swarm 
Optimization (PSO) which also involved the utilization of 

local search procedures and a new path-insertion based heu-
ristic to repair infeasible solutions. Euchi et al. [11] proposed 
an Artificial Ant Colony based on the 2_Opt local search 
(AAC_2_Opt) for the DVRP.

Continuous reoptimization models consider optimization 
throughout the working day while keeping information on 
good solutions in memory [24]. For any change in available 
data, a decision procedure collects the information from the 
memory to update the existing scheduled routes. Note that 
because the current routing is tentative; vehicles are unaware 
of their next destination until completion of service of a re-
quest [13]. Gendreau et al. [13] applied the parallel Tabu 
Search framework proposed by [16] to a DVRPTW asso-
ciated with long distance express courier services. The ap-
proach maintains a pool of good routes (in adaptive memory) 
which are used to generate initial solutions for parallel TS. 
This framework was also implemented for the DVRP [18, 
31]. GAs have also been used for DVRP recently [17]. GAs 
in dynamic contexts only differ from those designed for static 
problems in the constant adaptation of solutions to the 
changes made to the input.

Different variants of DVRP studies exist in the literature. 
Schilde et al. [25] studied the integration of stochastic time- 
dependent travel speed in solution methods for the dynamic 
dial-a-ride problem (DARP). A dynamic nearest neighbor 
policy for the pick-up and delivery problem with multiple 
vehicles was introduced by [26]. The policy is for the oper-
ation of a fleet of vehicles used to serve customers within 
a Euclidean service area according to a Poisson process. 
Yang et al. [32] also studied a multi-objective distribution 
model that considers the customers’ satisfaction degree as 
well as cost for online shopping express logistics and pro-
posed a modified PSO which enhances the particle evolution 
quality. Dan et al. [8] considered the Emergency Materials 
Dispatch (EMD) as a typical DVRP and developed a model 
as well as an ACO algorithm to solve the problem. Barkaoui 
et al. [2] introduced an adaptive evolutionary approach that 
uses genetic algorithm for real-time vehicle routing and 
dispatching. Azi et al. [1] proposed a method based on an 
adaptive large neighborhood search heuristic to solve a 
DVRP with multiple delivery routes. Kergosien et al. [19] 
proposed a tabu search heuristic for the transportation of pa-
tients between care units dynamically and Beaudry et al. [3] 
introduced a two-phase heuristic for the dynamic trans-
portation of patients in hospitals. Bent et al. [4] developed 
a LNS strategy for the DVRP and also considered a multiple 
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scenario approach, which uses past decisions to generate 
plans. Ichoua et al. [17] studied a similar problem to that in 
[4] by exploiting information on future events to improve 
decision making. Zhu et al. [33] considered a real-time DVRP 
and applied open constraint programming. Coslovich et al. 
[7] considered an urban dial-a-ride problem and proposed 
a two-phase insertion algorithm. See Gendreau et al. [13] for 
other neighborhood search heuristics for dial-a-ride problem.

In this research, we study the periodic reoptimization mod-
el of DVRP with a decentralized coordination using decen-
tralized system hierarchy.

3. Problem Description

As shown in <Figure 2>, the periodic reoptimization model 
of DVRP discussed in this research, also studied by [21, 
23], can be described as follows : Tco is a cut-off time like 
real world scenarios after which requests arriving are post-
poned to the next working day. Thus the dynamic orders 
that arrived in the time window Tco  is called pending 
orders. At time t , a static VRP is solved. The static VRP 
can be solved with an assumption that all the relevant in-
formation of orders and vehicles are gathered and centered 
to the depot. This assumption can be applied to both the 
centralized and decentralized coordination environments. It 
is reasonable to assume that the relevant information on ve-
hicles are available to the depot since all the vehicles are 
located at the depot at the beginning of the day. Then the 
starting time of the service of the pending orders are de-
termined and the orders are transformed to planned order. 
Among the planned orders that can be serviced within 



 nts

T
Tac




 is called committed order. nts is the number 

of time slices. Thus nts
T  represents the length of a time slice. 

Tac is an advanced commitment time. In practice, an order 
must be committed to a vehicle at least Tac seconds before 
departure from the last visited location prior to start of serv-
ice of the committed order. This advanced commitment time 
gives an appropriate time to react to committed new orders. 
The vehicle to which a committed order is assigned must 
leave from its previous customer (last service location). At 

tnts

T , there is a planned order, that is pending orders\com-

mitted orders (i.e., pending orders except committed orders) 

and in addition we have newly arrived dynamic orders during 

the period 

 nts

T 


. Therefore, at the beginning of this new 

time slice, we have a new static VRP again. In a centralized 
coordination environment, we assume that vehicles serve 
customers along with the planned route, send all the relevant 
information of its own (i.e., current location of vehicle, cur-
rent available capacity and so on). However, in this research, 
we assume only a decentralized coordination is applicable 
(See section 4 for more details) to solve the static VRP where 
minimal information is shared among collaborators and deci-
sion authority is dispersed among collaborators. That is, there 
is no decision maker like a dispatcher who has a global view 
of the entire static VRP. At this point, the decentralized algo-
rithm is applied again for orders, pending order\committed 
order+dynamic order. Among the newly planned orders, 

serviceable orders during 


nts

T
Tacnts

T
Tac




can be com-

mitted and this procedure repeats until the current time rea-
ches Tco of today.

<Figure 2> Periodic Reoptimization DVRP Model

4. Decentralized Architecture

<Figure 3> shows the proposed decentralized architecture 
among depot collaborator and vehicle collaborators. Collabo-
rators are independent and intelligent entities that are loaded 
with some programs e.g., heuristic algorithm or optimization 
software such as CPLEX, and can therefore react to events 
and perform some jobs.

The decentralized interaction is characterized by the opti-
mization stage and the commitment stage. In the optimization 
stage, the depot collaborator and vehicle collaborators coop-
eratively solve the reoptimization problem of DVRP. Throug-
hout the time horizon, relevant information regarding re-
ceived customer orders in a time slice such as customer’s 
geographic location and traveling distances are verified with 
GIS by the depot collaborator. The depot collaborator sends 
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information on customers to each vehicle collaborator. The 
vehicle collaborator on the other hand sends its state in-
formation such as current location of vehicle and planned 
route to depot collaborator. With this information, depot col-
laborator re-optimizes the vehicle routes by solving its own 
optimization problem considering customers and vehicle col-
laborators’ information. Next, customer-vehicle assignments 
are announced to vehicle collaborators. Once a vehicle col-
laborator has received information on new customers, it de-
termines a routing plan by solving its optimization problem 
and sends the information back to the depot collaborator. 
This iterative process continues while there is ample time 
until the best objective value is reached.

Once the optimization terminates, orders are committed 
to specific vehicles at commitment stage by the depot 
collaborator. Note that orders must be committed to a driver 
at least an advanced commitment time, Tac prior to departure 
from the last location visited. The advanced commitment 
time gives the drivers appropriate reaction time to new orders 
before commencement of processing the order. The proposed 
architecture is purely decentralized since neither the depot 
or vehicle collaborator has a global view of the entire state 
of the system. However, this can be compensated by the in-
formation exchange among the collaborators.

<Figure 3> Decentralized Architecture

The proposed decentralized procedure can be formalized as 
follows :
Phase I

Step 0 : Set the current time t = 0

Step 1 (Optimization stage) : Let  be the set of pending 
orders at   . The depot collaborator solves the static VRP 
with nodes, . Let  be the subset of pending orders as-

signed to vehicle k and  be the set of pair of orders which 
represent the corresponding visiting sequence of orders. Let
 be the set of vehicles that are assigned orders.

Step 2 (Commitment stage) : Among , commit the set 
of orders, Ck that can be served within the time window, 



 nts

T
Tac




 along with the traveling sequence .

Step 3 : Let the orders that have not been served within 

the time window 

 nts

T
Tac




be unplanned orders , 

which are the set of pending orders\committed orders as-
signed to vehicle collaborator k, that is \Ck. Also let  
be the set of dynamic orders received during the time slice 



 nts

T 


. Set the current time t = 

 .

Phase II
Step 4 (Optimization stage)
Step 4.1 (Initial Solution) : The depot collaborator solves 
the Linear Assignment Problem (LAP) for   objects (i.e., 
dynamic orders) and   persons (i.e., vehicles) with the as-
signment cost  min∈  for all ∈ when a dynamic 

order  is assigned to a vehicle . 

Step 4.2 (Vehicle collaborator) : The vehicle collaborator 
 solves the Vehicle collaborator Problem VAP (
). As a result, the vehicle collaborator  updates  such 
that the order  is newly inserted. In addition, the existing 
 for  is newly optimized given that orders in  are 
already served. The vehicle collaborator  sends the local 
objective function value   and unplanned orders,  to 
the depot collaborator.

Step 4.3 (Improvement stage) : The depot collaborator gath-
ers local objective function values from vehicle collaborators 
and updates the upper bound, ∑

 
 . Set   

  Step 4.3.1(Depot collaborator) : Randomly select orders 
from ∪ and generate a sequence of orders. Let  
be the jth element in the sequence. Set j = 1. For , let 

 . The depot collaborator sends the assignment to 

the vehicle collaborator . 

  Step 4.3.2(Vehicle collaborator) : The vehicle collaborator 
 solves VAP(  

  ) and send the corresponding 

objective function value, 
   to the depot collaborator.
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  Step 4.3.3(Depot collaborator) : Select the vehicle collabo-
rator whose 

   is minimal among all vehicle collabo-

rators and assign the order  to the corresponding vehicle 
collaborator. 

  Step 4.3.4 : If  ≠ |∪| increase    and go 
to Step 4.3.1.

  Step 4.3.5 : If the new objective function value ∑
 

   

has been improved from the current upper bound, update 
the current upper bound as ∑

  
 , set    and 

go to Step 4.3.1. Otherwise terminate the algorithm.

Define LAP as follows : 


    vehiclek serves customer i  otherwis

.

LAP

Minimize  





  

∪


 (1)

s.t 





   ∈{∪} (2)


  

∪


     ⋯  (3)

Step 5 (Commitment stage)

Step 5.1 : For each vehicle collaborator , commit orders 
in  and  along with the route in  where the service 
can be completed within the next time slice plus Tco.

Step 5.2 : Increase the current time by nts
T . If the time slice 

reaches to the cutoff time Tco, terminate the algorithm other-
wise, go to Step 1.

Phase I deals with the optimization and commitment stage 
at    and Phase II applies at the beginning of each time 

slices such as 




 
  and so on. The static VRP 

in Step 1 is heuristically solved using the Ruin and Recreate 
(R&R) algorithm proposed by Schrimpf et al. [27]. The R&R 
algorithm has been successfully applied to VRPTW and out-
performed existing meta heuristics (see [27] for more de-
tails). Once the algorithm at    terminates, the committed 
orders are served based on the route determined from the 
static VRP at Step 1. 

In order to solve LAP at step 4.2,   must be the same 
as  . When   >  , we add     new vehicles to 
the solution in order to handle new orders. In this case,  
are the same for all new vehicles since all the vehicles are 
located at the depot. If   <  , we add     artificial 
orders with   for all vehicles so that we have the equal 
number of orders and vehicles. The LAP is solved optimally 
using the well-known Hungarian algorithm. The vehicle col-
laborator problem, VAP(   ) is formalized in the 
following section. 

Step 4.3 deals with the improvement of the initial solution 
by the decentralized cooperation among the depot collabo-
rator and vehicle collaborators. Upon receipt of an upper 
bound of solution, the depot collaborator resets the assign-
ment of the unplanned orders and dynamic orders to vehicle 
collaborators which was determined at Step 3 and Step 4.1 
respectively. The depot collaborator tries to improve the ini-
tial solution by solving the General Assignment Problem 
(GAP) of ∪ objects to  persons where  is the set 
of uniform fleet of vehicles with same capacity at Step 4.3. 
Different to LAP, we allow the assignment of multiple orders 
to one vehicle (i.e. relaxing constraint 2)in GAP which is 
NP-hard problem. Actually, Step 4.3 shows the heuristic and 
decentralized algorithm to solve the GAP of the depot 
collaborator. The information flows among the depot collab-
orator and the vehicle collaborators for Step 4.3 are shown 
in <Figure 4> At Step 4.3.1, the depot collaborator asks the 
vehicle collaborator k to send the local objective function 
value when the vehicle covers the order,

  in its current 

route of visiting customers.

<Figure 4> Information Flows between the Depot Collaborator 

and the Vehicle Collaborator

Upon receipt of all the local objective function value, the 
depot collaborator select the most efficient vehicle (i.e., the 
lowest objective function value) and assign  

  to the corre-

sponding vehicle. The procedure continues until all the orders 
in ∪ are assigned to vehicles. Step 4.3 is repeated as 
long as the computation time of algorithm does not exceed 
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

  and the best solution is implemented for the next time 

slice.
The optimization problem of vehicle collaborators VAP

(   
  ) can be formalized as follows :

Parameters
qi : weight (or volume) of customer i
Q : capacity of vehicle

Decision variables


  1: vehicle k departs from customer i to j,∀k

0: otherwise


  1: vehicle k serves customer i to j,∀k

0: otherwise

VAP(   
  )

  Minimize 
∈  ∪


∈  ∪


 (4)

Subject to

          
∈  ∪≠


 ,   ∈  ∪ (5)

          
∈  ∪≠


 ,   ∈ ∪ (6)


∈ ∈≠

 ≤ 1,  ⊂∪
 ∪

          ≤ ≤


∪
∪ (7)

          
∈∪  ∪


≤ (8)

            ∈ ∈ (9)

          ∈ ∈  ∪ (10)

The objective function of VAP is the minimization of total 
traveling distance in order to serve orders that are assigned 
by the depot collaborator and unplanned order that was pending 
order from the previous day. The constraint (5) and (6) imply 
that the order must be served once and must be connected 
as a route. The subtours must be eliminated by the constraint 
(7). The constraint (8) represents the vehicle capacity. The 
constraint (9) implies that the visiting sequence of already 

committed orders must be maintained. Note that the existing 
route of the vehicle  is updated only for 

 ∪. 

The proposed VAP is a constrained VRP where the visit-
ing sequence of some customers is predetermined. We heu-
ristically solve the VAP using the R&R algorithm.

5. Experimental Results

This section presents the experiment conducted and the 
corresponding results. The decentralized DVRP system was 
coded in Eclipse 4.4 (Luna) and ran on Intel(R) Core(TM) 
i5 CPU (760 @ 2.80GHz (4 CPUs), ~2.8GHz) with 4096MB 
memory.  A comparison of the decentralized system’s per-
formance with other algorithms is also presented.

5.1 Benchmark Dataset

As mentioned earlier, the experimental results are based 
on the instances proposed by [21, 23]. They were derived 
from three separate already known VRP benchmark data by 
Taillard [29] (12 instances), Christophides and Beasley [6] 
(7 instances) and Fisher [12] (2 instances). These instances 
were extended by [21] and organized into two group of in-
stances, pickup and delivery. This research considered only 
pickup problems (total of 21 instances) which include the 
following information : 
•length of the working day. Referred to as T.
•appearance time of each order. This denotes the time when 

the order becomes known to the dispatcher.
•duration of each order. It represents the service time for 

each order.
•number of vehicles. It represents the number of vehicles 

available for serving the customers (set to 50).

Hanshar and Ombuki-Berman [15] further analyzed the 
topology of the service areas for the benchmark datasets 
shown in <Table 1>. Generally, the service areas are either 
uniformly distributed, clustered or a mixture of the two. 

<Table 1> Topology Details of the Benchmark Dataset

Type Customers Distribution

f-series 71~134 Center-clusted

Tai-series 75~150 Clustered, Uniform and Mixed

c-series 50~199 Clustered and Uniform
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<Table 2> Algorithm Comparison

Instance MA
DAPSO

(Average)
VNS

(Average)
ACOLNS
(Average)

ACO
(Average)

AAC_2_Opt
(Average)

c50 691.87 632.38 653.84 623.09 659.60 570.89
c75 1007.49 1031.76 1040.00 1013.47 1101.03 1213.45
c100 996.72 1051.50 1087.18 1012.30 1120.31 1380.25
c100b 898.36 964.47 942.81 943.05 972.30 841.44
c120 1289.64 1457.22 1469.24 1451.60 1481.27 1153.29
c150 1347.52 1470.95 1441.37 1394.77 1559.00 2386.93
c199 1640.41 * 1769.95 1757.02 1892.48 1758.51
f71 323.46 312.15 325.18 320.00 358.45 309.94
f134 14280.54 * 16522.18 16030.53 17983.84 15528.81

tai75a 1768.80 1935.28 1954.25 1880.87 2215.75 1782.91
tai75b 1455.72 1484.73 1560.71 1477.15 1821.00 1452.26
tai75c 1511.29 1664.40 1746.07 1692.00 2076.19 1441.91
tai75d 1496.67 1664.40 1541.98 1491.84 1748.09 1422.27
tai100a 2191.72 2370.58 2462.50 2331.28 2863.71 2232.71
tai100b 2165.28 2385.54 2319.72 2317.30 2750.01 2182.61
tai100c 1510.85 1627.32 1557.81 1717.61 2051.87 1562.66
tai100d 1894.29 2123.90 2100.38 2087.96 2410.37 1912.43
tai150a 3473.61 * 3680.35 3595.40 4191.37 3185.73
tai150b 2944.52 * 3089.57 3095.61 3775.38 2880.57
tai150c 2618.08 * 2928.77 2840.69 3733.77 2743.55
tai150d 2940.76 * 3147.38 3233.39 3745.31 3345.16

Bold values indicate the best among all algorithms
* : means value is not available

In order to compare our results with the other mentioned 
algorithms, the same experimental settings of [15] has been 
adopted. The number of time slices in the optimization,
 . Also, the advanced commitment time  was set 
at  , where T is the entire length of the working day. 
Also, the cutoff time  was set at  . 30sec is allowed 
for the running of the algorithm in each time slice. If the 
algorithm did not complete within 30sec, the best solution 
found is saved and the subsequent time step begins. Thus 
a running time of the entire algorithm for a single problem 
instance is 30×25 = 750s or 12.5 min for simulating an 8- 
hour day.

5.2 Comparison With Other Algorithms

<Table 2> presents the numerical results for the decentral-
ized compared to other centralized DVRP algorithms such 
as dynamic adaptive Particle Swarm Optimization (DAPSO) 
and Variable Neighborhood Search (VNS) by [7], a hybrid 
Ant Colony Optimization-Large Neighborhood Search 
(ACOLNS) and ACO by [8] and Artificial Ant Colony with 
2_Opt (AAC_2_Opt) by [10].

For each of the centralized algorithms, the objective func-
tion values reported is the average value reported by the cor-

responding author. The results show that the decentralized 
system comparatively achieved the best solution for 12 out 
of 21 instances. The AAC_2_Opt recorded 9 best solutions 
out of the 21 instances. 

It seems that the proposed decentralized approach per-
forms especially well when the number of customers is large 
(i.e., more than 100 customers).

6. Conclusion

In this research, DVRP has been studied. Each entity in 
the DVRP instance is treated as a collaborator having its 
own local objective that partially represents the global system 
objective. The collaborators can execute a set of operations 
to change their status to align with the overall system 
objective. 

We proposed a decentralized architecture and coordination 
algorithm for DVRP. Also the proposed method has been 
tested using problem instances derived from publicly avail-
able benchmark data. The results show that the proposed 
method performed better than AAC_2_Opt based method 
which utilizes the centralized coordination in 12 out of 21 
benchmark problems respectively. 
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In near future, we will consider the stability of VRP plan 
as the local objective of a vehicle collaborator. With the re-
vised route, we may ignore the current VRP plan and accept 
a new plan which is completely different route from the old 
one. However, driver is usually nervous about the change 
in the route plan. A driver may be reluctant to have changes 
in lunch break due to an inserted customer in his/her route. 
Therefore, from the optimization point of view, it is reason-
able to accept significant changes in the route. However, 
from the execution point of view, the stability of route may 
be more important than the optimization.This way, one can 
observe some learning capabilities of collaborators and fur-
ther design artificial intelligence approaches.
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