DOI QR코드

DOI QR Code

비저항추정모델을 이용한 실험체 크기의 영향에 대한 연구

A Study on the Effect of Specimen Size using Resistivity Estimation Model

  • 임영철 (대구가톨릭대학교 건축학부)
  • 투고 : 2019.09.27
  • 심사 : 2019.10.29
  • 발행 : 2019.11.01

초록

본 연구는 전기비저항 측정시 실험체 크기에 따른 영향에 대해 비저항추정모델을 이용한 해석적 검토를 목적으로 한다. 실험에서는 콘크리트 실험체를 제작하여 전극 간격별 겉보기 비저항 측정하였다. 측정된 겉보기 비저항은 실험체 크기가 작아지고 외측(가장자리)에 가까울수록 겉보기 비저항치의 왜곡현상이 심해진다는 것을 확인할 수 있었다. 측정치와 해석치의 비교·분석 결과, 실험체 크기의 영향성 검토에 REM이 활용될 수 있을 것으로 기대된다.

This study aims at the analysis using the Resistivity Estimation Model (REM) to examine the effect of specimen size on the measurement of electrical resistivity. In the experiment, specimens of concrete were fabricated and the apparent resistivity was measured for each electrode interval. The apparent resistivity measured was found to be distorted in the apparent resistivity as the specimen size became smaller and closer to the outside (edge). As a result of comparing the experimental and analysis values, it is expected that REM can be used to examine the effect of the size of the specimen.

키워드

참고문헌

  1. ASTM C876-09, (2009), Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete, ASTM International West Conshohocken, PA.
  2. Andrade C., Gonzales J.A., (1978), Quantitative Measurement of Corrosion Rate of Reinforcing Steels Embedded in Concrete Using Polarization Resistance Measurements, Werkstoffe und Korrosion, 29, 515-19. https://doi.org/10.1002/maco.19780290804
  3. Feliu, S., Conzalez, J. A., Andrade, C., and Feliu, V., (1988), On-Site Determination of the Polarization Research in a Reinforced Concrete Beam, Corrosion Engineering, 44(10), 761-765. https://doi.org/10.5006/1.3584943
  4. Polder R., Andrade C., Elsener B., Vennesland O., Gulikers J., Weidert R., Raupach M., (2000), Test methods for on site measurement of resistivity of concrete, Materials and Structures, 33 (10), 603-611. https://doi.org/10.1007/BF02480599
  5. Hornbostel K., Larsen C.K., Geiker M.R., (2013), Relationship between concrete resistivity and corrosion rate - A literature review, Cement and Concrete Composites, 39, 60-72. https://doi.org/10.1016/j.cemconcomp.2013.03.019
  6. Lim, Y. C., Noguchi, T., and Lee, H. S., (2009), Mathematical Modeling for Corrosion Environment Estimation Based on Concrete Resistivity Measurement, The Iron and Steel Institute of Japan International, 49(1), 92-99. https://doi.org/10.2355/isijinternational.49.92
  7. Gowers, K. R., and Millard, S. G., (1999), Measurement of Concrete Resistivity for Assessment of Corrosion Severity of Steel Using Wenner Technique, ACI Materials Journal, 96(M66), 536-541.
  8. Lim Y. C., (2018), Experimental Study on the Effect of Specimen Size on Electrical Resistivity Measurement, Journal of the Korea Institute for Structural Maintenance and Inspection, 22(6), 164-169. https://doi.org/10.11112/JKSMI.2018.22.6.164
  9. The Society of Exploration Geophysicists, (1967), Exploration of Geophysicsts' Mining Geophysic,. Oklahoma, George Banta Co., 63.
  10. Wenner, F., (1915), Bulletin of the Bureau of Standard, 12, 469-478.
  11. Lim, Y. C., Noguchi, T., and Cho, C. G., (2018), Mathematical Modeling for Quantitative Estimation of Geometric Effects of Nearby Rebar in the Electrical Resistivity Measurement, Cement and Concrete Composites, 90, 82-88. https://doi.org/10.1016/j.cemconcomp.2018.03.013
  12. Lim Y. C., Noguchi T., Cho C. G., (2015), A quantitative analysis of the geometric effects of reinforcement in concrete resistivity measurement above reinforcement, Construction and Building Materials, 83, 189-193. https://doi.org/10.1016/j.conbuildmat.2015.03.045