DOI QR코드

DOI QR Code

혁신형 안전경수로의 원자로용기 외벽냉각 시 2상 자연순환 유동에 대한 수치해석적 연구

Numerical Study on Two-phase Natural Circulation Flow by External Reactor Vessel Cooling of iPOWER

  • 박연하 (제주대학교 에너지공학과 대학원) ;
  • 황도현 ((주)한국수력원자력 중앙연구원) ;
  • 이연건 (제주대학교 에너지공학과)
  • Park, Yeon-Ha (Department of Nuclear and Energy Engineering, Jeju National University) ;
  • Hwang, Do Hyun (Central Research Institute, Korea Hydro & Nuclear Power (KHNP)) ;
  • Lee, Yeon-Gun (Department of Nuclear and Energy Engineering, Jeju National University)
  • 투고 : 2019.10.10
  • 심사 : 2019.11.29
  • 발행 : 2019.12.31

초록

국내에서 개발 중인 차세대 혁신형 안전경수로인 iPOWER는 피동용융노심냉각계통의 도입을 통해 중대사고시 노심용융물을 원자로 하부에서 장기간 냉각하고 안정화시키고자 한다. 아직 피동용융노심냉각계통의 최종 설계개념이 확정되기 전이나, 원자로용기 외벽냉각을 통한 노심용융물의 노내 억류 역시 주요 중대사고 대처 전략의 하나로 검토되고 있다. 본 연구에서는 국내에서 개발된 열수력 계통해석코드인 MARS-KS를 이용하여 원자로용기와 단열체 사이에서 형성되는 2상 자연순환 유동을 모의하였다. 냉각수의 유로를 일차원으로 모델링하고, 노심용융물의 열부하에 따른 경계조건을 정의하여 자연순환 유량을 계산하였다. 또한 냉각수의 온도 및 수위, 원자로용기 하반구 주변 기포율 및 외벽에서의 열전달모드 등 주요 열수력 변수의 과도거동을 평가하였다.

The domestic innovative power reactor named iPOWER will employ the passive molten corium cooling system(PMCCS) to cool down and stabilize the core melt in the severe accident. The final design concept of the PMCCS is yet to be determined, but the in-vessel retention through external reactor vessel cooling has been also considered as a viable strategy to cope with the severe accident. In this study, the two-phase natural circulation flow established between the reactor vessel and the insulation was simulated using a thermal-hydraulic system code, MARS-KS. The flow path of cooling water was modeled with one-dimensional nodes, and the boundary condition of the heat load from the molten core was defined to estimate the naturally-driven flow rate. The evolution of major thermal-hydraulic parameters were also evaluated, including the temperature and the level of cooling water, the void fraction around the lower head of the reactor vessel, and the heat transfer mode on its external surface.

키워드

참고문헌

  1. Lee, S. W., et al., 2017, The concept of the innovative power reactor, Nuclear Engineering and Technology, Vol. 49, pp. 1431-1441. https://doi.org/10.1016/j.net.2017.06.015
  2. Park, R. J., et al., 2015, Detailed evaluation of melt pool configuration in the lower plenumof the APR1400 reactor vessel during severe accidents, Annals of Nuclear Energy, Vol. 75, pp. 476-482. https://doi.org/10.1016/j.anucene.2014.07.055
  3. Park, R. J., et al., 2016, Detailed evaluation of natural circulation mass flow rate in the annular gap between the outer reactor vessel wall and insulation under IVR-ERVC, Annals of Nuclear Energy, Vol. 89, pp. 50-55. https://doi.org/10.1016/j.anucene.2015.11.022
  4. Hwang, D. H., et al., 2017, Study on the dimension of ex-vessel passive molten core cooling system for iPOWER, Transactions of the Korean Nuclear Society Spring Meeting, Jeju, Korea, May 18-19.
  5. Rempe, J. L., et al., 1997, Potential for AP600 in-vessel retention through ex-vessel flooding, No. INEEL/EXT-97-00779, Idaho National Engineering and Environmental Lab.
  6. 김동하 외, 2016, 중대사고 현상규명 및 대처체계 구축 로드맵 보고서, 제1권 일차계통 방호 분야, 한국원자력학회
  7. Lim, S. G., et al., 2017, Prediction of heat removal performance for passive containment cooling system using MARS-KS code version 1.14, Transactions of the Korean Nuclear Society Spring Meeting, Jeju, Korea, May 18-19.