DOI QR코드

DOI QR Code

Evaluation of Nutrients Removal using Pyrolyzed Oyster Shells

소성온도에 따른 굴 패각의 영양염 제거 성능 평가

  • Jeong, Ilwon (Department of Ocean Engineering, Pukyong National University) ;
  • Woo, Hee-eun (Department of Ocean Engineering, Pukyong National University) ;
  • Lee, In-Cheol (Department of Ocean Engineering, Pukyong National University) ;
  • Kim, Jinsoo (National Assembly Research Service) ;
  • Kim, Kyunghoi (Department of Ocean Engineering, Pukyong National University)
  • 정일원 (부경대학교 해양공학과 대학원) ;
  • 우희은 (부경대학교 해양공학과 대학원) ;
  • 이인철 (부경대학교 해양공학과) ;
  • 김진수 (국회입법조사처 국토해양팀) ;
  • 김경회 (부경대학교 해양공학과)
  • Received : 2019.09.25
  • Accepted : 2019.12.27
  • Published : 2019.12.31

Abstract

To evaluate the removal performance of PO4-P and NH3-N, laboratory experiments were conducted by filling a container with oyster shells, pyrolyzed at 100℃ (POS100), 600℃ (POS600) and 800℃ (POS800), and passing artificial wastewaters through the container. The pH in the ef luent was found to increase due to CaO eluted from oyster shell. Removal amounts of PO4-P of ~23.1 mg/kg, 16.1 mg/kg, and 15.9 mg/kg were obtained when POS100, POS600, and POS800, respectively, were used; therefore, the highest PO4-P removal amount was obtained when POS100 was used. It is considered that Ca and dolomite in the oyster shells adsorbed and precipitated PO4-P. Removal amounts of NH3-N were of ~3.56 mg/kg, 5.72 mg/kg, and 3.97 mg/kg were obtained when POS100, POS600, and POS800, respectively, were used The low removal rate for NH3-N is probably due to unstable nitrification, use of sealed containers, and the effect of NH3-N being converted to NH4+ upon increasing pH. Based on these results, pyrolyzed oyster shell is expected to promote changes in PO4-P and NH3-N concentrations through chemical reactions. These results can also be used for basic research in the development of wastewater treatment.

소성 굴 패각의 PO4-P 및 NH3-N의 제거성능을 평가하기 위해 100℃(POS100), 600℃(POS600), 800℃(POS800)로 소성시킨 굴 패각을 시료충전층에 채워 인공오수를 통과시키는 실내실험을 통해 PO4-P 및 NH3-N의 제거 성능을 확인하였다. 시료충전층을 통과한 유출수는 굴 패각에서 용출된 CaO의 영향으로 pH가 상승한 것으로 조사되었다. PO4-P 제거량은 최대 약 23.1 mg/kg(POS100), 16.1 mg/kg(POS600), 15.9 mg/kg(POS800)으로, POS100의 PO4-P 제거량이 높게 나타난 것으로 확인되었다. PO4-P 제거 요인으로는 굴 패각의 Ca 및 Dolomite가 PO4-P를 흡착·침전시킨 것으로 판단된다. NH3-N 제거량은 최대 약 3.56 mg/kg(POS100), 5.72 mg/kg(POS600), 3.97 mg/kg(POS800)으로 나타났다. NH3-N의 제거율이 낮은 요인으로는 불안정한 질산화 과정, pH의 상승으로 인해 NH3-N가 NH4+로 변환된 영향 등의 복합적인 원인으로 판단된다. 이상의 결과를 통해 소성 굴 패각은 화학 반응을 통해 PO4-P 및 NH3-N 농도를 감소시킨 것으로 판단되며, 본 연구의 결과는 향후 소성 굴 패각을 활용한 하수처리 기술개발을 위한 기초자료로 활용 될 수 있을 것으로 판단된다.

Keywords

References

  1. Alvarenga, R. A. F. de., B. M. Galindro, C. de. F. Helpa, and S. R. Soares(2012), The recycling of oyster shells: An environmental analysis using Life Cycle Assessment, Journal of Environmental Management, Vol. 106, No. 15, pp. 102-109.
  2. Bertram, M. A., F. T. Mackenzie, F. C. Bishop, and W. D. Bischoff(1991), Influence of temperature on the stability of magnesian calcite, American Mineralogist, Vol. 76, No. 11-12, pp. 1889-1896.
  3. Boeykens, S. P., M. N. Piol, L. S. Legal, A. B. Saralegui, and C. Vazquez(2017), Eutrophication decrease: phosphate adsorption processes in presence of nitrates, Journal of Environmental Management, Vol. 203, pp. 888-895. https://doi.org/10.1016/j.jenvman.2017.05.026
  4. Chen, W. T., C. W. Lin, P. K. Shih, and W. L. Chang(2012), Adsorption of phosphate into waste oyster shell: thermodynamic parameters and reaction kinetics, Desalination and Water Treatment, Vol. 47, No. 1-3, pp. 86-95. https://doi.org/10.1080/19443994.2012.696800
  5. Fuchs, J., S. Muller, J. C. Schmid, and H. Hofbaue(2019), A kinetic model of carbonation and calcination of limestone for sorption enhanced reforming of biomass, International Journal of Greenhouse Gas Control, Vol. 90, pp. 102787. In progress (Nov. 2019). https://doi.org/10.1016/j.ijggc.2019.102787
  6. Gale, P. M., K. R. Reddy, and D. A., Graetz(1994), Phosphorus retention by wetland soils used for treated wastewater disposal, Journal of environmental quality, Vol. 23, No. 2, pp. 370-377. https://doi.org/10.2134/jeq1994.00472425002300020024x
  7. Garcia, E., P. Alfonso, E. Tauler, and S. Gali(2003), Surface alteration of dolomite in dedolomitization reaction in alkaline media, Cement and Concrete Research, Vol. 33, No. 9, pp. 1449-1456. https://doi.org/10.1016/S0008-8846(03)00096-6
  8. Hadley, D. W.(1964), Alkali reactivity of dolomitic carbonate rocks, Highway Research Record, Vol. 40, pp. 462-474.
  9. Hellen, T., J. Mesquita-Guimaraes, B. Henriques, F. Silva, and M. Fredel(2019), The Potential Use of Oyster Shell Waste in New Value-Added By-Product, Resources, Vol. 8, No. 1, pp. 1-15. https://doi.org/10.3390/resources8010001
  10. Jo, E. Y., S. M. Park, I. S. Yeo, J. S. Moon, J. Y. Park, J. C. Kim, Y. S. Kim, and C. G. Park(2015), Study on the removal efficiency of nitrogen and phosphorus in wastewater treatment system using magnetite powder, The KSFM journal of fluid machinery, Vol. 18, No. 2, pp. 43-47. https://doi.org/10.5293/kfma.2015.18.2.043
  11. Jung, Y. J. and K. S. Min(2003), Wastewater treatment performance of A2/O process with fluidized waste-tire media coated with activated carbon, The journal of korean society of environmental engineers, Vol. 25, No. 10, pp. 1299-1304.
  12. Jung, Y. W., S. D. Hur, and J. W. Park(2007), Evaluation of removing activities of nitrogen and phosphate using bacteria-immobilization supporter, wood-chp and zeolite, The Korean society of water quality, Vol. 2007, pp. 1106-1109.
  13. Kim, D. H.(2001). Treatment of Municipal wastewater using quartz porphyry, The journal of applied science and technology, Vol. 10, No. 1, pp. 157-164.
  14. Kim, H. C., H. E. Woo, I. W. Jeong, S. J. Oh, S. H. Lee, and K. H. Kim(2019), Changes in sediment properties caused by a covering of oyster shells pyrolyzed at a low temperature, Journal of the Korean Society of Marine Environment and Safety, Vol. 25, No. 1 pp. 74-80. https://doi.org/10.7837/kosomes.2019.25.1.074
  15. Kim, K. H., I. C. Lee, S. H. Ryu, T. Saito, and T. Hibino (2014), Application of Granulated Coal Ash for Remediation of Coastal Sediment, Journal of the Korean Society for Marine Environment & Energy, Vol. 17, No. 1, pp. 1-7. https://doi.org/10.7846/JKOSMEE.2014.17.1.1
  16. Konen, M. E., P. M. Jacobs, C. L. Burras, B. J. Talaga, and J. A. Mason(2002), Equations for Predicting Soil Organic Carbon Using Loss-on-Ignition for North Central U.S. Soils, Soil Science Society of America Journal, Vol. 66, No. 6, pp. 1879-1881.
  17. Lee, C. W., H. B. Kwon, H. P. Jeon, and B. Koopman(2009), A new recycling material for removing phosphorus from water, Journal of Cleaner Production, Vol. 17, No. 7, pp. 683-687. https://doi.org/10.1016/j.jclepro.2008.11.019
  18. Lee, H. S., D. W. Park, and D. S. Woo(2009), A study on physicochemical and calcination processed characteristic of oyster shell, Korea academy industrial cooperation society, Vol. 10, No. 12. pp. 3971-3976. https://doi.org/10.5762/KAIS.2009.10.12.3971
  19. Lee, J. W., S. H. Choi, S. H. Kim, W. S. Cha, K. Kim, and B. K. Moon(2018), Mineralogical changes of oyster shells by calcination: A comparative study with limestone, The Korean society of economic and environmental geology, Vol. 51, No. 6, pp. 485-492.
  20. Leyva-Ramos, R., G. Aguilar-Armenta, L. V. Gonzalez-Gutierrez, R. M. Guerrero-Coronado, and J. Mendoza-Barron(2004), Ammonia exchange on clinoptilolite from mineral deposits located in Mexico, Journal of Chemical Technology and Biotechnology, Vol. 79, No. 6, pp. 651-657. https://doi.org/10.1002/jctb.1035
  21. Luo, H., G. Huang, X. Fu, X. Liu, D. Zheng, J. Peng, K. Zhang, B. Huang, L. Fan, F. Chen, and X. Sun(2013), Waste oyster shell as a kind of active filler to treat the combined wastewater at an estuary, Journal of Environmental Sciences, Vol. 25, No. 10, pp. 2047-2055. https://doi.org/10.1016/S1001-0742(12)60262-9
  22. MOE(2013), Ministry of environment, A study on the planning of improvement for effluent standards of sewage treatment plants, National Institute of Environmental Research, NIER-SP2013-109.
  23. MOE(2016), Ministry of environment, Environmental testing and inspection act.
  24. MOE(2017), Ministry of environment, Drainage system of Korean design standard.
  25. Park, H. D., K. H. Choi, C. H. Park, G. D. Whang, W. H. Cho, and Y. S. Choi(1997), Removal of nitrogen and phosphorus using porous polyurethane media in municipal wastewater, Journal of Korean Society of Environmental Engineers: 62-66
  26. Park, W. H. and C. Polprasert(2008), Roles of oyster shells in an integrated constructed wetland system designed for P removal, Ecological engineering, Vol. 34, No. 1, pp. 50-56. https://doi.org/10.1016/j.ecoleng.2008.05.014
  27. Park, Y., J. Yu, E. Widyaningsih, and T. Lee(2019), Effect of reactor width and HRT on simultaneous removal of organic compounds and nitrogen in flat-type air-cathode microbial fuel cell, Journal of Korean society of environmental engineers, Vol. 41, No. 2, pp. 69-75. https://doi.org/10.4491/KSEE.2019.41.2.69
  28. Park, Y. S. and K. H. Ahn(2001), Preparation of ceramic support carrier and investigation of performance, Journal of Korean society of environmental engineers, Vol. 23, No. 3, pp. 507-516.
  29. Purwono, A. R., M. Hibbaan, and M. A. Budihardjo(2017), Ammonia-Nitrogen (NH3-N) and Ammonium-Nitrogen (NH4-N) Equilibrium on The Process of Removing Nitrogen By Using Tubular Plastic Media, The journal of materials and environmental sciences, Vol. 8, No. S, pp. 4915-4922.
  30. Sharif, O.(2017), Towards identifying disinfectants and quantifying disinfectant levels in water, Master Thesis.
  31. So, H. S., S. Y. So, J. Khulgadai, J. H. Kang, and M. H. Lee(2015), Pozzolanicity of calcined sewage sludge with calcination and fineness conditions, Journal of the korea concrete institute, Vol. 27, No. 1, pp. 65-73. https://doi.org/10.4334/JKCI.2015.27.1.065
  32. Tong, H., D. Feng, J. Peckmann, H. H. Roberts, L. Chen, Y. Bian, and D. Chen(2019), Environments favoring dolomite formation at cold seeps: A case study from the Gulf of Mexico, Chemical Geology, Vol. 518, No. 20, pp. 9-18. https://doi.org/10.1016/j.chemgeo.2019.04.016
  33. Wang, Z., J. Dong, L. Liu, G. Zhu, and C. Liu(2013), Screening of phosphate-removing substrates for use in constructed wetlands treating swine wastewater, Ecological Engineering, Vol. 54, No. pp. 57-65. https://doi.org/10.1016/j.ecoleng.2013.01.017
  34. Woo, H. E., K. K. Kim, I. C. Lee, and K. H. Kim(2018), A study on phosphate removal efficiency by pre-treatment conditioning of oyster shells. Journal of the Korean society of marine environment and safety, Vol. 24, No. 2, pp. 196-202. https://doi.org/10.7837/kosomes.2018.24.2.196
  35. Yamamoto, T., S. Kondo, K. H. Kim, S. Asaoka, H. Yamamoto, M. Tokuoka, and T. Hibino(2012), Remediation of muddy tidal flat sediments using hot air-dried crushed oyster shells, Marrine Pollution Bulletin, Vol. 64, No. 11, pp. 2428-2434. https://doi.org/10.1016/j.marpolbul.2012.08.002
  36. Yang, E. I., S. T. Yi, and Y. M. Leem(2005), Effect of oyster shell substituted for fine aggregate on concrete characteristics: Part I. Fundamental properties, Cement and Concrete Research, Vol. 35, No. 11, pp. 2175-2182. https://doi.org/10.1016/j.cemconres.2005.03.016
  37. Yoon, H. S. and T. S. Yang(2004), Mechanical characteristics of crushed oyster shell. The journal of korean society of urban environment, Vol. 4, No. 2, pp. 39-45.

Cited by

  1. 굴 패각의 입경 및 소성 온도에 따른 연안 오염 저서환경 변화 연구 vol.26, pp.7, 2019, https://doi.org/10.7837/kosomes.2020.26.7.873